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Identification of VWA5A 
as a novel biomarker for inhibiting 
metastasis in breast cancer 
by machine‑learning based protein 
prioritization
Jiwon Koh 1,2,9, Dabin Jeong 3,9, Soo Young Park 4,9, Dohyun Han 5,6, Da Sol Kim 4, 
Ha Yeon Kim 4, Hyeyoon Kim 5, Sohyeon Yang 1, Sun Kim 3,7,10* & Han Suk Ryu 1,2,4,8,10*

Distant metastasis is the leading cause of death in breast cancer (BC). The timing of distant metastasis 
differs according to subtypes of BCs and there is a need for identification of biomarkers for the 
prediction of early and late metastasis. To identify biomarker candidates whose abundance level 
can discriminate metastasis types, we performed a high‑throughput proteomics assay using tissue 
samples from BCs with no metastasis, late metastasis, and early metastasis, processed data with 
machine learning‑based feature selection, and found that low VWA5A could be responsible for 
shorter duration of metastasis‑free interval. Low expression of VWA5A gene in METABRIC cohort 
was associated with poor survival in BCs, especially in hormone receptor (HR)‑positive BCs. In‑vitro 
experiments confirmed tumor suppressive effect of VWA5A on BCs in HR+ and triple‑negative BC cell 
lines. We found that expression of VWA5A can be assessed by immunohistochemistry (IHC) on archival 
tissue samples. Decreasing nuclear expression of VWA5A was significantly associated with advanced 
T stage and lymphatic invasion in consecutive BCs of all subtypes. We discovered lower expression of 
VWA5A as the potential biomarker for metastasis‑prone BCs, and our results support the clinical utility 
of VWA5A IHC, as an adjunctive tools for prognostication of BCs.

Breast cancer (BC) is a heterogeneous disease with respect to its clinicopathological features and molecular 
biologic  profiles1. Though novel therapeutics and prognostic classifiers have emerged during the last decade, 
BC remains the leading cause of cancer-related deaths worldwide, and it is the most lethal type of cancer among 
South Korean  women2. It is widely known that even optimally treated BC patients carry the risk of relapse after 
5 years from diagnosis and that estrogen receptor-positive (ER+) and luminal A patients are at the highest risk 
for late-onset  metastasis3.

Various prognostic tools are currently available for the selection of patients eligible for adjuvant therapy and 
prediction of prognosis, including Recurrence Score derived by Oncotype  DX4 or  Mammaprint5. However, the 
relatively high cost of these gene expression assays hinders the public accessibility of tools, especially for patients 
with BC residing outside of the United States or Europe. Moreover, though these tools are highly valuable in 
predicting the patients with recurrence of distant metastasis within the first 5 years after diagnosis, their useful-
ness for prediction of late metastasis is limited. These suggest that there is a critical need for the identification of 
novel, robust prognostic biomarkers with excellent performance for prediction of both early and late  metastasis6,7.
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The discovery of predictive markers for early and late metastasis can provide significant guidance toward the 
proper management of patients with  BC8. For example, identifying the patients carrying higher risk for metastasis 
would result in more active surveillance, while those with lower risk could be spared from unnecessary adjuvant 
treatments and resultant side effects.

High-throughput proteomics assay enables the massive screening for ideal biomarkers in cancer research, 
by quantitative and qualitative analyses of a wide range of candidate  peptides9. The initial discovery from the 
proteomics assay can be translated into clinical practice after functional validation. For example, a recent study 
used liquid chromatography with tandem mass spectrometry (LC–MS/MS) on formalin-fixed paraffin-embedded 
(FFPE) BC samples to discover protein biomarkers for prediction of chemotherapy response. The candidate 
markers were subject to in vitro functional analysis using BC cell lines after knockdown  experiments10. From the 
pathologists’ point of view, proteomics-driven search of candidate biomarkers followed by immunohistochem-
istry (IHC)-based validation can lead to the development of robust, clinically applicable assay.

We hypothesized that the baseline protein expression present within the tumor at the time of initial diagnosis 
may predict the development of late or early metastasis during the clinical course. Therefore, we established a 
discovery set of patients who were initially diagnosed with non-metastatic BC; a subset of the patients devel-
oped early or late metastasis. Then we designed the high-throughput proteomics assay to explore the protein 
expression profiles using initially resected BC samples and sought to compare the protein expression profiles 
of BC with no metastasis (NM), late metastasis (LM), and early metastasis (M). We then performed machine 
learning-based feature selection to identify biomarker candidates whose abundance level can discriminate the 
metastasis types and found that loss of VWA5A could be responsible for the shorter duration of metastasis-free 
interval. We then validated the role of VWA5A in BC metastasis through in vitro functional study, followed by 
IHC on a large cohort of BC.

Results
Clinicopathological characteristics of discovery set
A total of 29 patients were included in the discovery set (Table 1). Ten patients had no metastasis (NM group), 9 
patients had LM, and 10 patients were in the M group. Mean metastasis-free survival (MFS) time was 8.4 years 
with LM, and 1.6 years in the patients in M group.

