
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2612  | https://doi.org/10.1038/s41598-024-53025-z

www.nature.com/scientificreports

Harnessing physical activity 
monitoring and digital biomarkers 
of frailty from pendant based 
wearables to predict chemotherapy 
resilience in veterans with cancer
Gozde Cay 1, Yvonne H. Sada 2, Mohammad Dehghan Rouzi 1, Md Moin Uddin Atique 1, 
Naima Rodriguez 1, Mehrnaz Azarian 1, M. G. Finco 1, Sarvari Yellapragada 2 & Bijan Najafi 1*

This study evaluated the use of pendant-based wearables for monitoring digital biomarkers of frailty 
in predicting chemotherapy resilience among 27 veteran cancer patients (average age: 64.6 ± 13.4 
years), undergoing bi-weekly chemotherapy. Immediately following their first day of chemotherapy 
cycle, participants wore a water-resistant pendant sensor for 14 days. This device tracked frailty 
markers like cadence (slowness), daily steps (inactivity), postural transitions (weakness), and metrics 
such as longest walk duration and energy expenditure (exhaustion). Participants were divided into 
resilient and non-resilient groups based on adverse events within 6 months post-chemotherapy, 
including dose reduction, treatment discontinuation, unplanned hospitalization, or death. A 
Chemotherapy-Resilience-Index (CRI) ranging from 0 to 1, where higher values indicate poorer 
resilience, was developed using regression analysis. It combined physical activity data with baseline 
Eastern Cooperative Oncology Group (ECOG) assessments. The protocol showed a 97% feasibility 
rate, with sensor metrics effectively differentiating between groups as early as day 6 post-therapy. 
The CRI, calculated using data up to day 6 and baseline ECOG, significantly distinguished resilient 
(CRI = 0.2 ± 0.27) from non-resilient (CRI = 0.7 ± 0.26) groups (p < 0.001, Cohen’s d = 1.67). This confirms 
the potential of remote monitoring systems in tracking post-chemotherapy functional capacity 
changes and aiding early non-resilience detection, subject to validation in larger studies.

Cancer is a major health concern in the United States, with approximately 1.9 million new cases projected in 
2022, including 50,000 new cases within the Veteran’s Healthcare  Administration1. Chemotherapy is a com-
monly used cancer treatment strategy, but its cytotoxic agents can have cancer-therapy related toxicity (CRT) 
side effects, such as fatigue, pain, nausea, neuropathy, anxiety, depression, or insomnia, which are estimated to 
affect approximately 86 to 88% of cancer  patients2,3. Severe chemotherapy-induced toxicities may result in dose 
delay or dose reduction, chemotherapy  discontinuation4, and unplanned healthcare service to manage these side 
 effects5; some may even result in premature death, if left  unmanaged6,7.

Resilience, often envisioned as the human capacity to maintain or regain relative stability in both psycho-
logical and physical realms amidst life’s adversities, emerges as an integral concept within the sphere of cancer 
 care8,9. The capability to assess and prognosticate this resilience in response to therapy-induced toxicity holds 
profound  implications9–11. It directs both clinicians and patients through the maze of treatment decisions, offering 
an essential tool for customizing treatment plans to patient-specific responses. By anticipating potential adverse 
events, we may refine care strategies and explore alternative treatments, advancing personalized medicine. This 
predictive ability not only has clinical implications; it directly impacts patients’ quality of life. By forecasting 
the heavy toll of side effects associated with cancer therapies, we may better navigate a path that manages these 
events, aiming to improve patient experiences. The early detection of toxicity offers a window for timely inter-
vention, curtailing side effects and fostering improved  outcomes12. The financial implications are also evident, as 
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preparing for potential side effects can avert costly hospital readmissions and additional  treatments13. Focusing 
on early stages of toxicity exposure is pivotal, allowing swift interventions that enhance patient outcomes and 
sustain quality of  life9.

In the routine clinical practice of predicting therapy-related toxicity resilience, the performance status (PS) 
scales—Eastern Cooperative Oncology Group (ECOG)  PS14 and Karnofsky Performance Status (KPS)15—stand 
as the current gold standards. These tools provide critical navigation through the complex decision-making 
process inherent in cancer treatment. While ECOG-PS exhibits strong correlations with patient quality of life 
and survival in clinical  trials16 potential inaccuracies in broader PS assessments could unintentionally elevate 
treatment toxicity risk, leading to adverse clinical outcomes. The ECOG and KPS scales, drawing on self-reported 
patient data about daily activity levels and independence in performing essential tasks, are not devoid of inher-
ent biases. Patient recall, preferred treatments of patients or providers, and inter-observer  variability17 can skew 
evaluations. Furthermore, time constraints can impede the thoroughness of these assessments. Providers may not 
routinely revisit performance status post-initial consultation unless significant functional changes occur, or might 
opt for an "eyeball test," relying on observed patient movements instead of a comprehensive performance status 
history. Consequently, to discern patients with the highest likelihood of resilience to chemotherapy, it becomes 
imperative to investigate alternative, objective measures of functional status that can predict treatment-related 
toxicity and healthcare utilization.

