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Wireless body area sensor 
networks based human activity 
recognition using deep learning
Ehab El‑Adawi , Ehab Essa *, Mohamed Handosa  & Samir Elmougy *

In the healthcare sector, the health status and biological, and physical activity of the patient are 
monitored among different sensors that collect the required information about these activities 
using Wireless body area network (WBAN) architecture. Sensor‑based human activity recognition 
(HAR), which offers remarkable qualities of ease and privacy, has drawn increasing attention from 
researchers with the growth of the Internet of Things (IoT) and wearable technology. Deep learning 
has the ability to extract high‑dimensional information automatically, making end‑to‑end learning. 
The most significant obstacles to computer vision, particularly convolutional neural networks (CNNs), 
are the effect of the environment background, camera shielding, and other variables. This paper aims 
to propose and develop a new HAR system in WBAN dependence on the Gramian angular field (GAF) 
and DenseNet. Once the necessary signals are obtained, the input signals undergo pre‑processing 
through artifact removal and median filtering. In the initial stage, the time series data captured by the 
sensors undergoes a conversion process, transforming it into 2‑dimensional images by using the GAF 
algorithm. Then, DenseNet automatically makes the processes and integrates the data collected from 
diverse sensors. The experiment results show that the proposed method achieves the best outcomes 
in which it achieves 97.83% accuracy, 97.83% F‑measure, and 97.64 Matthews correlation coefficient 
(MCC).

Wireless body area network (WBAN) is employed as the fundamental network architecture for various sensor 
types across diverse applications. These sensors are specifically designed to function on, around, and within the 
human body. They require very little power and do not need any external assistance. In the healthcare sector, a 
collection of physical and biological sensors is distributed on the patient’s body to collect information about the 
patient to be used in monitoring their health status and biological physical activities, checking their physiological 
measurements or any other objectives, through using WBAN architecture. The sensors distributed on-body used 
in human activity recognition (HAR)  domain1,2. A WBAN consists of movable sensors with communication 
capabilities, managed by a body area networks (BANs) coordinator. Each sensor can be attached to the  body3. 
Healthcare devices have undergone a transformation with advancements in microelectronic technology, enabling 
them to be less intrusive and more wearable or implantable. The fifth-generation communication system offers 
greater benefits to users, including higher capacity. However, in the absence of BANs, actuator and sensor func-
tions were isolated, leading to inefficient use of communication resources.

BANs offer numerous advantages, such as providing a solid basis for physical exercise, recuperation, and 
health  tracking4. Consequently, it is important to model HAR system in WBAN architecture to achieve high 
recognition accuracy. In recent years, wearable sensor-based HAR has gained popularity due to the widespread 
use of mobile  devices5. Identifying different human activities using sensor data is known as HAR. Due to the 
Internet of Things (IoT), artificial intelligence (AI), and the rapid development of 6th Generation (6G) mobile 
networks, HAR is becoming more and more significant in our daily. Particularly in daily activity  analysis6, video 
 monitoring7, identification of  gestures8, and analysis of  gait9. While sensor-based activity recognition (AR) is 
used to evaluate and process data from sensors like accelerometers and gyroscopes, video-based AR primarily 
processes the video and pictures collected by cameras. Due to its advantages of superior privacy and simplic-
ity, sensor-based AR has become attractive to many researchers’ primary focus. Figure 1 illustrates the HAR 
framework which consists of four phases: gathering data, preprocessing, and segmentation, extracting features, 
and classifying activities.

Many recognition models employed in the HAR system are dependence on traditional machine learning (ML) 
methods, while others are based on deep learning (DL) algorithms. Among the most popular traditional ML 
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algorithms are the decision tree (DT)11, random forests (RF)12,13, and support vector machine (SVM). The classic 
ML method has undergone a revolution in the last ten years developed by DL, which has increased performance 
in various areas such as speech recognition, object identification, image recognition, and natural language pro-
cessing. DL has significantly improved the performance and reliability of HAR, accelerating its acceptance and 
applicability in wearable sensor-based applications. Unlike traditional ML techniques that often require manual 
feature extraction or engineering, a process that demands domain expertise and extensive human effort, DL 
methods can automatically learn robust features from raw data for specific applications.

Utilizing DL, methods can make the HAR process simpler. The architecture of DL algorithms is composed 
of stacked layers of neurons that derive hierarchical representations. For each layer, a nonlinear function is 
applied to generate new feature maps based on the input feature maps from the previous layer. This hierarchical 
representation enables DL algorithms to autonomously identify the most relevant features specific to 
the application domain. By minimizing a specific loss function, the DL architecture identifies features and 
classification boundaries. DL-based methods can learn the features autonomously, eliminating the need for 
manual feature engineering. DL algorithms such as as convolutional neural network (CNN), recurrent neural 
networks (RNN)s, Deep Belief Networks, and autoencoders are often used for  HAR8.

