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Breast cancer is the most diagnosed cancer worldwide and represents the fifth cause of cancer 
mortality globally. It is a highly heterogeneous disease, that comprises various molecular subtypes, 
often diagnosed by immunohistochemistry. This technique is widely employed in basic, translational 
and pathological anatomy research, where it can support the oncological diagnosis, therapeutic 
decisions and biomarker discovery. Nevertheless, its evaluation is often qualitative, raising the 
need for accurate quantitation methodologies. We present the software BreastAnalyser, a valuable 
and reliable tool to automatically measure the area of 3,3’-diaminobenzidine tetrahydrocholoride 
(DAB)-brown-stained proteins detected by immunohistochemistry. BreastAnalyser also automatically 
counts cell nuclei and classifies them according to their DAB-brown-staining level. This is performed 
using sophisticated segmentation algorithms that consider intrinsic image variability and save 
image normalization time. BreastAnalyser has a clean, friendly and intuitive interface that allows 
to supervise the quantitations performed by the user, to annotate images and to unify the experts’ 
criteria. BreastAnalyser was validated in representative human breast cancer immunohistochemistry 
images detecting various antigens. According to the automatic processing, the DAB-brown area 
was almost perfectly recognized, being the average difference between true and computer DAB-
brown percentage lower than 0.7 points for all sets. The detection of nuclei allowed proper cell 
density relativization of the brown signal for comparison purposes between the different patients. 
BreastAnalyser obtained a score of 85.5 using the system usability scale questionnaire, which means 
that the tool is perceived as excellent by the experts. In the biomedical context, the connexin43 
(Cx43) protein was found to be significantly downregulated in human core needle invasive breast 
cancer samples when compared to normal breast, with a trend to decrease as the subtype malignancy 
increased. Higher Cx43 protein levels were significantly associated to lower cancer recurrence risk 
in Oncotype DX-tested luminal B HER2- breast cancer tissues. BreastAnalyser and the annotated 
images are publically available https://​citius.​usc.​es/​trans​feren​cia/​softw​are/​breas​tanal​yser for research 
purposes.
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According to the latest GLOBOCAN estimates for 20201,2, breast carcinoma is the most diagnosed cancer in both 
sexes worldwide (11.7%). It also accounts for the fifth cause of cancer mortality globally (6.9%) and the highest 
cancer-related mortality among women (15.5%). Breast cancer is a highly heterogeneous disease, comprising 
various profiles with different histopathological features detected by immunohistochemistry (IHC) analysis 
according to intrinsic molecular traits, clinical behaviours, and treatment responses. Traditional stratification 
follows the initial studies of Perou et al.3 and Sørlie et al.4, leading to the acknowledgment of five intrinsic 
molecular subtypes: luminal A, luminal B, HER2 overexpressing, basal and normal-like tumours. Luminal 
A breast tumours express estrogen receptor (ER) and/or progesterone receptor (PR), are negative for human 
epidermal growth factor receptor 2 (HER2), have low levels of protein Ki67 and are usually of grade 1 or 2. Their 
luminal B counterparts also express hormone receptor/s but some are positive for HER2; they are usually of 
higher grade (2–3) and express higher levels of Ki67 and other proliferation-related genes. Both luminal subtypes 
render the greatest outcome, although luminal A are linked to a significantly better prognosis. Both respond 
well to endocrine therapy and represent the most common breast cancer subtypes. HER2 enriched tumours are 
negative for hormone receptors and overexpress HER2 (ERBB2) and other genes in its amplicon such as GRB7 
and PGAP3. They are generally of high grade (2–3) and result in a poor outcome. They respond to available 
targeted agents, such as trastuzumab, an anti-HER2 monoclonal antibody. Basal-like/triple negative tumours 
show low expression or lack hormone receptors and HER2, and some patients/tumours express higher levels 
of proliferation-related genes and basal markers like keratins 5, 6, 14, 17 and epidermal growth factor receptor 
(EGFR). Usually of grade 3, they are defined by their aggressiveness, poorest prognosis, higher risk of relapse 
and metastasis, and lower disease-specific survival. This subtype has currently no targeted therapies available. 
Normal-like breast tumours share similar pathological markers as luminal A (ER+, PR+, HER2-, Ki67 low), 
show a normal breast tissue profiling, and result in an intermediate prognosis3–5. Regarding to this matter, it is 
important to draw attention to the grounbreaking multigene signature-based tests, such as Oncotype DX® (ODX; 
Exact Sciences, Madison, WI) that help guide clinical treatment decisions in ER+ HER2- lymph node negative 
early breast cancer6. A highly cost-effective test, it has been widely and clinically validated and it is the only gene-
based assay certified to predict prognosis and benefit from chemotherapy treatment at the same time. Patients 
with scores between 0 and 25 present lower cancer recurrence risk if they undergo hormonal treatment, but are 
less likely to benefit from chemotherapy. Conversely, scores 26 and higher are indicative of high risk of cancer 
recurrence with hormonal therapy, whereas these patients can better benefit from adjuvant chemotherapy7–9.