Clinicopathological characteristics among the three groups—NM, LM, and M—were compared, where no 
significant differences in patients’ age, histologic grade, BC subtype, or pathologic stage were observed. The 
majority of the patients (86.2%; 25/29) were stage II, and only one patient in the LM group initially had lymph 
node metastasis (3.4%; 1/29).

Proteomic profiles of the discovery set
A total of 9455 proteins were quantified across the discovery set, and 6639 proteins were quantified with label-
free quantification (LFQ) intensities after filtration and imputation. Differentially expressed proteins (DEPs) 
were identified, where 830 proteins were found to be differentially expressed among the groups with an false 
discovery rate (FDR)-adjusted p-value < 0.1 (Supplementary Table S2). Among the DEPs, we found that the 
expression of VWA5A sequentially decreased from the NM group (median LFQ, 29.6; min–max, 28.9–30.3), 
LM group (median LFQ, 29.2; min–max, 28.0–28.3), and M group (median LFQ, 28.2; min–max, 27.2–29.3) 
(Supplementary Fig. S1).

To further characterize the implication of DEPs, we went through the recursive feature addition experiment, 
until the prediction performance of the support vector machine (SVM) classifier reached 0.8 precision, 0.79 
recall, and 0.79 f1 score (Supplementary Fig. S2). After each of 29 leave-one-out cross-validation (LOOCV) 
experiments, a different set of features were selected. The nine biomarker candidates were finally chosen as 
those that were selected in at least 3 LOOCV experiments, which included VWA5A. The t-SNE embeddings 
of patients with the nine biomarker candidates could clearly discriminate metastasis type (Fig. 1A). The nine 
makers showed significantly high mutual information (MI) and network propagation (NP) scores compared 
to the other proteins (Supplementary Fig. S3), and when considering the combined ranks in MI and NP score, 
VWA5A outstood as the highest among the nine biomarker candidates, 2nd in the MI ranking and 1st in the NP 
ranking (Fig. 1B, Supplementary Fig. S3).

External validation using publicly available gene expression data
Via Cancer Target Gene Screening (CTGS), we sought to assess the prognostic significance of VWA5A expression 
in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. We compared the 
disease free survival (DFS) of the VWA5A-high group and VWA5A-low group, using the cut-off determined by 
Cutoff Finder application. We found that high VWA5A expression is a strong, significant favorable prognostic 
factor for DFS in all cases with BC in METABRIC cohort (n = 1904; p = 0.0001; hazard ratio [HR] 0.71; 95% 
confidence interval [CI] 0.58–0.85; Fig. 2). The favorable prognostic performance of high VWA5A expression 
was maintained within the ER+ subgroup (n = 1355; p < 0.0001; HR 0.60; 95% CI 0.46–0.77) but not in the 
HER2+ subgroup (n = 236; p = 0.1350; HR 0.75; 95% CI 0.50–1.10) and in TNBC subset (n = 299; p = 0.2314, HR 
1.39; 95% CI 0.81–2.40). The Harrell’s concordance index (c-index) of VWA5A in predicting DFS was 0.543 in 
the total population, 0.545 in ER+ subgroup, 0.525 in HER2 + subgroup, and 0.518 in TNBC.

The prognostic significance of VWA5A on overall survival (OS) was also confirmed in all cases with BC 
(p = 0.0009; HR 0.82; 95% CI 0.73–0.92) and ER+ BCs (p = 0.0003; HR 0.74; 95% CI 0.62–0.87), but not in 
HER2+ and TNBC cases (Supplementary Fig. S4). The c-index of VWA5A expression for OS prediction in all 
BC cases and ER + BCs were 0.530 and 0.536, respectively.
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To cross-check the results of the external validation, we assessed the relationship between LFQ values of 
VWA5A and the DFS of patients in the discovery set. We found the significant prognostic impact of VWA5A 
protein levels in discriminating DFS in the discovery set (p < 0.0001; HR 0.18; 95% CI 0.08–0.38).

Biological role of VWA5A assessed by in vitro functional assay
Strong prognostic significance of VWA5A expression found in the pooled analysis METABRIC database, but not 
in certain subtypes of BCs indicate that this molecule may behave differently according to the intrinsic subtypes. 
Therefore, we sought to assess whether the knockdown of these genes can affect the biological behavior in an 
HR+ cell line (T47D) and two TNBC cell lines (BT20 and HCC70).

After transfection with siVWA5A, T47D, BT20, and HCC70 cell lines showed marked reduction of VWA5A 
expression assessed by RT-PCR (Fig. 3A). We also confirmed showed stronger propensity toward invasion and 
migration after transfection with siRNA against VWA5A in all three of the experimented cell lines (Fig. 3B). No 
morphological changes were observed after knockout of VWA5A.