Deep neural networks (DNN) demonstrates the ability to learn meaningful features from raw inputs, even 
with limited domain expertise. Additionally, when equipped with a substantial network and an ample number 
of observations, DNNs have been shown to be universal function approximators, capable of approximating 
almost any  function14. This high expressive capacity has resulted in a significant surge in HAR-based applications 
for DL. However, despite the numerous benefits offered by DL, it also has inherent issues and drawbacks-for 
instance, the vanishing gradient problem. Furthermore, many recognition techniques based on CNN employ one-
dimensional convolution  kernels15,16, which poses challenges in effectively leveraging the rich high-dimensional 
data characteristics.

Transfer learning is a technique in DL where a pre-trained model on a large dataset is used as a starting point 
for a new task. One such pre-trained model is the densely connected convolutional networks (DenseNet)17, which 
is a DNN architecture known for its high accuracy and efficiency in computer vision tasks. Transfer DenseNet 
refers to the application of transfer learning using a pre-trained DenseNet model. The idea is to take advantage 

Figure 1.  HAR Framework adapted  from10.
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of the learned features and parameters of the pre-trained model and adapt them to a new task by fine-tuning the 
network on a smaller dataset specific to the new task. By using transfer learning with DenseNet, it is possible to 
achieve higher accuracy with less training time and fewer training data than training a new model from scratch. 
This is especially useful in scenarios where there is limited labeled data available or when training a new model 
from scratch is computationally expensive.

There are numerous techniques employed to transform 1-dimensional sensor data into 2-dimensional 
data through matrix rearrangement. One of these methods involves a straightforward approach of listing and 
superimposing the data, but it may lose  interpretability18,19.  In20–22, the Fourier transform was used to turn 
the 1-dimensional time series into 2-dimensional time-frequency pictures, which significantly increased the 
quantity of calculations.  In18, the Gramian angular field (GAF) transform was used to transform data into a two-
dimensional time-frequency image. Sensor-based activity detection systems would inevitably use less computer 
power and perform calculations more quickly due to wearable sensor devices’ mobility and real-time capabilities.

In this paper, we propose a new HAR system in WBAN based on GAF and DenseNet to convert time series 
data from one-dimensional into a two-dimensional image and then classify the human activities, that are collected 
by sensors distributed on the body of the patient, by using DenseNet. The DenseNet offers various appealing 
benefits, including eliminating the vanishing-gradient issue, enhancing the feature propagation, promoting 
feature reuse, and much fewer parameters. The GAF method establishes the groundwork for the success of 
feature extraction while improving the interpretability of the transformation from one-dimensional time series 
to a 2-dimensional image. The experimental results demonstrate that the proposed HAR approach achieves good 
performance by combining the GAF algorithm’s features with the structure and benefits of DenseNet, which 
may significantly increase the multiscale feature extraction capability and the accuracy of activity detection. The 
contributions of this paper include a AR hybrid approach in WBAN architecture is proposed and developed based 
on integrating GAF algorithm and DenseNet based on the mobile health (MHEALTH) dataset.

The subsequent sections of this paper are structured as follows: “Literature review” presents related works. 
“Methods” presents and discusses the proposed methodology. “Results” delves into implementation details. 
Lastly, “Conclusions and future works” presents and discusses the results obtained.

Literature review
Batool et al.23 proposed an innovative method that employs fused sensors and presents a modified K-Ary 
entropy classifier algorithm to tackle intricate challenges related to feature selection and classification using 
RGB-D data. The algorithm is designed to enhance the spacing between intra-substructure nodes within a tree, 
thereby decreasing the probability of misclassifying the minority class. The proposed model undergoes testing 
on three benchmark datasets, revealing promising outcomes with performance metrics of 95.05%, 95.56%, and 
95.08% for the SYSU-ACTION, PRECIS HAR, and Northwestern-UCLA (N-UCLA) datasets, respectively. K. 
Abhishek et al.24 proposed approach entails deploying a CNN model for the examination of videos recorded 
by surveillance cameras, with the objective of categorizing the existence of humans in the individual frames of 
the video. The proposed model undergoes testing on three benchmark datasets, revealing promising outcomes 
with performance metrics of 92.15%, and 92.83% for Sport Videos in the wild, and UT-interaction datasets, 
respectively. Boga et al.25 proposed a method for HAR using WBAN and DL. The proposed method involves 
a multi-objective feature selection approach to select the most relevant features from the sensor data collected 
by the WBAN. These features are then input to a DL model for AR to recognize human activity (HA). Mishra 
et al.26 A system was introduced to facilitate on-device intelligence for Human HAR by utilizing energy harvesting 
wireless sensor networks (EWSNs). The proposed system utilizes ML algorithms to perform AR on the sensor 
data collected by the EWSNs. To enable on-device intelligence, the authors propose a hardware platform that 
integrates the EWSNs with a microcontroller unit and an energy harvesting module. the authors propose present 
experimental results to demonstrate the effectiveness of the proposed system in accurately recognizing HAs 
while achieving energy efficiency through the use of energy harvesting. Reich et al.27 provide an evaluation of 
the performance of Bluetooth in a WBAN for practical applications. the authors propose the feasibility of using 
Bluetooth for transmitting physiological data in a WBAN by evaluating its performance in terms of data rate, 
power consumption, and latency. the authors propose present experimental results to demonstrate the suitability 
of Bluetooth for practical WBAN applications, including remote patient monitoring and health tracking. 
Additionally, the authors discuss the potential challenges and limitations of using Bluetooth in a WBAN, such as 
interference and security concerns, and proposes possible solutions to address these issues. Fan et al.28 proposed a 
DNN approach for team training using body-worn inertial sensors for HAR. The system aims to provide real-time 
feedback to team members during training sessions to improve their performance by identifying and analyzing 
their movements. The proposed method uses a multi-layer neural network (NN) to recognize different activities 
performed by team members and provides personalized feedback based on their individual performance. they 
suggest that the system can be used in various team training scenarios, such as sports, military training, and 
emergency response, to enhance teamwork and overall performance. He et al.29 proposed wearable WBAN for 
HAR. consists of a set of body-worn sensors to detect and measure various physical activities performed by an 
individual. The gathered data is wirelessly transmitted to a central processing unit, where it undergoes analysis 
using ML algorithms to discern various activities. The authors propose that the wearable wireless body area 
network system can be used in various applications, such as healthcare, sports, and elderly care, to monitor and 
improve human physical activity and overall well-being.