In the context of breast anatomo-histopathology, 3,3’-diaminobenzidine tetrahydrochloride (DAB)-based 
IHC is a technique that stains specific protein antigens in brown, usually employing a cellular counterstain, such 
as hematoxylin, which renders the nuclei purplish blue. It has been regarded as a low cost yet highly complemen-
tary methodology, aiding in the diagnosis, subtyping and therapeutic indications of neoplasias. Another relevant 
application of IHC is related to the search of prognostic factors and biomarkers10. However, IHC assessment is 
often performed qualitatively and subjectively, such as presence/absence of target antigen, biasing its interpreta-
tion. Furthermore, apart from the degree of expression of a specific molecule, it is also crucial to discriminate its 
localization in various cellular compartments, such as the nuclei, which might be indicative of different biologi-
cal roles11. Subsequently, there is a growing need for more accurate and reliable methods for IHC quantitation, 
with computer-based image analysis resulting in higher precision, solidity and quality in IHC quantification12.

Among the most popular tools in the biomedical field to analyse and quantify IHC images we find ImageJ13. 
It provides many common image processing algorithms and allows the definition of customized processing 
plugins. However, ImageJ does not allow object outlines to be corrected manually in a versatile and easy way 
before starting the image quantification. It is also worth mentioning Qupath14, an open source software for 
digital pathology image analysis. For DAB-IHC quantitation, Qupath offers a wide array of parameters that 
need to be fine-tuned in order to improve signal detection, resulting in a time-consuming process that requires 
certain expertise knowledge. Other recent approaches15–21 process automatically the IHC or histological images 
to detect and/or classify interest objects in the image, but they do not allow any expert supervision before 
the quantification, or require specific and expensive devices. We developed the CystAnalyser22 and STERapp23 
software tools to quantitatively analyse histological images in medicine and biology, respectively. These tools 
overcome some limitations of ImageJ, QuPath and other approaches through a friendly graphical interface 
(GUI) easier to use for biomedical experts. Both softwares use image analysis and machine learning algorithms 
to automatically recognise and classify the objects of interest in the image, allowing the experts to review the 
recognition of objects using the GUI before measuring and counting them.

This paper proposes the software BreastAnalyser to quantify breast cancer immunohistochemical images 
of antigens relevant in breast anatomo-histopathology. In this work we focus, as a representative example, on 
the staining of the gap junction protein connexin43 (Cx43), in order to compare Cx43 levels among different 
subtypes and various degrees of breast cancer malignancy and risk of recurrence. Connexins (Cxs) are the basic 
protein components of the gap junction (GJ) channels and hemichannels, present in most cells and tissues. GJs 
allow direct communication between the cytoplasms of neighbouring cells, leading to the bidirectional passage 
of electrical signals and most small and soluble second messengers and molecules24. Connexins can also regulate 
several signalling pathways by their interaction with different protein partners25. Cx43 has been identified as a 
crucial component during mammary gland epithelial differentiation and development26. Loss of Cx43 and GJ 
functionality has been widely reported in breast tumour cell lines27,28 and primary tumours27,29–31. Nonetheless, 
the thorough involvement of Cx43 in the pathogenesis and development of breast cancer is far from being elu-
cidated, hence more efforts are needed to comprehensively approach this topic.

BreastAnalyser is intended to fulfill the following requirements: (1) provide a friendly GUI to interactively 
work with the images; (2) use image analysis and machine learning algorithms to automatically recognise DAB-
brown-stained proteins by immunohistochemistry, and detect and classify the nuclei in an image or ROIs; (3) 
automatically estimate various statistical measures and counts in the IHC images; (4) allow data sharing among 
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researchers and review the results at any time; and (5) be fast enough to analyse images in real time. In relation to 
the previously mentioned softwares, BreastAnalyser represents a more straigthforward alternative, where specific 
post-processing concerns can be manually addressed straightway. BreastAnalyser, differently from QuPath, does 
not require modification of the annotations in order to correct mistakes regarding DAB-brown signal or nuclei 
detection/classification. Instead, BreastAnalyser allows an immediate adjustment of brown signal-pixels, using 
the add/delete/draw tools, and of located cell nuclei, by means of the add/delete/modify classification tools, with 
just a click of a button.