To analyze the effect of expression of the gene VWA5A on cell proliferation, breast cancer cell lines were 
divided into subtypes, and cell proliferation and protein expression levels were confirmed (Supplementary 
Fig. S5). In the luminal (MCF7 and T47D) and TNBC type cell lines (BT20, HCC1143, HCC1937, MDA-MB-231, 
MDA-MB-468 and HCC1395), the lower the VWA5A expression, the faster the cell proliferation. On the other 
hand, in the HER2 type, the higher the VWA5A protein expression, the faster the cell proliferation. These results 
demonstrate that lower protein expression of VWA5A leads to faster cell proliferation in luminal and TNBC 
cells, suggesting that VWA5A acts as a tumor suppressor and that the expression of VWA5A is inversely cor-
related with cell proliferation.

Table 1.  Clinicopathological characteristics of the discovery set. NM no metastatsis, LM late metastasis, M 
metastasis, SD standard deviation, MFS metastasis free survival, IHC immunohistochemistry, TNBC triple 
negative breast cancer.

NM LM M Total p

Age (mean ± SD) 46 ± 6 46 ± 14 47 ± 12 46 ± 11 0.776

MFS (mean ± SD) NA 8.4 ± 3.1 1.6 ± 0.6 4.8 ± 4.1  < 0.001

Nuclear grade 0.115

 1 0 (0.0%) 1 (11.1%) 0 (0.0%) 1 (3.4%)

 2 5 (50.0%) 4 (44.4%) 1 (10.0%) 10 (34.5%)

 3 5 (50.0%) 4 (44.4%) 9 (90.0%) 18 (62.1%)

Histologic grade 0.070

 II 5 (50.0%) 5 (55.6%) 1 (10.0%) 11 (37.9%)

 III 5 (50.0%) 4 (44.4%) 9 (90.0%) 18 (62.1%)

ER IHC 0.377

 Negative 4 (40.0%) 3 (33.3%) 6 (60.0%) 13 (44.8%)

 Positive 6 (60.0%) 6 (66.7%) 4 (40.0%) 16 (55.2%)

PR IHC 0.185

 Negative 4 (40.0%) 5 (55.6%) 7 (70.0%) 16 (55.2%)

 Positive 6 (60.0%) 4 (44.4%) 3 (30.0%) 13 (44.8%)

HER2 status 1.000

 Negative 8 (80.0%) 8 (88.9%) 8 (80.0%) 24 (82.8%)

 Positive 2 (20.0%) 1 (11.1%) 2 (20.0%) 5 (17.2%)

Subtype 0.137

 ER+/HER2− 6 (60.0%) 6 (66.7%) 3 (30.0%) 15 (51.7%)

 ER−/HER2+ 2 (10.0%) 1 (11.1%) 2 (20.0%) 4 (13.8%)

 TNBC 2 (20.0%) 2 (22.2%) 5 (50.0%) 10 (34.5%)

pT stage 1.000

 pT1 1 (10.0%) 2 (22.2%) 1 (10.0%) 4 (13.8%)

 pT2 9 (90.0%) 7 (77.8%) 9 (90.0%) 25 (86.2%)

pN stage 1.000

 pN0 10 (100.0%) 8 (88.9%) 10 (100.0%) 28 (96.6%)

 pN1 0 (0.0%) 1 (11.1%) 0 (0.0%) 1 (3.4%)

Stage 1.000

 I 1 (10.0%) 2 (22.2%) 1 (10.0%) 4 (13.8%)

 II 9 (90.0%) 7 (77.8%) 9 (90.0%) 25 (86.2%)

Total 10 (34.5%) 9 (31.0%) 10 (34.5%) 29 (100.0%)



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2459  | https://doi.org/10.1038/s41598-024-53015-1

www.nature.com/scientificreports/

Interestingly, cell proliferation assay after transfection of the T47D line with siVWA5A showed that the cel-
lular proliferation capability is reduced compared to the control (Supplementary Fig. S5c). This suggests that at 
least in HR+ BC cells, increased invasive and migratory behavior after VWA5A knockdown may be the result of 
increased cell-intrinsic metastatic potential, not explainable by proliferative capability alone. Taken together, these 
in vitro functional analyses confirmed the tumor suppressive effect of VWA5A on BCs especially regarding inva-
sive and migratory potentials, therefore, supporting our discovery on proteomics-driven biomarker screening.

Clinicopathological characteristic of BCs with high VWA5A expression
To validate the biological significance of VWA5A expression on BC, we performed IHC for VWA5A on the tis-
sue microarrays (TMA) composed of surgically resected BC tissue samples from the validation set. Of the 1003 
patients in the validation set, 966 (96.3%) samples had available tumor cells on TMA for adequate interpreta-
tion of VWA5A IHC results. 42.7% of the patients were classified as VWA5A-high group, while 57.3% were 
VWA5A-low (Fig. 4A).