Huan et al.30 proposed approach involves the development of a hybrid model that combines CNN and 
bidirectional long short-term memory (BLSTM) architectures. This model is specifically designed to leverage 
the PAMAP2 dataset for accurate recognition of HA, this model achieves F1 92.23%. Damirchi et al.31 proposed 
an ARC-Net net based on PAMAP2, and the RealWorld datasets, to predict the activity performed by the 
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subject. It ranges from 89.81% to 90.51% for the PAMAP2 dataset and 90.51% for the RealWorld dataset. Hongji 
et al.18 proposed a new model based on WISDM, UCI HAR, and OPPORTUNITY datasets to improve the HAR 
method by transforming time-series data into 2D images. By using GAF, they pass the output to the CNN model. 
The model achieves 95.79%, 89.63%, and 96.04% for the F1 score. and 96.83%, 89.48%, 97.27% for accuracy 
respectively.

Ahmed et al.32 proposed a HAR system that calculates the best wearable sensor data based on MOTIONSENSE, 
MHEALTH, and the proposed self-annotated IM-AccGyro human-machine datasets, by applying a notch filter 
to 1D signals and looking at the lower/upper cutoff frequencies. Subsequently, it calculates a variety of composite 
features, which encompass statistical characteristics, Mel frequency cepstral coefficients, and Gaussian Mixture 
Model features. The model achieves 88.25%, 93.95%, and 96.83%. Nidhi et al.10 proposed a novel approach called 
“ICGNet” based on MHEALTH and PAMAP2 datasets that makes use of the advantages of CNN and gated 
recurrent unit (GRU) and can therefore detect local characteristics and long-term relationships in multivariate 
time series data. The model achieves 99.25% and 97.64%.

Uddin et al.33 proposed a solution that leverages CNNs for AR. CNNs are a type of artificial neural network 
commonly used for analyzing visual data, such as images or video frames. In this paper, the CNN architecture 
is adapted to process sequential data from body sensors, such as accelerometers or gyroscopes, which provide 
information about human movements, based on MHEALTH dataset, the model achieves 93.90%. Sheikh et al.34 
proposed HAR system on USC-HAD, IMSB, and MHEALTH datasets, which collects signal data from inertial 
sensors, such as gyroscopes and accelerometers used as motion node sensors. The inertial data is first processed 
using a variety of filters. It derives a multifaced model for statistical, wavelet, and binary features to optimize 
the occurrence of ideal feature values. Then, in the phase of feature optimization, adaptive moment estimation 
(Adam) and AdaDelta are added to adopt learning rate patterns. this model achieves 91.25%, 90.91%, and 93.66%. 
Lingjuan et al.35 proposed a model hybrid of CNN and long short-term memory (LSTM) called RG-RP based on 
MHEALTH and UCI-HAR datasets, which combines the merits of LSTM and CNN. The model achieves 98% and 
96.2%. Ha et al.36 proposed a CNN-based approach to leverage the spatial and temporal information captured by 
the accelerometer and gyroscope sensors. By using CNNs, the model can automatically learn relevant features 
from the raw sensor data without the need for manual feature engineering based on the MEALTH dataset. the 
model achieved 91.94%. Chen et al.37 proposed a model for unbalanced activity detection using a semi-supervised 
deep model from multimodal wearable sensory data based on MHEALTH, PAMPA2, and UCI-HAR datasets. The 
researchers proposed a pattern-balanced semi-supervised framework aimed at extracting and preserving diverse 
latent activity patterns. More specifically, their approach suggests using a pattern-balanced semi-supervised 
framework for extracting and maintaining different latent activity patterns. The model achieves 94.05%, 83.42%, 
and 81.32%. Qin et al.38 presented HAR architecture to utilize data from multiple sensors with using a hybrid 
system of GAF and ResNet model based on heterogeneity human activity recognition (HHAR) and MHEALTH 
datasets. This model provides an accuracy of 93.41% on HHAR dataset and 98.5% on MHEALTH dataset. Table 1 
presents a Comparison between the related work for HAR.