With the emerging need for remote monitoring of digital biomarkers to predict therapy adverse events, this 
approach presents a timely and practical patient monitoring solution, which may potentially help enhancing 
therapy safety, and potentially reducing health disparities, particularly in rural settings where hospital access 
may be limited. Technological advances, especially in physical activity monitors, offer innovative avenues for 
functional status assessment. The value of remote monitoring using digital health tools was underscored during 
the COVID-19  pandemic18–20. These monitors can persistently gather objective digital biomarkers of mobility, 
such as lying or sitting position, daily steps, and gait speed, outside the clinical  environment21–27. Given the 
relevance of ambulation and time spent in a sitting or lying position to ECOG-PS scoring, these mobility digital 
biomarkers could enrich PS assessment. Research has suggested the efficacy of physical activity monitors in 
gauging chemotherapy-induced peripheral neuropathy, cancer-related fatigue, and the level of fall concerns 
among older cancer  survivors28–30. Wearable activity sensors also demonstrated good potential for tracking 
mobility performance in chemotherapy  patients31 and showed significant correlation with ECOG-PS-collected 
performance  status32.

In this study, we strive to assess the feasibility, acceptability, and proof-of-concept validity of a pendant physi-
cal activity monitor (PAMSys™, BioSensics LLC, MA, USA), a device with clinical validation for its ability to 
monitor cumulative postures such as sitting, standing, lying, and walking, along with tracking walking patterns, 
cadence, and postural  transitions33–36. Our primary objective is to use this device to monitor patients’ daily physi-
cal activities continuously throughout the first two weeks of therapy initiation, aiming to predict non-resilience 
to cancer toxicity-based therapy. This non-resilience is identified by events such as therapy discontinuation or 
dose reduction, cancer-related hospitalization within the first four weeks of therapy initiation, or death up to 
six months post-therapy. We hypothesize that real-time tracking of mobility-related digital frailty biomarkers, 
including slowness, weakness, fatigue, and  inactivity24, from treatment onset could provide a more accurate 
prediction of adverse events compared to traditional assessments like the ECOG-PS. This research represents 
an important step in enhancing our understanding and application of wearable technology in oncology, with 
the potential to improve patient outcomes and personalize cancer treatment strategies.

Methods
Participants
We recruited Veterans with a recent diagnosis of stage IV lung or gastrointestinal cancer during their first chemo-
therapy infusion at the Michael E. DeBakey Veterans Affairs Medical Center (MDVAMC), Houston, Texas. All 
Veterans were > 18 years of age and were able to walk at least 15 feet independently, with or without an assistive 
device. We excluded Veterans who were not ambulatory, had no metastatic cancer, or refused to participate. All 
participants signed written informed consent forms. The Baylor College of Medicine Institutional Review Board 
and the Michael E. DeBakey Veterans Affairs Medical Center Research and Development Committee approved 
this study (IRB # H-48118) and all methods were performed in accordance with the relevant guidelines and 
regulations.

Demographic, medical history, baseline ECOG-PS, cancer diagnosis and treatment regimen of the par-
ticipants were collected through chart review by a trained research coordinator. ECOG-PS was classified as 
dichotomous (0 or 1–2) for analysis (provided in Supplementary File). Hospital admissions and chemotherapy 
delays or dose reductions were also recorded. Participants completed psychosocial surveys for evaluation of 
their emotional, functional, and cognitive states before and after the intervention. For this purpose, we used the 
Center for Epidemiologic Studies Depression Scale (CES-D), Functional Assessment of Cancer Therapy-General 
(FACT-G), and the Mini-Mental State Examination (MMSE), respectively.