Various clinicopathological features were compared between VWA5A-low and VWA5A-high groups and 
summarized in Table 2. We found that patients in the VWA5A-low group were more likely to be diagnosed with 
higher pT stages (p = 0.028; linear-by-linear test), and the decrease in the H-scores of VWA5A was associated 
with advanced T stage in the consecutive BC population (p = 0.014; Kruskal–Wallis test; Fig. 4B). In addition, BCs 

Figure 1.  VWA5A is prioritized as a biomarker candidate for metastasis type discrimination. (A) The t-SNE 
plots of the patient embeddings with the nine features selected by our method (left) and with randomly selected 
features. (B) Scatter plots of the nine candidates in terms of mutual information ranks and NP score ranks. 
Candidate biomarkers selected by our method are marked as red dots.
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with lower expression of VWA5A were more likely to show lymphatic invasion (p = 0.009; Table 2). Though no 
significant association between VWA5A expression and pN stage was seen in the total consecutive BC validation 
set (p = 0.481), lower VWA5A expression was associated with positive pN stage within HR+/HER2− subgroup 
(p = 0.036; Supplementary Table S3). Regarding the patients’ survival, we found no significant differences in 
MFS (p = 0.125; HR 0.68; 95% CI 0.41–1.12) and OS (p = 0.089; HR 0.40; 95% CI 0.13–1.20). Though survival 
differences were not found, distinct clinicopathological features of the IHC-defined VWA5A-low group in the 
validation set support the aggressive behavior of VWA5A-low tumors and suggest the clinical implication of 
VWA5A expression on the BCs.

Discussion
In this study, we performed high-throughput proteomics analysis on the FFPE samples of BCs with varying 
times between initial surgery to metastatic event. We used a machine learning-based feature selection scheme on 
the proteomics data, and implemented MI and NP to narrow down into the potentially meaningful biomarkers 
regulating metastatic potential.

Since the introduction of high-throughput profiling technologies, enormous expression data on transcriptom-
ics and proteomics levels has been accumulated. Differential expression analysis or overrepresentation analysis 
are commonly used to identify biomarkers of interest within the dataset; however, it is often very difficult to 
interpret the influence of the markers within the context of biological network. In contrast, NP can simulate 
the effects of biomarkers in a biological network by propagating the influence of the candidate molecule via 
protein–protein interactions (PPI) analysis.

By using this method, we identified and found VWA5A as the most valuable marker of metastatic potential of 
BC. VWA5A gene, also known as BCSC1 or LOH11CR2A, is located within the chromosome 11q23–q24, which 
has been known to be frequently (ranging from 45 to 63%) deleted in various cancers including breast, ovary, 
uterine cervix, and  lung11–15. Within the genomic loci, VWA5A gene was first cloned in 1997, and the subsequent 
functional study suggested that VWA5A acts as a tumor suppressor  gene16,17, where overexpression of VWA5A 

Figure 2.  Prognostic relevance of VWA5A gene expression on disease free survivals of patients in METABRIC 
cohort. Higher VWA5A expression was significantly associated with favorable disease free survivals in 
METABRIC cohort.
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in MCF7 cell line resulted in enhanced  tumorigenicity16. However, interrogation of the clinical implication of 
VWA5A in BC has not been thoroughly performed.

In our proteomics discovery data, the expression of VWA5A gradually decreased as the clinical features of 
each group worsened, from NM, LM, and finally M groups, which was in line with previous studies that desig-
nated VWA5A as a tumor  suppressor18. Additional biological network-based feature selection also suggested 
this molecule as the reliable biomarker representing metastasis-prone BCs. Notably, our discovery set was com-
posed of variable subtypes of BCs, though HR+HER2− type dominated. Strong association of VWA5A in this 
heterogeneous discovery population and metastasis-related clinical behavior prompted us to hypothesize that 
the assessment of VWA5A protein expression could be used as the initial screening method for prediction of 
poor prognosis, regardless of the BC subtype.

To gain more evidence on the clinical implication of VWA5A, we performed a survival analysis using the 
publicly available METABRIC dataset. Though significant differences in DFS and OS were not ascertained in 
HER2+ and TNBC subsets, a strong association was found in the HR+ group. Nevertheless, additional in vitro 
experiments on HR+ and TNBC cell lines using siRNA showed that VWA5A loss resulted in a marked increased 
in invasiveness and migratory potential of these cells, suggesting that VWA5A still matters at least in HR+ and 
TNBC subtypes of BCs. The limitations of our in vitro experimental design include lack of VWA5A overexpres-
sion assay, rescue experiments of VWA5A, and in vivo functional validation of VWA5A. However, consistent 
consequences of VWA5A knockdown across multiple types of BC cell lines cautiously support the tumor-
suppressive nature of the biomarker.

The pervasive role of VWA5A in suppressing variable types of BCs may result from the common cellular 
mechanism associated with metastatic behavior. VWA5A lies in the vicinity of CHEK1, PIG8, and ROBO3 loci, 

Figure 3.  Biological role of VWA5A assessed by in vitro functional assay. (A) Knock-out VWA5A using siRNA 
transfection resulted in marked decrease in the expression levels of VWA5A. (B) siRNA transfected cell lines 
T47D, BT20 and HCC70 showed more aggressive behaviors including increased cellular invasion and migration.
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and this genomic region is known to be commonly deleted  together19. Therefore, CHEK1 deletion coupled with 
VWA5A loss would result in impaired DNA damage response, contributing to genomic instability and resultant 
aggressive behavior of the BC  cells20–22. Another possible explanation would include the interaction between 
tumor cells and extracellular matrix. It is reported that the tissue expression of VWA5A showed an inverse 
correlation with the expression of  MMP1423, a form of matrix metalloproteinase (MMPs). MMPs play pivotal 
roles in tumor invasion and metastasis by participating in ECM degradation and activating other MMP family 
members in various types of solid  tumors24–27. In addition, it would be intriguing to investigate whether the loss 
of VWA5A causes tumor cell-intrinsic alterations—i.e. epithelial mesenchymal transition (EMT)—along with 
ECM modulation, as suggested by previous  reports28–31.