Methods
Dataset description
The UCI repository makes the MHEALTH  dataset39 available; it contains information on 12 activities carried 
out by ten people. This dataset includes the following activities: stair climbing, cycling, frontal arm elevation, 
jogging, back and front jumps, knee bending (crouching), lying down, running, sitting and relaxing, standing 
still, forward-bent waist, and walking. The data was collected by using sensors positioned at the body parts: chest, 
right wrist, and left ankle; Fig. 2 depicts where the locations of these sensors.

In this work, we use the gyroscope, accelerometer, and magnetometer sensors. The characteristics that are 
recorded by the accelerometer, gyroscope, magnetometer, and electrocardiogram (ECG) are (axe, ay, az), (gx, 
gy, gz), and (mx, my, mz), respectively, in all three x, y, and z-direction. The combination of several sensors 
makes it possible to measure the motion felt by various body parts, like the rate of rotation, acceleration, and 
magnetic field direction. ECG readings can track your essential health, the effects of certain activities, and more. 
Additionally, recordings of ECG signals were made. Lead1 and lead2 signals on the ECG have two characteristics. 
Accelerometer and ECG signals were captured at the chest, and accelerometer, gyroscope, and magnetometer 
signals were recorded at the right wrist and left ankle. Thus, for all three places’ qualities and features, a total of 
23 were recorded. A sampling rate of 50 Hz was used to record all sensing modalities. Then the collected sensor 
data is transmitted from the individual sensors to a central unit. This central unit could be the user’s smartphone, 
a dedicated wearable device, or another computing device capable of processing and transmitting data.

Sensors in the MHEALTH dataset typically use wireless communication protocols to transmit data. Common 
protocols include Bluetooth, Wi-Fi, or other short-range communication technologies. These protocols allow 
for efficient and wireless data transfer between the sensors and the central unit.

The proposed methodology
This paper proposes a new HAR hybrid system in WBAN architecture based on GAF algorithm and DenseNet169 
model, in which Fig. 3, shows the main steps of this architecture are as follows:

Preprocessing data
Most of the sensor’s initial data set consists of 1-dimensional time  series18

In the application of 2-dimensional, it is typically necessary to transform 1-dimensional time series into a 
format resembling 2-dimensional images. In the first step, the mobile health dataset is stored and represented 
as a CSV file and performs the following steps: 
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Table 1.  Comparison of different HAR systems.

Ref. Year Dataset Methods/Techniques

Results

Accuracy F1
36 2016 MHEALTH Hybrid between CNN and pff model. 91.94% –

35 2017

USC-HAD

They proposed a recognition model using inertial (gyroscopes and accelerometers) RG-RP

91.25% –

MHEALTH 98% –

UCI-HAR 96.2% –
33 2018 MHEALTH CNN model 93.90% –

37 2019

MHEALTH
They carefully chose salient regions human behaviors that are suggestive of using the independence of 
several sensory from recurrent convolutional attention networks

94.05% –

PAMPA2 83.42% –

UCI HAR 81.32% –

34 2020

WISDM

They built a new hybrid model (CNN + GAF)

96.83% 95.79%

IMSB 90.91% –

MHEALTH 93.66% –

18 2020
UCI HAR

to improve HAR method and solving the problem of environmental background, camera shielding
89.48% 89.63%

OPPORTUNITY 97.27% 96.04%

32 2020
MOTIONSENSE

Proposed self-annotated IM-AccGyro human-machine using 1D Filter
From 88.25%
to 93.95% –

MHEALTH 96.83% –

31 2020
PAMAP2 They introduce the ARC-Net framework and suggest using capsules to combine data from various  inertial 

measurement units (IMU) in order to forecast the subject’s activities

From 89.81%
to 90.51% –

The Real-World 90.51% –

38 2020
HAR

They built a new model to recognition HAR using hybrid model (GAF and ResNet)
93.41% –

MHEALTH 98.5% –

30 2021
PAMAP2

They built HAR (using a hybrid model CNN and bidirectional BLSTM)
– 92.23%

UT-Data – 98.07%

10 2022

MHEALTH
They built HAR (using a hybrid modelCNN and BLSTM)

99.25% –

PAMAP2 97.64% –

SYSU-ACTION

They create a method using fused sensors and introduce a modified K-Ary entropy classifier algorithm

95.05% –

23 2023
PRECIS HAR 95.56% –

Northwestern-UCLA 95.08% –

24 2023
Sport Videos in the Wild

They built CNN model for the examination of videos recorded by surveillance cameras
92.15% –

UT-interaction 92.83% –

Figure 2.  The position of the sensor to collect data for the MHEALTH  dataset40.
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1. Resampling: The majority class (activity label = 0) in the dataset is downsampled to have 30,000 samples 
using the resample function from sklearn. utils. This is done to balance the class distribution in the dataset.

2. Outlier removal: the features in the dataset that have data points outside the 98% confidence interval are 
dropped using a for loop that iterates over each column except the last two columns (Activity and subject).