Assessing frailty through mobility-driven digital biomarkers via a pendant sensor
Participants were instructed to continuously wear a water-resistant pendant sensor (PAMSys™, BioSensics LLC, 
Newton, MA, USA) around their neck for 14 days immediately following their first day of chemotherapy session, 
ensuring 24/7 wear. The monitoring period began with the onset of their initial chemotherapy and concluded 
at their next session. Additionally, participants were provided with a pre-stamped, pre-paid envelope and given 
clear instructions to return the sensor using this envelope at the end of the monitoring period.
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The PAMSys™ (Fig. 1) is compact (3.5 cm × 3.5 cm × 1.5 cm) and lightweight (24g), equipped with a tri-axial 
accelerometer. It samples accelerometer data at a rate of 50Hz. Through validated algorithms and biomechanical 
models, it extracts various physical activity  metrics25,34–40. These include cumulative postures (sitting, standing, 
lying, walking) with a time resolution of every second, locomotion metrics (e.g., cadence, step count, long-
est walking bout), postural transitions (e.g., number of sit-to-stand and stand-to-sit movements), and energy 
expenditure. In this study, we used the 2019 model of the PAMSys, which is water-resistant, has a battery life 
exceeding one month, and includes built-in data storage to ensure uninterrupted monitoring. We limited the 
recording to a minimum of 14 days of continuous monitoring and advised participants to return the sensor to the 
clinic. Alternatively, the sensor was collected when they came for their next cycle of chemotherapy. If a subject 
used the device for more than 14 days, our data analysis was confined to the first 14 days of recorded data. We 
selected a 14-day duration as it aligns with the bi-weekly chemotherapy cycle, allowing us to stop recording before 
the next cycle begins. This approach enables the tracking of changes in physical activity patterns immediately 
following the initiation of the first chemotherapy cycle and prior to the start of the subsequent cycle.

This study focuses on tracking changes in physical activity patterns from a defined baseline to a subsequent 
endpoint, using these patterns as surrogate markers for physical frailty phenotypes. Drawing upon previous 
 research24, we selected nine frailty-associated digital biomarker features, as detailed in Table 1, to encapsulate 
these phenotypes. These features encompass dimensions such as slowness (indicated by cadence), inactivity 
(denoted by daily walking steps), weakness (depicted by postural transitions), and exhaustion (represented by 
factors like the duration of the longest walk, standing posture, and energy expenditure). Each of these biomarker 
features was assessed every 24 h, and their variations were tracked throughout the 14-day monitoring period.

Figure 1.  A patient wearing the PAMsys pedant sensor. Using validated algorithms different digital biomarkers 
of mobility including locomotion, cumulative postures, postural transitions, energy expenditure were extracted 
from the pendant sensor during a 2-week remote monitoring period (24h/7days) during chemotherapy.

Table 1.  Sensor-derived digital frailty biomarkers.

Sensor-derived feature Description Phenotype

Walking cadence Number of steps per minute in walking, 90th percentile Slowness/weakness

Number of stand-to-sit Postural transitions from a standing position to a sitting position Slowness/weakness

Number of sit-to-stand Postural transitions from a sitting position to a standing position Slowness/weakness

Longest walking bout Number of steps for longest unbroken walking Exhaustion

Walking steps Number of total walking steps Inactivity

% of sitting Percentage of sitting time for 24 h Inactivity

% of standing Percentage of standing time for 24 h Inactivity

% of walking Percentage of walking time for 24 h Inactivity

% of lying Percentage of lying time for 24 h Inactivity
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In terms of defining our time points, the baseline is considered as the first day of chemotherapy cycle. The 
endpoint is determined as final day of sensor monitoring (14th day). To capture the trajectory of each frailty 
biomarker, we calculated the ratio of the difference between the endpoint and baseline to the baseline itself. This 
computation provides a holistic depiction of the alterations in frailty over the course of the treatment period.

Determination of chemotherapy resilience and chemotherapy resilience index
The recording of prospective adverse events was carried out via comprehensive reviews of medical charts, con-
sultations with administering oncologists, and/or through interviews conducted either with the chemotherapy 
administering oncologists or directly with the participants themselves. The medical charts were collected through 
the electronic health record (EHR) within the Veterans Affairs (VA). This process led to the categorization of 
participants into one of two distinct groups for further analysis: resilient or non-resilient. The non-resilient clas-
sification was assigned based on the occurrence of certain prospective events related to cancer therapy. These 
included the discontinuation or dose reduction of therapy, cancer-related hospitalizations within the initial four 
weeks following therapy initiation, or mortality within a period of six months post-therapy. Conversely, resilient 
participants were defined as those who did not meet these criteria.

A two-sample t-test was used to compare categorical variables between the resilient and non-resilient groups. 
Cohen’s d was used to calculate the effect size (small effect size (d = 0.2), medium effect size (d = 0.5), and large 
effect size (d = 0.8))41.