In the area of breast cancer research, recent advances were developed mostly using cutting-edge technologies, 
and it is often very difficult to robustly implement the findings into routine clinical practice. However, we found 
that expression of VWA5A can readily be performed by IHC on archival FFPE tissues. Nuclear expression of 
VWA5A on the surgically resected BC tumor cells could easily be assessed by the pathologist semi-quantitatively, 
and as the expression levels decreased, significant correlations with advanced T stage and the presence of lym-
phatic invasion were noted in the validation cohort composed of consecutive BCs of all subtypes. Pathological 
T stages and lymphatic invasion status were factors retrieved from the pathology reports of surgically resected 
BCs, which means that these features can seldom be assessed in the limited, needle biopsy specimens. Therefore, 
assessment of VWA5A IHC on the initial diagnostic needle biopsy specimen of BCs of all types can provide 
not only prognostic information but also clinically meaningful adjunctive information, especially the ones that 
cannot be readily assessed in biopsy samples.

The lack of significant association between VWA5A IHC levels and survival may stem from the intrinsic 
limitation of the validation cohort—the population was composed of consecutive patients with surgically resected 
BCs, thus only a limited number of patients developed distant metastasis in these operable cases. Therefore, 
future studies using the initial breast biopsy samples of metastatic BCs would be able to further ascertain the 
performance of VWA5A expression on predicting the metastatic regulatory potential.

Another limitation of our study is the relative underrepresentation of HER2+ BCs. HER2+ BCs accounted for 
13.8% of the patients in the discovery set and 15.8% in the validation set, which were less than the TNBC subtype. 
In addition, the lack of survival correlation between VWA5A gene expression and survival data according to 
METABRIC analysis implies that the biological role of VWA5A may be different in HER2+ BCs unlike HR+ BCs 
or TNBCs. HER2+ BCs are notably characterized by aggressive behavior including distant metastasis, despite 
advances in targeted therapies. Especially, HER2+ BCs show a propensity toward brain metastasis, and accurate 
prediction of this aggressive phenomenon is one of the most important unmet needs in the management of 
HER2+ BC. Therefore, the discovery of biomarkers for metastasis prediction and prognostication in HER2+ BC 
should be performed in the near future by implementing a multi-omics approach.

Figure 4.  Expression of VWA5A in the validation set. (A) VWA5A expression was assessed by 
immunohistochemistry and histoscore of 50 was used to discriminate VWA5A-low and VWA5A-high groups. 
(B) Lower VWA5A expression of breast cancer cells were associated with advance pT stage of the patients in the 
validation set.
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In summary, we discovered lower expression of VWA5A as the potential biomarker for metastasis-prone 
BCs by high-throughput proteomics assay followed by machine learning-based protein expression analysis and 
feature selection. In addition to the prognostic significance assessed by METABRIC cohort analysis, the biologi-
cal influence of VWA5A knock-out confirmed the tumor suppressive role of VWA5A. We suggest the clinical 
utility of VWA5A IHC, where further validation of VWA5A IHC adjunctive tools for prognostication should 
focus on the large-scale verification of the population with higher numbers of distant metastasis and HER2+ BCs.

Methods
Patient selection
In the discovery set for high-throughput proteomics analysis, 29 patients with BC diagnosed between 1998 and 
2014 at Seoul National University Hospital (SNUH) with available clinical follow-up data including DFS, MFS, 
and OS were included. We defined the LM as the development of metastasis after 5 years from the diagnosis.

In addition, a retrospective consecutive cohort of 1002 patients with BCs who underwent surgical resec-
tion and were diagnosed between 2009 and 2012 in SNUH were recruited. Patients who received neoadjuvant 
chemotherapy were excluded. FFPE surgical samples archived in the Department of Pathology, SNUH, TMA 
were constructed. The experienced breast pathologist (H.S.R) selected the 2 mm-sized representative areas from 
H&E slides of the samples, and the TMAs were made (Superbiochips Laboratory, Seoul, Republic of Korea).

This study was approved by the Institutional Review Board (IRB) of SNUH, and the individual informed 
consent forms from the patients were waived by the decision of IRB. We confirm that all methods were performed 
in accordance with the relevant guidelines and regulations.

Table 2.  Clinicopathological characteristics according to VWA5A expression in the validation set. SD 
standard deviation, HR hormonal receptor, TNBC triple negative breast cancer.