Biological materials and experimental methodology
Biological samples used for Cx43 assessment comprise paraffin-embedded invasive breast tumours and normal 
mammary tissue controls, and are part of the A Coruña Biobank and our private collection of human biological 
samples. The samples used in our biomedical studies belong to white breast cancer female patients from the A 
Coruña sanitary area (NW Spain), with a median age of 52 years, being 48 % premenopausic and 52 % post-
menopausic. Additionally, a variety of breast tumour immunohistochemistries were obtained from the collection 
of human biological samples of the Albacete General University Hospital in order to evaluate software inter-
laboratory operation. Antigens detected are relevant in breast cancer anatomo-histopathological analysis and 
encompass RING1, RING4, CD99, CD31, CD177, EMA and cytokeratins 1 and 7. Immunohistochemistry was 
performed according to the standard protocols, described in detail in Section 1 of the supplementary material.

The IHC samples of INIBIC lab were photographed under an Olympus BX61 microscope coupled to an Olym-
pus DP71 digital camera using a magnification of 40X, resulting in images of 2040× 1436 pixels. For the CRIB 
lab, images were acquired by a Nikon Eclipse 80i microscope coupled to a DXM1200C digital camera (Nikon), 
using magnification of 20X and 40X, resulting in images of 1372× 1024 pixels. One image was analysed from 
each sample-patient for the biomedical results discussion (“Biomedical results” section). The ROI were selected 
and manually drawn by the experts according to their anatomo-histopathological relevance (i.e.tumour cell nests 
or cords, healthy duct-lobular units and acini, etc).

We distributed the samples into three groups in order to perform different types of studies. The group SET 1 is 
composed of 33 breast cancer patient samples derived from core needle biopsies of invasive tumours (grades 2–3) 
not subjected to chemotherapy or radiotherapy, in order to determine potential variations in Cx43 expression 
depending on the breast cancer subtype: luminal A (6 samples), luminal B HER2+ (5 samples), luminal B HER2- 
(8 samples), non-luminal HER2+ (7 samples) and triple negative (7 samples). This set also comprises 6 samples 
of normal healthy breast tissue for control. Specifically, SET 1 includes 47 images extracted from the 39 samples, 
with Cx43 signal in brown, ranging from 0.06% to 38.3%. According to the expression and localization of Cx43 in 
human breast cancer (BC) tissues, it is progressively downregulated with increasing subtype malignancy. Figure 1 
shows representative images of Cx43-IHC (brown) for each subtype, as well as for normal mammary tissue, 
where Cx43 immunostaining presents the highest expression levels, with membranous and cytoplasmic staining 
in both the myoepithelial and luminal layers of mammary ducts (1st panel) and acini (2nd panel). Luminal A 
breast cancer, the least aggressive subtype, is characterized by high Cx43 expression, mainly cytoplasmic (3rd 
panel), followed closely by luminal B HER2+ samples (4th panel). Luminal B HER2- tumours show lower Cx43 

Figure 1.   Representative IHC images against Cx43 (brown) and hematoxylin nuclear counter-stain (purple) 
of core needle biopsies of invasive breast cancer tumours not subjected to chemotherapy or radiotherapy, 
belonging to all 6 breast cancer subtypes: healthy mammary tissue, luminal A BC, luminal B HER2+ BC, 
luminal B HER2- BC, HER2+ BC and triple negative BC.
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levels (cytoplasmic) (5th panel), whereas non luminal HER2+ (6th panel) and triple negative samples (last panel) 
score the lowest Cx43 levels, with almost no protein expression in the latter. SET 2 comprises invasive breast 
cancer luminal B HER2- samples, grades 2–3, assessed for Oncotype DX Breast Recurrence Score Test: 6 scored 
high risk (scores 31–46) and 6 scored low risk (scores 9–20) for cancer recurrence. In this case, the purpose is 
to discern possible differences in Cx43 levels between high and low risk-scoring samples according to this test. 
Figure 2 shows representative Cx43-IHC images. It encompasses 32 images extracted from the 12 samples. SET 
3 contains 14 images extracted from 14 samples provided by the CRIB lab, which were purposely included for 
inter-laboratory software performance comparison. Figure 3 shows representative images of relevant antigens 
routinely assessed in breast cancer anatomopathological analysis.

Computing methods
BreastAnalyser is a desktop application that runs on general purpose computers under Linux or Windows 
operating systems. It has been written in the C++ programming language using the GTK+ (GIMP Tool Kit) 
library (https://​www.​gtk.​org/) to develop the GUI and the OpenCV library (https://​opencv.​org/) to generate the 
automatic image processing algorithms. Figure 4 shows its GUI with a typical IHC image loaded, processed and 
reviewed by the expert, and with the lateral panel displayed.

The “Functionality of BreastAnalyser” section describes the architecture and the main functionality provided 
by BreastAnalyser. In “Algorithms to recognise objects of interest” section details the image analysis algorithms 
to recognise the objects of interest (DAB-brown regions and nuclei) and “Machine learning methods”  section 
describes the classification of the staining level of the nuclei.