Three different models using Logistic Regression were tested to assess their ability to differentiate between 
resilient and non-resilient participants. The models included: (1) Eastern Cooperative Oncology Group (ECOG), 
(2) Mobility derived digital biomarkers of frailty (MBF), and (3) a combination of ECOG and MBF. The param-
eters for MBF were chosen based on their significant differences and larger effect sizes between the resilient and 
non-resilient groups. Models incorporating MBF aimed to determine the optimal number of days needed to 
distinguish non-resilient cases from resilient ones as early as possible in post-chemotherapy initiation, while 
achieving an area under the curve (AUC) greater than 0.80.

The Chemotherapy Resilience Index (CRI) was calculated using fitted probabilities from a logistic regression 
model, featuring a scale from 0 to 1, where higher values indicate poorer resilience to chemotherapy. This model, 
derived using the maximum likelihood estimation (MLE)  method42, was designed to optimally differentiate 
between resilient and non-resilient participants. To construct the model, we employed MBE metrics gathered 
during the shortest post-chemotherapy initiation time window that could effectively distinguish non-resilient 
cases from resilient ones with an AUC of 0.80 or greater. The aim was to develop a singular score reflecting the 
likelihood of poor resilience to chemotherapy as early as possible after the initiation of treatment. In assessing 
the predictive performance of CRI, in addition to sensitivity and specificity, we calculated the Positive Predictive 
Value (PPV) as shown in Eq. (1), using the optimal cut-point threshold determined by AUC.

To prevent an overestimation of the PPV, we computed the adjusted PPV using Eq. (2)43.

The prevalence rate is derived from our dataset and represents the proportion of patients who experienced 
adverse reactions to chemotherapy (non-resilient) within our study sample.

All statistical analyses and machine learning models, including data extraction, plotting, and model fitting, 
were performed using MATLAB. (MathWorks Inc., Natick, MA, USA).

Results
All Veterans admitted to the MDVAMC oncology clinic for chemotherapy treatment were considered as poten-
tial participants. The data were collected during two-time intervals: the first cohort between September 9, 2019, 
and October 16, 2019, and the second cohort from April 7, 2021, to April 12, 2022. However, recruitment for 
the second cohort experienced a pause of approximately six months due to the COVID-19 pandemic. Despite 
this, both cohorts followed the same protocol. Of these, thirty-nine Veterans [Age = 65.9 ± 13.9, BMI = 25.9 ± 5.4, 
67% male, ECOG-PS: ECOG(0) = 33%, ECOG(1) = 41%, ECOG(2) = 18%] met the study’s specific inclusion and 
exclusion criteria and consented to participate in the study. Among them, only one refused to wear the pendant 
sensor for 14 continuous days after giving consent, resulting in a 97% protocol feasibility rate for the use of the 
pendant sensor. The remaining thirty-eight participants completed the 14-day period and self-reported wearing 
the sensor continuously without removal. However, due to technical issues such as corrupted sensor memory and 
sensor battery failure that resulted in data not being recorded during the first two weeks, data from 11 participants 
had to be excluded. This resulted in a total of 27 valid samples. Among these, 14 participants (52%) completed a 
four-week chemotherapy cycle without encountering any adverse events during the cycle and survived up to six 
months post initiation, leading to their classification as resilient. The remaining thirteen participants (48%) were 
classified as non-resilient, having experienced one or more adverse events such as dose reduction or treatment 
discontinuation (n = 7, 54%), unplanned hospitalization (n = 8, 62%) within 4 weeks, or death within the first six 
months of therapy (n = 11, 85%). Baseline demographics and clinical characteristics are summarized in Table 2. 
Upon comparison, no significant differences were observed between the resilient and non-resilient groups in 
terms of demographics and comorbidities except the BMI and depression.

(1)PPV =
TP

TP+ FP

(2)AdjustedPPV =
Sensitivity × Prevalence

(

Sensitivity × Prevalence
)

+ {(1− Specificity)× (1− Prevalence)}
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Figure 2 illustrates the patterns of physical activity immediately following the initiation of the first chemo-
therapy cycle, over a duration of 14 days leading up to the subsequent cycle. Generally, visual observation of 
these patterns shows a decline in functional performance for both groups, with the most noticeable decline 
observed on either day 2 or 3 post-chemotherapy. However, the resilient group begins to recover from day 3 
and reaches stable values for most parameters by around day 6. In line with our hypotheses, changes in frailty 
phenotypes like slowness (cadence) and weakness (postural transition) significantly predicted chemotherapy 
non-resilience cases, exhibiting large effect sizes (d = 0.86–0.88, p < 0.03). However, variations in inactivity and 
exhaustion, despite being observed in both groups, did not predict non-resilience in our sample (also shown in 
Supplemetary Table 1).