VWA5A-low VWA5A-high Total p

Age (mean ± SD) 51 ± 11 50 ± 10 51 ± 10

Subtype 0.789

 HR+HER2− 330 (59.6%) 246 (59.7%) 576 (59.6%)

 HR+HER2+ 20 (7.2%) 30 (7.3%) 70 (7.2%)

 HR−HER2+ 43 (7.8%) 40 (9.7%) 83 (8.6%)

 TNBC 98 (17.7%) 64 (15.5%) 162 (16.8%)

 Unknown 43 (7.8%) 32 (7.8%) 75 (7.8%)

Nuclear grade 0.324

 1 10 (1.8%) 7 (1.7%) 17 (1.8%)

 2 222 (40.1%) 152 (36.9%) 374 (38.7%)

 3 322 (58.1%) 253 (61.4%) 575 (59.5%)

Histologic grade 0.704

 I 31 (5.6%) 22 (5.4%) 53 (5.5%)

 II 211 (38.2%) 165 (40.1%) 376 (39.0%)

 III 311 (56.2%) 224 (54.5%) 535 (55.5%)

Lymphatic invasion 0.009

 Absent 335 (60.8%) 280 (69.0%) 615 (64.3%)

 Present 216 (39.2%) 126 (31.0%) 342 (35.7%)

Distant metastasis 0.183

 Absent 524 (94.6%) 381 (92.5%) 905 (93.7%)

 Present 30 (5.4%) 31 (7.5%) 14 (1.4%)

pT stage 0.028

pT1a 3 (0.5%) 7 (1.7%) 10 (1.0%)

 pT1b 26 (4.7%) 36 (8.7%) 62 (6.2%)

 pT1c 234 (42.2%) 170 (41.3%) 404 (41.8%)

 pT2 273 (50.2%) 187 (45.4%) 465 (48.1%)

 pT3 13 (2.3%) 12 (2.9%) 25 (2.6%)

pN stage 0.481

 pN0 355 (64.2%) 275 (67.4%) 630 (65.6%)

 pN1 143 (25.9%) 95 (23.3%) 238 (24.8%)

 pN2 38 (6.9%) 24 (5.9%) 62 (6.5%)

 pN3 17 (3.1%) 14 (3.4%) 31 (3.2%)

Total 554 (57.3%) 412 (42.7%) 966 (100.0%)
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High‑throughput proteomics assay
From the FFPE blocks of surgically resected samples of the discovery set, 10 μm thick sections were deparaffinized 
in xylene twice. The protein uses a combination of acetone precipitation and filter-aided sample preparation 
(FASP)32. Desalted pooled peptides were fractionated using the stage tip-based high-pH peptide fractionation 
 method32.

The pre-fractionated peptides were analyzed on an LC–MS system with an Easy-nLC 1000 (Thermo Fisher 
Scientific, Waltham, MA, USA) equipped with a nanoelectrospray ion source (Thermo Fisher Scientific) and 
Q-Exactive mass spectrometer (Thermo Fisher Scientific). The peptide samples were separated into a trap column 
and an analytical column (Thermo Fisher Scientific).

Raw MS/MS files were processed with MaxQuant (version 1.6.1.0) using the Andromeda search engine 
against the Human Uniprot protein sequence database (December_2014, 88 657 entries). Experiment details 
are presented in the Supplementary Methods.

Proteomics data analysis
Preprocessing
Protein levels were normalized and statistical analyses were performed by Perseus (version 1.5.8.5). ANOVA was 
used to determine  DEP among NM, LM, and M groups. Peptide intensity data from tandem mass spectrometry 
(MS/MS) were processed using MaxQuant acquired. LFQ intensity was used as a protein quantification measure. 
The proteome dataset of breast cancer metastasis was preprocessed as follows. Only proteins that were identi-
fied in all replicates were used. Missing values were predicted by k-nearest neighbor imputation. As a result, in 
total 9455 proteins were quantified and resulted in 6639 proteins after filtration and imputation. The MS-based 
proteomics data of all identified peptides has been registered in the ProteomeXchange Consortium (http:// prote 
omece ntral. prote omexc hange. org) via the PRIDE partner repository (data set identifier: PXD015171).

Machine learning-based feature selection
The goal is to select proteins as features for biomarker candidates whose abundance level can discriminate 
metastasis types: NM, M, and LM. The sample size of each metastasis type is 9 for NM, 10 for M, and 10 for 
LM, respectively.

The full schematic overview of the biomarker candidate selection method is illustrated in Fig. 5 and the 
pseudo-code of the algorithm is in Supplementary Fig. S6. Our feature selection method operates in two hier-
archical levels. The higher level is to choose protein features that are selected multiple times in the 29 LOOCV 
experiments. On the lower level of each of 29 LOOCV experiments, a set of features is selected in the recursive 
feature addition scheme. Below we explain how the algorithm works.