Functionality of BreastAnalyser
BreastAnalyser is a modular and extensible software composed by a GUI layer with editing tools to interact 
with the user; a logic layer that contains modules to automatically process the image and to calculate the sta-
tistical results; and a persistence layer to store all the data needed and calculated by the software. The software 
includes modules to: (1) store the image overlays, that contain the analysis supervised by the experts, in XML 
(Extensible Markup Language) files; and (2) save the statistical results, calculated from the overlays, in CSV 
(Comma-Separated Values) files.

Figure 5 shows a flowchart with the main functionality of BreastAnalyser. A typical working session for an 
user should have the following actions: (1) open an image; (2) automatically detect the DAB-brown regions; (3) 
automatically detect the nuclei in the image or into ROIs manually drawn and labeled by the expert as TUMOR, 

Figure 2.   Representative Cx43-IHC images and hematoxylin nuclear counter-stain (purple) of invasive luminal 
B HER2- breast cancer tumours tested for Oncotype DX and categorized in low and high recurrence risk 
categories.

https://www.gtk.org/
https://opencv.org/
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NON-TUMOR or STROMA; (4) automatically classify the detected or marked nuclei on the image; (5) go to 
expert’s supervision, as described below; (6) save the overlays drawn on the image into XML files; (7) export the 
statistical measures and counts to CSV files; and (8) at any time the user can set preferences, set calibration and 
diameters, save joined results of a set of images, or train the classifier.

Once the image is loaded, the buttons of the lateral panel can be used to automatically process the image 
following the instructions included in the user guide, provided as supplementary material. The detection and 
classification of the nuclei can be performed on the whole image or into ROIs drawn and labeled by the experts, 
depending on the objectives of the study. The classifier can be run in order to automatically provide a category 
for each detected nuclei. The available categories for the nuclei are “without staining” or “with low/medium/
high staining”. Due to the inherent complexity of these images, the automatic processing may not be optimal for 
the expert, so BreastAnalyser provides an easy way to review the recognised objects in the images through the 
following editing tools (semi-automation): (1) delete a set of selected objects; (2) change the category of selected 
objects; and (3) add new nuclei specifying their category labels. The overlays set on the images contain their 
analysis information and they must be saved into the XML file in order to use other software functionalities, 
such as review the analysis, export joined results or train the classifier.

The working preferences of BreastAnalyser can be set going to the menu File → Set preferences, which allows 
to determine: (1) the working directories for images, overlays and results; (2) the width of points and lines; and 
(3) the colour of the overlays for each category. By default the measures on the images are provided in pixels. In 
order to obtain the results in real values, the user must set the spatial calibration, which is the relation between 
pixels in the image and real values (micrometers). The user must provide the minimum and maximum diameter 
of nuclei to be detected for an optimal operation of the automatic algorithms. These diameters can be set by writ-
ing in the Preferences dialog or graphically by drawing a straight line with the editing tools of the lateral panel. 
The preferences can be permanently stored for future working sessions. BreastAnalyser allows to export joined 
results of a set of images going to the menu Analysis → XML Files, which opens a dialog screen to select the XML 
files and the output CSV file. To do this task, the images have to be analysed and supervised by the expert, and 
finally the overlays must be saved in XML files, one per image. BreastAnalyser also allows to train the classifier 
going to the menu Analysis → Train classifier. More details of the BreastAnalyser use can be read in the user guide.

Algorithms to recognise objects of interest
The recognition of DAB-brown or detection of nuclei on the image are segmentation problems where the DAB-
brown regions or nuclei are the objects and the remaining area is the background. Image segmentation is an 
important topic in computer vision32, which is based on the analysis of the properties of homogeneity and 

Figure 3.   Representative IHC images from the CRIB lab.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2995  | https://doi.org/10.1038/s41598-024-53002-6

www.nature.com/scientificreports/

discontinuity within the pixels of the image. Some image properties frequently used are colour, grey level or 
texture. The homogeneity paradigm develops the region detection algorithms, which try to keep the properties 
of the image constant within the regions. The discontinuity paradigm develops the edge-based algorithms, 
which attempt to find the position of the discontinuities in the image properties between the objects and the 
background. In this subsection, we describe the image segmentation algorithms included in BreastAnalyser. In 
“RBA to detect the nuclei” section describes the region-based BrownDetector algorithm to recognise the 
DAB-brown regions in the image. In BrownDetector algorithm to recognise DAB-brown signal” and “EBA 
algorithm to detect the nuclei” sections describe the region-based (RBA) algorithm and edge-based (EBA) 
algorithms used to detect nuclei. In the case of nuclei segmentation, experts only want to count the number 
of nuclei. So, the nuclei recognitions are transformed to points in BreastAnalyser. One of the main challenges 
to automatically process the pathology images is the colour variation among images due to differences in 
preparation and digitalization of samples, which can influence the performance of image analysis algorithms33,34. 