Based on regression analysis, we determined that the earliest day post-chemotherapy initiation capable of 
distinguishing between groups with an AUC greater than 0.80 is day 6. On this day, the model incorporating 
digital biomarkers of frailty achieved an AUC of 0.86, a notably superior performance compared to the model 
using only ECOG, which reached an AUC of 0.75. Additionally, the combination of ECOG with digital biomark-
ers of frailty slightly improved the model’s performance, yielding an AUC of 0.88 in predicting the non-resilient 
group, as illustrated in Fig. 3 and Supplementary Figure 1.

The Chemotherapy Resilience Index (CRI) was calculated using a model that combines digital biomarkers of 
frailty, including cadence and postural transitions, measured on Day 6 post-chemotherapy initiation, along with 
ECOG values. This index is normalized on a scale from 0 to 1, with higher values indicating greater severity in 
the lack of resilience to chemotherapy. Using this index, we successfully distinguished between groups with a 
very large effect size, as demonstrated in Fig. 4 (CRI = 0.2 ± 0.27 in the resilient group vs. 0.7 ± 0.26 in the non-
resilient group, p < 0.001, Cohen’s d = 1.67). The optimal cut-off point for the CRI was established at 0.54. At this 
threshold, we achieved a sensitivity of 77%, a specificity of 86%, and an adjusted PPV of 83% for distinguishing 
non-resilient cases from resilient ones on day 6 post-chemotherapy initiation.

Discussion
In this observational study, we investigated whether frailty phenotypes derived from physical activity were associ-
ated with chemotherapy resilience among cancer patients. Our results support the hypothesis that analyzing the 
phenotypes of frailty can help differentiate individuals who are resilient and who are not resilient. Specifically, 
slowness and weakness phenotypes achieved large effect size range in distinguishing the two groups; however, 
variations in inactivity and exhaustion, despite being observed in both groups, did not distinguish non-resilience 
in our sample. Additionally, our study indicates that the earliest day post-chemotherapy initiation for effectively 
predicting the non-resilient group with an AUC greater than 0.80 is day 6 post-therapy. On this day, our model, 
utilizing digital biomarkers of frailty measured via a pendant sensor combining with ECOG, predicts non-
resilience with an AUC of 0.88. This timing could offer a sufficient window for timely interventions or decision-
making prior to the next therapy cycle, which is typically scheduled on a bi-weekly basis.

Table 2.  Overall baseline demographics, clinical characteristics, and motor capacity information of the 
resilient and non-resilient group. Values are presented as mean ± standard deviation (SD) or n (%). *Significant 
difference between groups.

Resilient (n = 14) Non-resilient (n = 13) p-value Effect size (Cohen’s d)

Demographics

 Age, years 64.6 ± 12.9 67.2 ± 15.3 0.47 0.18

 Sex (male), % 57.1% 76.9% 0.3 0.41

 Body mass index, kg/m2 27.9 ± 6.4 23.8 ± 3.1 0.04* 0.82

Clinical characteristics

 ECOG = 0, % 57.1% 16.7%

0.02* 0.98 ECOG = 1, % 35.7% 50%

 ECOG = 2, % 7.1% 33.3%

 GI cancer 64% 92%

0.12 0.44
 Lung cancer 14% 0%

 Breast cancer 14% 0%

 Hematologic cancer 7% 8%

 Stage 1 7% 0%

0.16 0.56
 Stage 2 14% 17%

 Stage 3 21% 0%

 Stage 4 57% 83%

 Frailty index (TSFI), score 0.22 ± 0.08 0.25 ± 0.08 0.51 0.41

 Depression, % 35.7% 0% 0.02* 1

 Diabetes, % 50% 30.8% 0.33 0.38

 High blood pressure, % 57.1% 61.5% 0.84 0.09

 Stroke, % 0% 15.4% 0.15 0.59

 Sleep problem, % 14.3% 23.1% 0.59 0.22
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Interestingly, the patterns of physical activity following the initiation of chemotherapy indicate a decline in 
most functional metrics for both groups, particularly in cadence, with the largest decrease observed on days 2 or 
3 post-therapy initiation. The functional performance metrics in the resilient group begin to rebound from day 
3 and almost return to pre-therapy levels by day 6. In contrast, the non-resilient group either fails to recover in 
some metrics, recovers over a longer time period, or in some cases, further deteriorates after day 6. This pattern 

Figure 2.  Sensor output metrics for a resilient (blue) and non-resilient (red) participants. The mean physical 
activity parameters between the groups are shown with error bar (standard error) for 2 weeks of recorded 
activity. The asterisk (*) sign is used to represent significant difference in parameters for the corresponding day 
between resilient and non-resilient participants.