At a higher level (Fig. 5A, Supplementary Fig. S6; line 2–5, 23–25), we used the LOOCV scheme for biomarker 
candidate selection to identify protein sets whose abundance can discriminate metastasis type of unseen patients. 
For each CV fold, a sample was used as a held-out test set (Supplementary Fig. S6; line 4), while the other samples 
were used as a training set for feature selection (Supplementary Fig. S6; line 5), denoted as tr_LOOCV. In each of 
29 LOOCV folds, we performed feature selection by recursive feature addition and metastasis prediction tasks 
in fivefold CV settings. To evaluate the selected features, SVM classifier was trained with the selected features 
and tested with the test set in terms of precision, recall, and F1 score. We reported macro averaged evaluation 
metrics of precision, recall and F1 score respectively, which is to calculate an evaluation metric for all classes 
individually and average them. As a result, a different feature set is selected and tested for each of 29 LOOCV 
folds. Thus, the final features are features that are selected multiple times, 3 times, out of 29 LOOCV folds. Since 
we are selecting features out of 6639 protein features that are measured by mass spectrometry experiments, this 
is a very stringent feature selection criteria. Statistically, we can measure p-values for features selected as features 
at least 3 times as 1.95× 10−6.

At the lower level (Fig. 5B), in each of the 29 LOOCV folds, protein features were selected by performing 
recursive feature addition (Supplementary Fig. S6; line 6–22). The first step is to prioritize proteins for the 
recursive feature addition analysis using all samples in tr_LOOCV (Supplementary Fig. S6; line 6). Proteins 
were ranked in terms of the discriminative power of metastasis type measured by MI. When there were ties for 
multiple proteins, we used the NP method to break the ties. The second step is to select features by recursive 
feature addition (Supplementary Fig. S6; line 7–22). Specifically, protein features were recursively added to an 
SVM classifier according to the rank until the prediction performance of the classifier reached peak. The predic-
tion performance is measured with fivefold cross-validation within a tr_LOOCV (Supplementary Fig. S6; line 
10–17). The feature set where prediction performance is maximum was regarded as the final selected feature for 
each LOOCV fold (Supplementary Fig. S6; line 18–21).

Feature prioritization step. MI is a metric for statistical dependency between two variables, the metastasis label 
and protein abundance group in this case. Relevance between protein abundance level and metastasis type is 
computed as below.

Discrete variable X ∈ {NM,M, LM} denotes metastasis type and the other discrete variable Y ∈ {L,M,H} 
denotes protein abundance level, while L encodes for low abundance level, M for medium abundance level, and H 
for high abundance level. Since raw LFQ protein abundance is a continuous variable, we transformed the variable 
into a multi-chotomous discrete variable X where protein abundance levels are categorized into 3 groups, where 

∑

y∈Y

∑

x∈X

p(X,Y)
(

x, y
)

log
p(X,Y)

(

x, y
)

pX(x)pY
(

y
) .
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L for low, M for medium, and H for high abundance level, respectively. To handle the label imbalance issue, we 
sampled 100 times with an equivalent sample size (n = 9) for each metastasis type. Averaged MI across sampling 
batches was used to prioritize proteins.

To prioritize features in terms of influence in a biological network, NP simulates the effects of biomarkers in 
a biological network. In detail, NP re-prioritized proteins according to the relevance with the seed proteins, by 
propagating the influence of seed proteins along the PPI given a STRING (v11.0)33 as a protein–protein interac-
tion network. For seed selection, DEPs among the three metastasis types were detected with the ANOVA test, for 
proteins with adjusted p-value < 0.1 after Benjamini–Hochberg multiple test correction. For a network, STRING 
network was trimmed with a confidence score, where normalized edge confidence < 0.5 was filtered out. For the 
implementation of the network propagation algorithm, we used  HotNet234.

Feature selection step. After feature prioritization, features were recursively added to the classification model 
according to the feature rank. For evaluating each iteration of the recursive feature addition, SVM with an RBF 
kernel was trained to discriminate the metastasis types by recursively adding features according to the rank. The 
SVM classifier with RBF kernel was chosen as a classifier because the model showed the highest prediction per-
formance compared to the other classifiers (Supplementary Table S1). As a new feature was added, the prediction 
performance, i.e., accuracy, of the current classification model in each iteration was computed in a threefold 
cross-validation scheme with a training set. Accuracy is calculated as macro averaged accuracy for multiclass 
 classification35. Feature addition was iteratively performed until the accuracy reached the maximum.

Cross validation using publicly available gene expression dataset
To ascertain the validity of the candidate biomarker derived from the proteomics assay, we used the publicly 
available gene expression dataset—METABRIC36—to assess the prognostic significance of biomarker expression. 

Figure 5.  Schematic overview of biomarker candidate selection. (A) Leave-one-out cross-validation (LOOCV) 
scheme for biomarker candidate selection. For each CV fold, a sample was used as a held-out test set, while 
the other samples were used for feature selection. After feature selection, SVM classifier was trained with the 
selected features and tested with the test set. (B) Within each LOOCV training set, we prioritized proteins by 
mutual information (MI) network propagation (NP). Proteins were ranked in terms of the discriminative power 
of metastasis type measured by MI. After feature prioritization, features were added to the classification model 
via recursive feature selection, until the accuracy reached the maximum.
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Kaplan–Meier survival analyses according to VWA5A gene expression level was done via web-based analytic 
platform,  CTGS (http:// ctgs. bioha ckers. net/)37 accessed at June 2020.