Figure 4.   Screenshot of the BreastAnalyser GUI. In the region of analysis (defined by the cyan lines), the 
colour of the dots shows the category of the nuclei: yellow (highly stained), pink (moderately stained), blue 
(low stained) and green (not stained). The brown areas are surrounded by black lines, and the white regions are 
unstained zones inside the brown areas.
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Normalization is often applied to original images in order to standardize them for processing35, but this pre-
processing requires time and it might not be suitable for interactive applications. In this paper, we propose 
algorithms that are parametrized by the properties of each image. In this way the normalization is implicit in 
the algorithm itself, avoiding the normalization time.

Figure 5.   Flowchart containing the main tasks of BreastAnalyser.
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Algorithm 1.   BrownDetector to recognise the DAB-brown regions.

BrownDetector algorithm to recognise DAB‑brown signal
The proposed algorithm, called BrownDetector, to recognise the DAB-brown regions falls into the region 
based paradigm and it is a combination of computer vision techniques parameterized using the information 
of each image. The main steps of BrownDetector algorithm are summarized in the algorithm 1. Let I(x, y), 
with x = 1, . . . ,N , and y = 1, . . . ,M , be the original RGB image and let TP = {Less,Middle,More} be the type 
of processing chosen by the expert, as it can be seen in the lateral panel of the GUI. Let R = {Ri}

NR
i=1 be the set 

of NR DAB-brown regions automatically recognised, and H = {Hj}
NH
j=1 be the set of NH regions, which represent 

holes inside the DAB regions. Firstly, the original RGB image I is transformed into the Lab colour space, that is 
more robust to illuminance variance35. Hence, the Lab colour space is intended to be perceptually uniform, i. 
e. changes in the numerical values are similar to the perceived change in colour. The L channel is associated to 
the lightness and the a and b channels are associated with the chrominance, specifically with the redness and 
yellowness respectively. In painting, the combination of red and yellow provides different shades of brown. So, 
the channels a and b are multiplied to build an image with different shades of brown developing the float image 
Iab , which is transformed into the grey level image IS doing contrast stretching. In this image IS , the lower values 
(darker pixels) correspond to the brownest pixels in the original image (see second column in Fig. 6 for visual 
examples). The IS image is thresholded in order to segment the foreground (DAB-brown regions) from the back-
ground. But, the selection of the optimal threshold value is a challenging task and many times it is determined by 
trial and error in the literature. In our approach, this threshold T is determined for each image from its statistical 
characteristics. Let HS be the histogram of image IS , we define the threshold Th as the lowest grey level, starting 
from the 0, in the cumulative histogram in which the 1% of the total number of pixels in the image is achieved. 
Other thresholds are calculated using the multi-level method proposed by Otsu36, which selects a T that mini-
mizes intra-class intensity variance maximizing inter-class variance. Specifically, let t1 , t2 and t3 be the thresholds 
calculated after applying the multi-level Otsu’s method with three thresholds to IS (function Otsu3Thres in 
algorithm 1). The optimal threshold T to binarize the image IS depends on the type of processing TP and it is 
calculated as T = Th when TP = Less ; if TP = Middle , then T = t1 − (t1 − Th)/2 ; and finally, if TP = More , then 
T = t2 − (t2 − t1)/2 . Normally, the best processing is achieved with the option TP = Middle , but the remaining 
options provide adequate responses to extreme cases, such as images with very low or great positivity. The image 
IS is transformed into a binary image using the threshold T, i.e. if IS(x, y) < T the output is 255 and 0 otherwise. 
This process is called inverse thresholding. Mathematical morphology is commonly used for morphological 
processing of images, which is composed by the basic filters: dilation, erosion, open and close. Initially, it was 
defined to binary images in order to fill/remove objects smaller than the size of structural element32. So, we use 
a close filter with masksize 5 to fill small holes in the thresholded images developing the image IB . The contours 
of the DAB-brown regions (set {Ri}NR

i=1 ) and holes into DAB-brown regions (set {Hj}
NH
j=1 ) are extracted from IB 

using the algorithm proposed by Suzuki and Be37. The number of DAB regions is the dimension of the set R and 
the DAB-brown area percentage is calculated adding up the area of regions in set R and subtracting the area of 
regions in H . Figure 6 shows visual examples of the performance of BrownDetector algorithm in different 
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breast cancer samples using green colour for DAB regions and red for holes inside DAB regions: (1) Luminal B 
HER2+ (top row): using the option Middle, the threshold T calculated is 54 and the percentage of DAB area is 
2.19%; (2) healthy breast (second row) using option More, T = 93 and the 27.4% area occupied by DAB regions; 
(3) triple negative (third row) using the option Middle, T = 62 and 5.59% of DAB area; and (4) HER2+ (bottom 
row), using option Less, T = 69 and 0.93% of DAB area.