Figure 3.  Area under curve (AUC) of the fitted logistic regression model for 3 different models shows the 
model that uses both ECOG and MBF can distinguish the resilient vs non-resilient group better than other 
models.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2612  | https://doi.org/10.1038/s41598-024-53025-z

www.nature.com/scientificreports/

may explain why our model, which distinguishes between the groups, shows its strongest performance on days 
6 and 7, with less stable results thereafter.

The link between frailty and non-resilience to chemotherapy in older adults is a critical area of research, with 
multiple established methods such as the Liver Frailty Index and Fried Frailty Index (FFI) being used to predict a 
patient’s capacity to cope with  treatment44–49. Traditional screening methods for detecting frailty, while informa-
tive, are often subjective, necessitate in-person administration, and demand considerable resources—posing 
substantial barriers for those who are frail and may find it challenging to visit clinics regularly. Additionally, 
traditional methods often rely on a single snapshot assessment of functional capacity, typically conducted in a 
clinical setting prior to the initiation of chemotherapy. This approach, however, lacks the temporal resolution 
necessary to track potential functional deterioration due to chemotherapy and subsequent recovery patterns. As 
defined by Hale et al.50, resilience is the capacity to recover quickly from difficulties or adapt effectively in the face 
of stress or trauma. In our study, we propose that continuous monitoring of digital biomarkers of frailty, such as 
a decrease in cadence (a surrogate for  slowness24) and a reduction in the total daily number of postural transi-
tions (a surrogate for  weakness24), derived from daily physical activity, may aid in determining and quantifying 
resilience to chemotherapy. This method evaluates the extent of functional performance deterioration in response 
to chemotherapy and the speed of returning to baseline levels established prior to chemotherapy initiation. Our 
study may also pave the way for deploying remote patient monitoring solutions as a practical and objective tool 
for remotely screening resilience to chemotherapy and potentially assessing the level of toxicity accumulation 
post-therapy. This offers significant benefits over conventional techniques that rely on assessments under super-
vised conditions, often in oncology clinics. This approach not only mitigates the logistical and resource-intensive 
aspects of traditional screenings but also introduces a critical element of temporal resolution to the monitoring 
process. With this added time resolution, our study reveals that remote monitoring of physical activities and 
metrics, such as a decline in cadence and a reduction in postural transition numbers (daily number of sit-to-stand 
and stand-to-sit movements), can identify individuals with reduced resilience to chemotherapy as early as 6 days 
after treatment commencement. This method has an adjusted 83% PPV in predicting those who develop major 
adverse events up to 6 months post-chemotherapy initiation. Further research is necessary to determine if this 
timeframe allows for timely intervention. Nonetheless, we believe this information can significantly enhance 
personalized decision-making for subsequent chemotherapy cycles, potentially guiding oncologists to adjust 
treatment strategies. This may include altering chemotherapy agents, reducing doses, or discontinuing therapy 
early to prevent severe adverse events like unplanned hospitalizations or death.

The prominence of the decline in cadence and the parameters related to postural transitions within this 
context can be attributed to their status as indicative markers of slowness and weakness which are recognized 
hallmarks of  frailty51. These findings are consistent with studies which evaluated the association between specific 
components of FFI and chemotherapy toxicity and found slowness (gait speed) and weakness (grip strength) 
to be significantly associated with  toxicity45,52. Another study demonstrated the significant association between 
prolonged Timed Up and Go with chemotherapy toxicity as well which adds value to the role of physical activity 
parameters as predictors of chemotherapy-induced  toxicity53 and it is also comprehensively discussed in a sys-
tematic review and meta-analysis that physical activity decreases the severity of side effects of cancer treatment 
besides reduction in risk of cancer recurrence and  death54. This alignment with prior research further strengthens 
the premise that our observations are rooted in a well-established framework.