3. Train-test split: The data is divided into train and test sets based on the subject column. Data corresponding 
to subjects 9 and 10 are considered as the test set, while the remaining data is considered as the train set.

4. Time series dataset creation: A function named a window, which has a fixed size or a sliding nature, 
depending on the specific application or task. A fixed-size window selects a predetermined number of 
consecutive data points, while a sliding window moves across the dataset in steps, selecting a new subset of 
data for each step

Overall, the data is prepared dataset for time series modeling by balancing class distribution, removing outliers, 
and creating time series datasets for sequence modeling.

Gramian angular algorithm (GAF)
The bearing vibration signal is periodic in rotating machinery. It is challenging to directly extract the bearing 
defect features from the time-domain signal because random noise affects the periodic vibration signal. With 
GAF. Time-domain signals can be separated into characteristic and interference signals while maintaining their 
temporal link. In terms of human behavior recognition (HAR) and ECG signal monitoring, GAF has made some 
progress  recently41. Consider a one-dimensional time series X = {x1, x2, . . . , xN } of N observations. According 
to the GAF algorithm, the observation xi; i = 1, . . . ,N are normalized to range [−1, 1] or [0, 1] such that the 
normalized observations are given  by18:

or

respectively. Thus, a normalized one-dimensional time series is obtained, denoted by X̂ . Next, X̂ is converted to 
the polar coordinate system by taking the inverse cosine of each normalized observation x̂i; i = 1, . . . ,N to be 
the angle and i/N to be the radius. The observations in the polar coordinate system are given  by18:

(1)x̂
[−1,1]
i

= (xi −max(X))+ (xi −min(X))

max(X)−min(X)

(2)x̂
[0,1]
i

= (xi −max(X))+ (xi −min(X))

max(X)−min(X)
,

Figure 3.  The proposed hybrid HAR system in WBAN architecture based on GAF algorithm and DenseNet169 
model.
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Note that, when normalizing the data to the range [−1, 1] the rang of θi is [0,π ] , whereas the range of θi related 
to the data range [0, 1] is [0,π/2].

Finally, Gramian angular summation field (GASF) and Gramian angular difference field (GADF) are obtained 
to determine the time correlation between the sampling points from the angle perspective. GAF algorithm is 
applied for converting the one-dimensional time series into a two-dimensional image. Applying computer vision 
technology to the study of time involves scaling, coordinate axis transformation, and trigonometric function 
stages. The time series is converted into a polar coordinate system using (3). Using (4) and (5), you may get the 
GADF and GASF images, respectively. The GASF and GADF are, respectively, given  by18

and

DenseNet
DenseNet is a CNN architecture proposed Huang et al.17 in 2017. It is designed to address the vanishing gradient 
problem that can occur in very DNNs by densely connecting all layers.

Every layer in DenseNet receives the feature maps of all the preceding layers and passes its own feature maps to 
all subsequent layers. This creates a dense connectivity pattern between layers, with information flowing through 
many paths, which helps to reduce the risk of information loss due to vanishing gradients. DenseNet models 
consist of dense blocks, which are composed of multiple convolutional layers with batch normalization and ReLU 
activation, followed by a concatenation operation that combines the feature maps from all preceding layers. These 
dense blocks are connected by transition layers, which include a pooling layer to reduce the spatial dimensions 
of the feature maps and a convolutional layer to reduce the number of channels. DenseNet models have achieved 
state-of-the-art performance on a variety of image classification tasks, object detection, and segmentation. The 
architecture of the DenseNet model consists of dense blocks and transition layers, as described below:17 

1. Input Layer: The input layer of a DenseNet model takes the image as input.
2. Convolutional Layer: The input is passed through a single convolutional layer with a small kernel size (that 

is 3x3), followed by batch normalization and ReLU activation.
3. Dense Block: The output of the first convolutional layer is passed through a dense block, which consists of 

multiple convolutional layers with the same kernel size and a number of filters. Each layer in the dense block 
takes as input the concatenated feature maps of all preceding layers in the block. The output of each layer is 
passed through batch normalization and ReLU activation before being concatenated with the previous layer’s 
output.

4. Transition Layer: After the dense block, a transition layer is added to reduce the number of feature maps by 
using 1x1 convolution and downsampling the spatial dimensions using average pooling.

5. Repeat Dense Block and Transition Layer: The above two steps (dense block and transition layer) are 
repeated multiple times to create a deep neural network architecture.

6. Global Average Pooling Layer: A global average pooling layer is added after the last dense block to reduce 
the spatial dimensions of the feature maps to a vector of size 1x1xk, where k is the number of filters in the 
last dense block.

7. Fully Connected Layer: Finally, a fully connected layer with softmax activation is added to produce the 
output probabilities for the different classes.

The dense connectivity pattern between layers in a DenseNet model allows for efficient parameter sharing, which 
leads to a compact model with fewer parameters compared to other deep neural network architectures. This, in 
turn, leads to faster training and reduced risk of  overfitting42. There are several types of DenseNet models that 
have been proposed, including: 

1. DenseNet-121: This is the smallest and most widely used DenseNet model, which contains 121 layers. It has 
about 7 million parameters and is suitable for applications with limited computational resources.