Figure 6.   Examples of the automatic processing of IHC images using the BrownDetector algorithm for 
different types of processing: I is the original image, IS = IaIb being the Ia and Ib the a and b channel of Lab 
original image; and IB is the thresholded image (see the text for a detailed description). The IOut image shows the 
set of contours R (in green) and H (in red) recognised overlapped to the original image.
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RBA to detect the nuclei

Algorithm 2.   RBA algorithm to detect nuclei.

The RBA algorithm attempts to segment the nuclei using the region-based segmentation paradigm. Afterwards, 
the mass center of each segmented region is considered as the detection of each nucleus. The main steps of RBA 
are summarised in algorithm 2. Let I be the original RGB immunohistochemical images and dmin and dmax the 
minimum and maximum diameter of the nuclei to be detected. Firstly, the I image is transformed to the Lab 
colour space and the colour a and b channels, Ia and Ib respectively, are considered, which are processed by a 
median filter with masksize 3 in order to attenuate random noise. Secondly, IG is built by adding the Ia and Ib 
images and normalizing the result to the range [0,255] (see a visual example of the IG image in Fig. 7). The nuclei 
appear as bright spots inside the background, but the brightness of the nuclei outside the DAB-brown regions 
is higher than that of the inner ones. So, we detect the nuclei using two stages: (1) threshold IG image using t3 to 
detect the nuclei outside of the DAB-brown regions; and (2) create a mask image, Imask , containing only the DAB 
regions and apply thresholding to detect the nuclei inside the DAB regions. In all cases, the threshold values are 
determined automatically using the multi-level method of Otsu36, function Otsu3Thres and Otsu3ThresWB 
in algorithm 2. In the first step, the optimal threshold tG to segment the IG images is the third threshold ( t3 in 
algorithm 2, t3 = 132 in Fig. 7). The resulting image after thresholding is processed by a morphological open 
filter using a masksize m = dmin in order to remove objects smaller than the structural element and split touch-
ing nuclei, developing the IB1 image (see Fig. 7). The set of nuclei positions, B , includes the mass centers of the 
white regions in IB1 with diameter d such that dmin < d < dmax.

In the second step, the value t2 (line 6 of algorithm 2) is used to inverse threshold IG developing the image Ibin 
(for example in Fig. 7 we use t2 = 88 ). The Ibin image is post-processed by a close filter of size m in order to fill 
holes smaller than the nuclei size. We only keep the external regions larger than an area a = 2πd2max to create a 
mask image, Imask , which multiplied by the IG image develops the IIn image in Fig. 7. In these images the DAB-
brown regions are seen, while the remaining dark areas in image are associated to background. We apply again 
the multi-level Otsu method to the IIn image without considering the black pixels (function Otsu3ThresWB 
in line 14 of algorithm 2) and use the third value t ′3 to threshold the IIn image ( t ′3 = 89 for example in Fig. 7). 
The IB3 image in Fig. 7 shows the resulting image after applying an open filter with masksize m to remove noisy 
regions. The set C of nuclei positions is obtained by applying the size filter to the white regions in image IB3 (i.e. 
regions whose diameter d satisfies dmin < d < dmax , line 16 of algorithm 2). Finally, we apply an overlapping test 
to remove the nuclei which have been detected by the two stages. So, P = {ci}

NP
i=1 will be the nuclei that are farther 

from each other than dmin , i.e. {ci ∈ B, cj ∈ C| distance(ci , cj ) > dmin} . The Iout image in Fig. 7 shows the origi-
nal image with the nuclei positions, set P = {ci}

NP
i=1 , overlapped as circles for visualization purpose. The colour 

means the staining level of the nuclei (black and green for non-stained and low stained nuclei, respectively). 
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Algorithm 3.   EBA algorithm to detect nuclei.

EBA algorithm to detect the nuclei
The EBA algorithm to detect nuclei is based on the edge-based paradigm. Specifically, EBA is a modified version 
of the Canny filter, proposed by Canny38, already used in our software Govocitos39. Algorithm 3 summarizes 
the EBA algorithm, that only uses one Canny filter tuned with a Gaussian smoothing width σ = 4 in order to 
remove image noise. The thresholds of the hysteresis process in the Canny filter are automatically calculated from 
the image characteristics using rates of 0.4 and 0.6 for the lower and higher thresholds, respectively. The output 

Figure 7.   Examples of the automatic processing of immunohistochemical images using RBA to detect the 
nuclei (see algorithm 2 for the meaning of IG , IB1 , Iin and IB3 ). The image IOut shows the set of nuclei positions P 
overlapped to the original image (in black and green the nuclei without staining and low staining, respectively, 
using the classifier).