One of the exploratory objectives of this study was to determine the earliest post-chemotherapy time point 
at which poor resilience can be predicted. Early identification of poor resilience to chemotherapy could inform 
decisions about subsequent treatment cycles. While chemotherapy cycles vary significantly depending on cancer 
type, specific drugs used, treatment goals (curative, control, or palliative), and the individual patient’s health 

Figure 4.  Chemotherapy resilience index (CRI ≥ 0.54) calculated from the MBF and ECOG can distinguish the 
patient with resilience significantly (p = 0.0007, effect size = 1.67).
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and response to therapy, a common schedule is bi-weekly55. In our study, all participants followed a bi-weekly 
schedule, and we tracked changes in physical activity patterns during the 14 days leading up to the next cycle. 
To identify the earliest post-chemotherapy time point, we applied regression model analysis to our time series 
data, seeking the earliest time point where groups could be distinguished with an AUC greater than 0.80. We 
found that as early as 6 days post-chemotherapy, we could differentiate between groups with an AUC greater 
than 0.80. Initially, both groups, regardless of resilience level, showed a decline in functional capacity, making 
the first few days less ideal for distinguishing those with poor resilience. However, we observed that the resilient 
group’s functional capacity quickly returned to baseline values before the initiation of chemotherapy, whereas 
the recovery in the non-resilient group required more days. Therefore, around the mid-point of the cycle (days 6 
or 7), appears to be the optimal time to distinguish recovery patterns between the two groups. While extending 
the observation period beyond the midpoint may increase the detection accuracy for some functional capac-
ity metrics, the reliability of the results could be compromised. This is because individuals in the non-resilient 
group may exhibit some level of recovery over a longer time window, thus diminishing the differences between 
groups over extended intervals. This phenomenon might explain the high variation in estimated AUC values 
observed after day 6. However, these speculations need to be validated in future studies with larger sample sizes.

A significant limitation of our study in determining the optimal time point for detecting non-resilience was 
the necessity of using the entire dataset for model fitting, due to the small sample size, which may lead to inac-
curacies. Future studies should remedy this by dividing the dataset into separate portions for model fitting and 
testing. Nevertheless, with the assumption that 6 days post-chemotherapy is an optimum point to identify non-
resilient cases, we introduced the concept of a Chemotherapy Resilience Index (CRI). This index, ranging from 
0 to 1, where higher values indicate an increased likelihood of experiencing major adverse events, was calculated 
6 days after the initiation of therapy. The CRI demonstrated a remarkable ability to distinguish between non-
resilient and resilient groups, indicating a very large effect size (d = 1.67). These results highlight the potential of 
leveraging digital biomarkers from remote monitoring systems to enhance predictions of treatment resilience 
in cancer patients.

Our study revealed that there were no significant demographic or comorbidity differences between the resil-
ient and non-resilient patient groups except BMI and depression, highlighting the significant role of frailty 
biomarkers in assessing chemotherapy-induced resilience. BMI has positive correlation with resilience (higher 
BMI is linked to a lower risk of non-resilience which is align with similar studies that patients with higher BMI 
experienced less severe chemotherapy-induced toxicity in particular hematologic and gastrointestinal events 
and hospital  admissions56–58). One possible reason could be the different pharmacokinetics of antineoplastic 
drugs in the bodies of overweight individuals. There is published evidence showing that some drugs may lead to 
reduced levels in obese  individuals59. It has also been illustrated that lower BMI and specifically sarcopenia, as 
a characteristic syndrome of progressive and generalized skeletal  loss60, is significantly associated with  frailty61 
and pre-therapeutic sarcopenia is found to have a predictive value for chemotherapy-induced  toxicity62. So, 
considering lower BMI as an alien with frailty for predicting non-resiliency is well demonstrated in our study 
and is consistent with the aforementioned investigations. The unexpected finding that the rate of depression 
was significantly higher in the resilient group (35.7%) compared to the non-resilient group (0%) challenges 
prevailing assumptions about the interplay of mental health and resilience in cancer  patients9. This could imply 
that physical frailty may be a more significant predictor of resilience to chemotherapy than the presence of 
depression. However, given the small sample size of our study, we must consider the possibility that our results 
may not sufficiently capture the role of depression. Consequently, these preliminary findings are speculative, 
and further investigation with a larger cohort is essential to substantiate the relationship between depression 
and chemotherapy resilience.

Our predictive model built on the combination of these physical activity patterns could identify the non-
resilient group with an AUC of 0.86, which surpassed the predictive capacity of the ECOG-PS assessment 
(AUC = 0.75). The integration of physical activity digital biomarkers and the ECOG-PS assessment slightly 
improved the AUC to 0.88 which was an indicator of better efficacy of combining these items instead of using 
them separately. Additionally, our results indicate that the model combining physical activity and ECOG out-
performs in terms of differentiation capability, surpassing the clinically accepted threshold of 0.80 AUC 63. In 
contrast, the ECOG alone does not meet this benchmark. This lends credence to our hypothesis that integrating 
digital metrics with in-clinic evaluations enhances the accuracy in identifying individuals who experienced 
chemotherapy-related adverse events from those who did not.