Cell culture and invasion/migration assay
We used HR+ cell lines (T47D, MCF7), HER2+ cell lines (HCC1954, JIMT-1, and SKBR3), TNBC cell lines (BT20, 
HCC70, HCC1143, HCC1937, MDA-MB-468, MDA-MB-231 and HCC 1395) for in vitro experiments. All cell 
lines were obtained from the Korean Cell Line Bank (KCLB, Seoul, Republic of Korea). T47D and HCC70 were 
cultured in RPMI (Gibco, Carlsbad, CA, USA), and BT20 was cultured in DMEM (Gibco) containing 10% fetal 
bovine serum (FBS; Gibco) and 1% penicillin and streptomycin (Gibco). The cells were maintained at 37 °C in a 
humidified atmosphere of 95% air and 5%  CO2 and were screened periodically for mycoplasma contamination.

siRNAs targeting VWA5A were generated and purchased from Bioneer (Daejeon, Republic of Korea). T47D, 
BT20 and HCC700 cells were transfected with siVWA5A using Lipofectamine RNAiMAX (Invitrogen) according 
to the manufacturer’s instructions. After an incubation period of 48 h, mRNA expressions of each biomarker were 
assessed by RT-PCR and compared with the controls. RNA from the cells was isolated using TRIzol (Invitrogen), 
and synthesized respective cDNA was amplified using specific primers and HIPI plus Master mix (ElpisBio, 
Daejeon, Republic of Korea).

Cell migration and invasion assays were performed using 24-well inserts (Corning Incorporated, NY, USA) 
with 8-μm pores according to the manufacturer’s instructions. For transwell migration assays, 5 ×  105 cells were 
inoculated into the upper chamber, while culture medium containing 10% FBS was added into the lower cham-
ber. After 24 h of incubation, the cells on the top of the membrane were removed, and the migrant cells were 
washed with phosphate-buffered saline (PBS), stained by 1% crystal violet for 10 min, and counted in 3 randomly 
selected fields under the microscope (Nikon, Tokyo, Japan). The experiments were replicated three times each.

For Matrigel invasion assay, the upper wells of Boyden chambers (Corning) were coated with 2 mg/ml of 
Matrigel at 37 °C incubator with 5%  CO2. 5 ×  105 cells were put into the upper chamber, with 10% FBS added 
medium in the lower chamber. Invaded cells, after 24 h of incubation, were processed and counted in triplicate, 
as described above.

Analysis of cell proliferation
To measure cell proliferation rate depending on VWA5A gene expression, cells were seeded at 1 ×  104 cells per 
well in a 96-well plate. Cell proliferation was determined using the Cell Counting Kit-8 (Dojindo Laboratoried, 
Japan) every day for 3 days.

Immunoblotting
Whole proteins of breast cell lines were extracted using T-PER (Pierce, Rockford, IL) containing a cocktail of 
protease inhibitors (Roche). Proteins were detected using standard immunoblotting procedures and the appro-
priate primary antibodies. Anti-BCSC was purchased from Novus Biologicals (Centinnial, CO) and anti-β-actin 
was purchased from Santa Cruz Biotechnology (Dallas, TX).

qPCR
Cultured cells were lyzed in Trizol (Takara, Japan) and total intracellular RNAs were extracted according to the 
manufacturer’s instructions. cDNA was generated using M-MLV reverse transcriptase (Promega, Madison, WI) 
and random primers (Promega). Relative quantitative real-time PCR was performed using GO Taq® qPCR Master 
Mix (Promega) and analyzed on a CFX96™ Real-Time System (Bio-Rad, Hercules, CA).

Immunohistochemistry
From the TMA block of the validation set, 4 μm thick sections were taken to perform IHC for VWA5A. Mono-
clonal anti-VWA5A antibody (dilution 1:400; clone OTI3D6; Novus Biologicals, Centennial, CO, USA) was used, 
and immunostaining was performed using Benchmark automatic immunostaining device (Ventana BenchMark 
XT Staining System, Tucson, AZ) following the manufacturer’s guidelines. Interpretation of the IHC slides were 
done by a breast pathologist (K.J.) using histoscore (H-score) while blinded to the clinicopathological charac-
teristics. H-score of 50 was used as a cut-off value discriminating VWA5A-high and VWA5A-low.

Statistical analysis
We used the chi-square test and linear-by-linear tests to compare categorical variables and the Kruskal–Wallis 
test to compare continuous variables, as appropriate. Kaplan–Meier survival analyses were performed based on 
the log-rank method. Harrell’s c-index was used to assess the discriminating ability of biomarker expression. 
Statistical significance was defined as the p-value less than 0.05. All analyses were performed by SPSS software 
(version 25; IBM SPSS Statistics, IBM Corporation, Armonk, NY, USA) and R version 3.6.3 (www.r- proje ct. org).

Ethics declarations and informed consent statement
This study was approved by the Institutional Review Board (IRB) of SNUH (IRB No. 1612-011-811), and the 
individual consent forms from the patients were waived by the decision of IRB.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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