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2995  | https://doi.org/10.1038/s41598-024-53002-6

www.nature.com/scientificreports/

of the Canny filter is a set of edges EC = {Ei}NC
i=1 , that is post-processed as follows to calculate the positions of 

nuclei. The set EC is filtered using the minimum ( dmin ) and maximum ( dmax ) diameters for the nucleus provided 
by the expert. If we considered that the nucleus is rounded, its area can be approximated by a circle with area 
A = πd2/4 , being d the diameter of the nucleus edge Ei . So, we use the following criteria: (1) the area A(Ei) 
enclosed by Ei ∈ EC satisfies that Amin < A(Ei) < Amax , being Amin and Amax the areas calculated using dmin and 
dmax , respectively; and (2) the roundness of edge Ei , (round function in algorithm 3) is lower than 1.4, since 
the circle roundness is 1. This post-processing filtering creates a new set EF = {Ei}NF

i=1 with NF ≤ NC . To avoid 
two detections of some nuclei, an overlapping test is applied: an edge Ei ∈ EF is removed if there is another edge 
Ei with distance(ci , cj) ≤ dmin . After this overlapping test, a new set EO = {Ei}NO

i=1 with NO ≤ NF is created. 
Finally, we use a pre-trained classifier to predict if an edge Ei ∈ EO is a true nucleus or a false positive (see the 
“Machine learning methods” section for details). The input of the classifier is a numerical vector including the 
mean values of the Lab colour space channel in a square of size dmin centered in the centroid ci of edge Ei ∈ EO . 
If the classification prediction is a nucleus, the centroid is added to the set of nuclei P = {ci}

NP
i=1 . In order to 

process an user-defined ROI, the EBA algorithm is applied only on a rectangle enclosing the ROI. Examples of 
the visual performance of the EBA algorithm can be seen in the user guide.

Machine learning methods
A classifier is a machine learning method for the automatic prediction of discrete values (output categories) 
based on data examples. The classifier learns to predict the outcome category as a function of the input data in a 
process called “training”, that uses a collection of examples, each composed by the input data and the outcome 
value. During training, the model changes the values of its parameters in order to predict an outcome near to 
the true value for the training data, i.e., to give a reliable prediction for these data. The trained model is expected 
to generalise its predictions with reliability to new input data not used during training.

BreastAnalyser includes two classifiers: ClassifierFP, used to discriminate between valid (true-positive) and 
non-valid (false positive) nuclei; and ClassifierNucleus, used to discriminate among different staining levels in 
the nuclei: with high, medium or low staining and not stained. Both classifiers use the support vector machine 
(SVM) with radial basis function (RBF) kernel, selected because it is one of the best-performing machine learning 
models for classification40. Specifically, BreastAnalyser uses the LibSVM implementation41, accessed through its 
C++ binding. The SVM used by ClassifierNucleus for the staining level of the nuclei can be re-trained from the 
GUI at any time through the submenu Classification → Train classifier. In this case, the SVM is trained using a 
collection of nuclei randomly selected from the XML files provided by the user. In order to avoid an excessively 
slow training, a maximum number of 1,000 nuclei are selected. Whenever posible, the nuclei are selected in simi-
lar numbers, requiring a minimum number of 10 nuclei, for each staining category. BreastAnalyser performs the 
tuning of the two hyper-parameters of the SVM (regularization � and RBF kernel spread σ ) using the grid-search 
method. The performance is evaluated by the Cohen kappa statistic42, which measures the coincidence between 
the true and predicted category excluding the agreement by chance. Kappa (in %) is defined as:

where Nij is the number of nuclei of category i that are assigned by the SVM to category j, while C = 4 is the 
number of categories and N is the number of nuclei. The values of � and σ used for hyper-parameter tuning 
are: � = {22i−7}10i=1 and σ = {2−(i+1)/2}0i=−15 . For each combination of hyper-parameter values, the SVM is 
trained using the K-fold cross-validation methodology with K = 4 , so that K − 1 = 3 folds are used to train 
the SVM, and the remaining fold is used to calculate the kappa of the trained SVM. The training and prediction 
are performed K times, rotating the folds each time (i.e., in the first trial folds 1-3 are used for training and fold 
4 for test; the second trial uses folds 2-4 to train and fold 1 for test; and so on) and averaging kappa over the K 
test folds. The process is repeated for all the combinations of hyper-parameter values, and the one that achieves 
the highest average kappa is selected. Finally, the SVM is trained over the whole collection of nuclei, using the 
selected combination of hyper-parameter values, and then it is ready to predict the category for new nuclei.

The default ClassifierNucleus included in BreastAnalyser was trained with a selected set of samples provided 
by INIBIC lab composed by 26 IHC images (from patients not included in SET 1 nor SET 2) containing 1,359 
nuclei with different staining levels: 160 high, 195 medium, 328 low and 676 nuclei without staining, selected 
attempting to represent all the posible variability in the staining level of the nuclei. The training followed the 
methodology described in the previous paragraph.

The feature vector used by both SVM classifiers contains the mean value of each channel in the Lab image 
over a neighborhood of the nucleus. This neighborhood is centered on the centroid of the nucleus and its size is 
equal to the minimum diameter of nuclei, fixed by the expert using the BreastAnalyser GUI.