2. DenseNet-169: This model contains 169 layers and has about 14 million parameters. It is deeper and more 
complex than DenseNet-121, which can lead to improved performance on more challenging tasks.

(3)
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3. DenseNet-201: This model contains 201 layers and has about 20 million parameters. It is even deeper and 
more complex than DenseNet-169, which can provide better accuracy on more complex datasets.

4. DenseNet-264: This model is the deepest and most complex DenseNet architecture, with 264 layers and about 
33 million parameters. It is designed for very challenging tasks that require a lot of computational power.

The proposed method steps are stated in Algorithm 1.

Algorithm 1.  The steps of the proposed method based on a hybrid GAF + DenseNet169.

Results
Evaluation measures
To evaluate the proposed work, different measures given in (6)–(7) are used based on constructing a confusion 
matrix that summarized the following terms: Correct prediction is regarded as true positive (TP), while a 
prediction that is negative and is made as such is viewed as true negative (TN). False Positive is when something 
is categorized as negative but false positive (FP). This is regarded as False-Negative if it is positive and classified as 
false negative (FN). Accuracy is the rightly prognosticated sample rate. It’s the rate between rightly prognosticated 
samples to the total number of samples due to its straightforward meaning. It is considered the most most 
habituated criteria in the field of machine literacy evaluation, as illustrated in Eq. (6)43

Matthews correlation coefficient (MCC) stands for Matthews Correlation Coefficient, used to assess the quality 
of binary classification models, in which it is computed as presented in Eq. (7).

F1-measure displays the harmonic mean between recall and precision as presented in Eq. (8)43.

Enivornment and parameters setting
In this section, the parameters to set up the environment of the proposed architecture, as given in Table 2.

Experimentation and results
The model is implemented using Keras and TensorFlow. The input is concatenated with itself three times (300, 
300, 3) using the Concatenate layer to facilitate the use of the transfer learning. This concatenated output is then 
passed as input to the pre-trained DenseNet169 model, which has been initialized with ImageNet weights. A 
Dense layer with 355 units and a ReLU activation function is added on top of the output of the DenseNet model. 
A Dropout layer with a rate of 0.2 is then applied to the output of the Dense layer. The output is then flattened 
using the Flatten layer. Finally, a Dense layer with 13 units with a softmax activation function is added to the 
flattened output, which outputs the predicted probabilities for each of the 13 classes as shown in Algorithm 1. 
The entire model is compiled using the Adam optimizer, and categorical cross-entropy loss function. Figure 4 
presented the Confusion matrix.

DenseNet169 model applied to the MHEALTH dataset achieves an accuracy of 97.83% and an F1 of 97.83% 
and 97.64% for MCC. Figure 5 shows plots of accuracy and loss data curves. Table 3 shows the performance of a 
GAF + DenseNet169 model on a classification task across different hyperparameter configurations. The model’s 

(6)ACC. = TP + TN

TP + TN + FP + FN

(7)MCC = TP× TN− FP× FN√
(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)

(8)F1−measure = 2× Precision× Recall

Precision+ Recall

Table 2.  Environment experimentation.

Environment Parameters

System Intel(R) Xeon(R) CPU @ 2.00 GHz
CPU MHz : 2199.998. GPU Name: Intel(R) Xeon(R) CPU 2.00 GHz

Tools and Library Kaggle - Tensorflow - Keras - OpenCV - Pandas
Numpy - Skearn.
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Figure 4.  Confusion matrix for the model output.

Figure 5.  Plots of accuracy curves for the dataset.

Table 3.  Results for of applying the proposed Hybrid model for GAF and DenseNet169 on MHEALTH 
dataset using Adam optimizer.

# ImgSize DenseLayer Batchsize Accuracy F1 MCC

1 300 380 35 96.58 96.58 –

2 300 375 35 97.2 97.2 –

3 300 350 35 97.36 97.36 –

4 300 355 35 97.83 97.83 97.64

5 300 250 32 96.43 96.43 96.12

6 300 512 32 91.77 91.77 91.24

7 300 360 32 96.27 96.27 –

8 128 256 32 92.55 92.55 91.91

9 128 350 32 94.41 94.41 93.98

10 128 512 32 90.37 90.37 89.66

11 256 256 32 86.18 86.18 85.21

12 256 300 32 93.32 93.32 92.78

13 256 512 32 90.22 90.22 89.46
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accuracy, F1 score, and MCC are reported for each configuration. The results indicate that the best performance 
was obtained with an image size of 300, a dense layer of 355, and a batch size of 35, resulting in accuracy, F1 score, 
and MCC of 97.83%, 97.83%, and 97.64%, respectively. This indicates that larger image sizes and dense layers 
may improve the model’s performance. The lowest accuracy (86.18%), F1 score (86.18%), and MCC (85.21%) 
are achieved with an image size of 256, dense layer size of 256, and a batch size of 32. Examining the various 
configurations and their corresponding performance metrics: 

1. When the image size is 300, the models generally perform better, with most configurations achieving high 
accuracy, F1 score, and MCC. In this image size category, the best configuration has a dense layer size of 355 
and a batch size of 35, achieving 97.83% accuracy.