In our study, we employed a pendant sensor to remotely monitor physical activities and indicators of frailty 
such as slowness and weakness. The choice of a pendant sensor likely contributed to the high adherence and 
acceptability observed in our target population. Acceptability is critical, as the design and ergonomics of wearable 
devices significantly influence their potential for continuous health monitoring and early prediction of resilience 
to cancer treatment toxicity. The integration success of monitoring technology relies on the patients’ comfort and 
their willingness to wear the devices consistently, particularly during the vital initial therapy phase. Cumber-
some sensors that interfere with daily life are less likely to be  accepted34,64. Wrist-worn sensors are effective for 
logging daily steps and periods of inactivity, yet they may lack the sensitivity needed to capture intricate physical 
activity patterns crucial for an in-depth evaluation of functional  performance64,65. These details include cadence 
and postural transitions, which have been identified as more indicative of chemotherapy resilience than mere 
step count. Thus, the strategic placement of the sensor is as important as its function. Moreover, the discretion 
offered by a sensor that can be concealed during daily activities likely enhances its acceptance, as individuals may 
prefer to keep wrist space available for personal accessories rather than medical devices. Our study’s findings 
support the feasibility and high acceptability of the pendant sensor-based system for remote patient monitoring, 
with an acceptance rate of 97%, surpassing that of similar studies (83%)66. This success may be attributed to the 
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sensor’s unobtrusive and practical design, underlining the importance of considering patient convenience in 
wearable health technology.

This pilot study, while insightful, comes with several limitations. Being a single-center feasibility study, our 
sample was both small and homogenous. This homogeneity might account for the lack of significant differences 
in demographics and comorbidities between resilience groups. Furthermore, the majority of our sample was 
white and male, which represent the demographics of Veterans. Additionally, due to the small sample size, we 
used the entire dataset for our model fitting process, instead of partitioning it into separate portions for fit-
ting and testing the models. Given these factors, there’s a pressing need to validate our findings using a larger, 
more diverse sample that truly represents the demographic spread of individuals undergoing chemotherapy. 
It’s important to note that Veterans receiving chemotherapy have distinct characteristics; their comorbidities, 
health behaviors, and access to healthcare might differ from the broader population. By pinpointing specific 
challenges and opportunities related to predicting and addressing cancer-related toxicity adverse events in this 
group, beyond just ECOG and physical activity metrics, we can tailor and enhance care for Veterans diagnosed 
with cancer. Future research should prioritize the development of remote patient monitoring systems capable 
of utilizing digital biomarkers and predictive analytics to anticipate the occurrence or likelihood of adverse 
events. Furthermore, it is imperative to examine the perspectives of clinicians and patients regarding the trade-
off involved in integrating physical activity monitoring into such systems, preferably through a comprehensive 
investigation involving a larger sample size.

Conclusion
This study establishes a proof of concept for the remote monitoring of daily physical activities for the continu-
ous monitoring of chemotherapy resilience in cancer patients. Our observations suggest that by continuously 
monitoring physical activity, as the digital biomarkers of frailty phenotypes, over a 14-day period using a pendant 
sensor and combining this data with in-clinic ECOG assessments, we can identify patients who might be at risk 
of poor response to chemotherapy. This knowledge has the potential to equip both oncologists and patients with 
essential information, enabling them to make informed decisions regarding chemotherapy treatment adjust-
ments. Moreover, this insight can pave the way for potential interventions like structured exercise programs or 
nutritional management strategies, aiming to bolster patient resilience and minimize adverse events related to 
treatment.

It’s noteworthy to emphasize that digital biomarkers linked to slowness and weakness appear to be potent 
predictors of adverse events in cancer patients undergoing chemotherapy. These findings underscore the impor-
tance of a more in-depth exploration into the realm of digital biomarkers. However, it’s essential to acknowledge 
that this study’s limited sample size means that the observations need validation in broader and more diverse 
patient cohorts.

As we pivot towards practical implementation, capturing the perspectives of both patients and physicians 
regarding the integration of wearable technology into routine clinical practices becomes imperative. Ultimately, 
the introduction of these digital frailty biomarkers promises to revolutionize physical performance evaluations, 
seamlessly blending traditional clinical assessments with precise, objective digital data. The research confirms 
the effectiveness of a remote monitoring system that combines a pendant sensor with ECOG assessments. This 
has the potential to enhance patient monitoring and improve chemotherapy safety, pending validation in larger 
study samples.

Data availability
The raw data supporting the conclusions of this study are not publicly accessible due to privacy concerns. How-
ever, processed de-identified data that do not compromise participant anonymity are available upon formal 
request to the senior author, Bijan Najafi.
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