2. For an image size of 128, the performance tends to be lower compared to the 300 image size category, with 
the highest accuracy and F1 score of 94.41% achieved by the configuration with a dense layer size of 350 and 
a batch size of 32. This configuration also has an MCC of 93.98.

3. In the image size category of 256, the models have varying performances. The best configuration in this 
category has a dense layer size of 300 and a batch size of 32, achieving 93.32% accuracy, 93.32% F1 score, 
and 92.78% MCC.

4. The configurations with a dense layer size of 512 don’t seem to perform as well as those with smaller dense 
layer sizes. This could be due to overfitting or increased complexity, which might require more training data 
or a more optimized architecture.

5. The results also indicate that increasing batch size from 32 to 35 can lead to improving performance, as seen 
in configurations with image size 300 and dense layer sizes of 375 and 350.

6. The configurations with an image size of 300 perform consistently better than those with smaller image sizes, 
which suggests that the increased resolution might be beneficial for the specific task at hand. However, it 
would be interesting to test even larger image sizes to evaluate if this trend continues or if there is an optimal 
size for the best performance.

7. Regarding dense layer size, it seems to be a sweet spot around 350–380 for an image size of 300. For image 
size 128, the dense layer size of 350 achieves the best performance. However, the performance decreases 
with a dense layer size of 512 for both image sizes 128 and 256. Depending on the specific task and dataset, 
this may indicate that the dense layer size should be tuned carefully to avoid overfitting or underfitting.

8. Batch size has less impact on the performance compared to image size and dense layer size. However, in some 
configurations, increasing the batch size from 32 to 35 has improved the results, suggesting that it might be 
worth exploring a wider range of batch sizes to find the optimal value for the specific task.

The GAF+DenseNet169 model is a deep learning model that combines the GAF representation with a 
DenseNet169 architecture for image classification. The GAF representation is a feature extraction method that 
transforms a time series signal (such as an image) into an image-like representation that can be used in CNNs. 
This method has been shown to be effective in capturing the underlying patterns and correlations in time series 
data. DenseNet169 is a popular CNN architecture that uses densely connected layers to improve gradient flow and 
reduce the number of parameters compared to other CNN architectures such as visual geometry group (VGG) 
or ResNet. In this work, the GAF+DenseNet169 model was trained and evaluated on a classification task, with 
the goal of accurately classifying images. The hyperparameters of the model, such as image size, dense layer size, 
and batch size, were varied to determine their impact on the model’s performance.

Table 4 shows the evaluation results of the test cases for each individual sensor alone. The four sensors from 
the MHEALTH dataset are evaluated to determine the best sensor that contributes more to the proposed method. 
The information is presented below in a list as follows:

1. In experiment 8, Sensor 1 was tested using an image size of 150, a Dense layer of 375, and a batch size of 32. 
The results showed an ACC. of 77.17%, an F1 score of 77.17%, and an MCC of 75.35%.

Table 4.  Evaluation results of the constructed test cases for each sensor.

# ImageSize DenseLayer

Sensor 1 Sensor 2 Sensor 3 Sensor 4

ACC. F1 MCC ACC. F1 MCC ACC. F1 MCC ACC. F1 MCC

1 150 380 66.15 66.15 63.52 57.14 57.14 53.64 79.50 79.50 77.91 53.11 53.11 49.43

2 150 360 75.31 75.31 73.23 58.85 58.85 57.62 89.96 86.96 85.86 52.95 52.95 48.86

3 150 375 73.29 73.29 71.10 60.87 60.87 57.62 83.07 83.07 81.69 51.09 51.09 47.50

4 150 512 75.62 75.62 73.71 58.70 58.70 55.26 76.24 76.24 74.31 55.28 55.28 51.81

5 150 512 74.07 74.07 72.08 60.56 60.56 57.14 75.47 75.47 73.88 55.59 55.59 52.51

6 150 360 69.72 69.72 67.17 55.75 55.75 51.98 75.00 75.00 72.98 56.99 56.99 53.61

7 150 380 75.16 75.16 71.48 55.75 55.75 51.99 77.95 77.95 76.29 52.33 52.33 48.88

8 150 375 77.17 77.17 75.35 55.75 55.75 51.99 77.33 77.33 75.60 57.14 57.14 53.66

9 128 512 69.88 69.88 67.66 61.80 61.80 58.56 70.50 70.50 68.44 57.92 57.92 54.49
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2. For Sensor 2, experiment 3 utilized an image size of 150, a Dense layer of 375, and a batch size of 35. The 
corresponding metrics were an accuracy of 60.87%, an F1 score of 60.87%, and an MCC of 57.62%.

3. In the case of Sensor 3, experiment 2 used an image size of 150, a Dense layer of 360, and a batch size of 35. 
The achieved values were an accuracy of 86.96%, an F1 score of 86.96%, and an MCC of 85.86%.

4. Lastly, for Sensor 4, experiment 9 involved an image size of 128, a Dense layer of 512, and a batch size of 32. 
The recorded metrics were an accuracy of 57.92%, an F1 score of 57.92%, and an MCC of 54.49%.

To summarize, Sensor 3 yields the best results compared to other sensors. However, its individual performance 
is still far behind the combination of all sensors. This indicates that while Sensor 3 is superior, it is the collective 
data from all sensors that provide the most optimal outcome. The comparison results of the various models are 
given below for HAR in which each model is evaluated based on accuracy as shown in Table 5

1. Model 1 combines PCA with a CNN for feature extraction and AR.
2. Model 2 combines a decision tree classifier with the BGWO optimization algorithm for AR.
3. Model 3 combines the Adam optimizer with MEMM for AR.
4. Model 4 model in which no details about the specific architecture or method employed in this model are 

provided.
5. Model 5 combines LSTM and CNN architectures for AR.
6. Model 6 incorporates semisupervised learning techniques to leverage both labeled and unlabeled data for 

AR.
7. GAF+ DenseNet169 (the proposed model) utilizes GAF in combination with the DenseNet169 architecture, 

which is deep convolutional neural networks (DCNN), for AR. It’s worth noting that the table provides 
limited information, and the performance of the models may depend on various factors, such as the specific 
dataset used, the size of the training set, the preprocessing techniques applied, and other implementation 
details. Additionally, the proposed model (GAF+DenseNet169) achieves the highest accuracy, according to 
the table.

This paper introduces a DL network architecture that aims to recognize human activities using mobile sensor 
data. The proposed approach focuses on encoding time series into GAF images by combining global and local 
features. This innovative processing technique allows the training of the model using popular residual networks 
for image recognition. The obtained results, based on MHEALTH dataset, show that the proposed gives better 
accuracy and F1-measure than the other compared work.

Conclusions and future works
Nowadays, there is a growing interest in sensor-based HAR has been propelled by the widespread adoption 
of IoT and wearable technologies. These technological trends not only offer unparalleled convenience in our 
daily lives but also address concerns related to privacy, making them increasingly integral to modern living. In 
parallel, the advent of DL algorithms has ushered in a new era of possibilities, particularly in the context of HAR. 
The inherent capacity of DL algorithms to autonomously extract high-dimensional information has proven to 
be transformative, enabling end-to-end learning and enhancing the accuracy of AR systems. However, to build 
robust computer vision, especially in the realm of CNNs, encounters significant challenges. Factors such as 
external background interference, camera shielding, and other environmental variables can impede the efficacy 
of these vision-based systems. This highlights a critical gap where sensor-based HAR, with its intrinsic ability to 
mitigate such challenges, emerges as a compelling alternative.

Our proposed approach seeks to address these challenges through the integration of two DL models tailored 
specifically for sensor-based HAR. At the core of our methodology is the utilization of the GAF algorithm, a 
powerful tool for transforming 1-dimensional time series data obtained from sensors into 2-dimensional images. 
This transformation is pivotal in capturing nuanced patterns and temporal dependencies in the data, providing 
a comprehensive representation for subsequent analysis. Subsequently, we deploy the DenseNet model, known 
for its depth and interconnectedness, to perform accurate classification of various human activities. The unique 
architecture of DenseNet facilitates the automated processing of information acquired from diverse sensors. This 

Table 5.  Results of comparison of different approaches.

Model no. Approaches Accuracy (%) F1-score (%)

1 Gaussian-Kernel principal components Analysis (PCA)+CNN33 93.90 –

2 DT classifier + binary grey wolf optimization (BGWO)32 93.95 –

3 Adam + maximum entropy Markov model (MEMM)34 90.91 –

4 CNN-pff  model36 91.94 –

5 Hybrid model between LSTM-CNN35 95.56 –

6 Semisupervised deep  model37 94.05 –

7 GAF+ DenseNet169 (the proposed model) 97.83 97.83
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integration not only enhances the efficiency of the recognition process but also contributes to the adaptability of 
the system to different sensor modalities.

In our experimental results, we conducted tests on the MHEALTH public activity dataset, a well-established 
benchmark for HAR research. The evaluation metrics employed, including accuracy, recall, and F-measure, serve 
as robust indicators of the effectiveness of our proposed method. The attained results underscore the prowess 
of our approach, with an impressive accuracy rate of 97.83%, an F-measure of 97.83%, and a MCC of 97.64%.

In future work, we will explore the potential of another DL model augmented with a feature selection 
optimizer. This strategic enhancement aims to further refine results by selecting and prioritizing relevant features, 
thereby improving both predictive performance and interpretability. Additionally, this optimization effort seeks 
to streamline computational complexity, reducing time requirements and minimizing loss in the HAR system. 
Overall, these endeavors contribute to the ongoing evolution of sensor-based HAR systems, enhancing their 
reliability and applicability in real-world scenarios.

Data availibility
The dataset used during the current study is available in the UCI Machine Learning Repository, MHEAL TH 
Datas et Link.
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