Results
BreastAnalyser has been used since 2021 in the daily research work of experts at INIBIC lab in order to evaluate 
the software in a real environment. Since 2022, this software is also being used in CRIB lab in order to assess 
inter-laboratory operation. The interaction of clinical staff with BreastAnalyser was logged into the XML files 
to perform a statistical evaluation of the automatic algorithms of image processing and machine learning 
included in the software. The main goal of this research is the evaluation of the robustness and versatility of 
BreastAnalyser software when exposed to highly variable IHC images, representative of the complexity and 
inter-patient variability of a real-world clinical scenario. Even though the number of samples analysed is limited 
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(57, 32 and 14 images for data set 1, 2, and 3 respectively), due to availability constraints, they can faithfully 
recapitulate the multifactoriality of the disease. In the following, we describe the statistical measures used to 
evaluate the automatic processing algorithms (Sectïon "Statistical measures"), show the DAB-brown signal 
quantification results (Section "Automatic recognition of DAB-brown signal"), present the results of detection 
(Section "Detection of nuclei") and classification (Section "Classification of nuclei") of nuclei and discuss the 
software experts’ perception and performance (Section "Elapsed time and system usability"). Finally, we address 
the relevance of the obtained Cx43 measurements in the context of breast cancer biomedical research (Sectïon 
"Biomedical results").

Statistical measures
The statistical evaluation of the algorithms to automatically recognise the objects of interest (DAB-brown regions 
or nuclei) can be measured counting the number of hits and mistakes in the detection. We consider that a detec-
tion is a true positive (TP) hit when the user did not modify the automatic recognition provided by the algorithm; 
a false positive (FP) when the user manually deleted the objects provided by the computer; and a false negative 
(FN) when the user manually added a DAB region/nucleus.The number of DAB regions/nuclei automatically 
recognised is defined by the sensitivity (Se) or recall (R), positive predictivity value (PPV) or precision (P), aver-
age precision and F1-score, all in %:

In the case of positivity estimation, the BrownDetector algorithm can be evaluated measuring the area 
percentage occupied by DAB-brown regions reported by the computer (APC) and after the expert’s supervision 
(APES). The difference |APC − APES| provides the computer error for estimating the image positivity.

The performance of the SVM model in the prediction of the nuclei category C ∈{highly stained, medium 
stained, low stained, no stain} is evaluated using the Cohen kappa, defined in Eq. 1 above, and the accuracy (in 
%), whose value is 100 multiplied by the number of nuclei correctly classified by the classifier ( pa in the Eq. 1) 
and divided by the total number of nuclei. The Sei and PPVi of each category i ∈ C are also calculated consider-
ing that: (1) the TPi are the number of nuclei of category Ci correctly classified by the SVM into the category Ci ; 
(2) the FPi are the number of nuclei classified into category Ci , but whose true category label is other; (3) the 
FNi are the number of nuclei of true category Ci that the classifier assigned to other category; and (4)TNi (True 
Negative) is the number of nuclei of true category Cj , j  = i , classified by SVM as any category Cj , j  = i . The 
specificity ( Spi ) is defined as:

Automatic recognition of DAB‑brown signal
Table 1 shows the results of the BrownDetector algorithm (BrownDetector algorithm to recognise 
DAB-brown signal section) to automatically recognise the DAB-brown regions in the IHC images, while APC 
and APES are the area percentages automatically detected by the computer and after the expert’s supervision, 
respectively. In all data sets, the sensitivity for recognizing DAB-brown areas is higher than 99% and the positive 
predictivity value is higher than 95%. Hence, the F1-score achieves values higher than 96% for all data sets. The 
difference between the area percentage recognised automatically by the computer and after expert’s supervision 
is only 0.07 and 0.05 points for SET 1 and SET 2 respectively. Hence, the experts only supervise the 10% and 
28% of images for SET 1 and SET 2 respectively. But, it is important to emphasise that the maximum difference 
of area percentage was only of 1.5 and 1.67 points for SET 1 and 2 respectively, i.e. the area of the DAB-brown 
regions corrected by experts was very low and affects to very small regions. For the SET 3, the software operates 
perfectly (precision of 100%). This good performance of the automatic BrownDetector algorithm leads us 
to conclude that the system could be used in routinary tasks of biomedical labs.

Detection of nuclei
Table 2 shows the statistical results provided by RBA and EBA (see “RBA to detect the nuclei” and “EBA algorithm 
to detect the nuclei” sections, respectively) to automatically detect the nuclei in IHC images. The sensitivity is 
quite different among sets (70.4% and 48.2% for SET 3 and 1 respectively and only 16.6% for SET 2), which 
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Table 1.   Sensitivity (Se), positive predictivity value (PPV), average precision (AP) and F1-score, in %, of 
BreastAnalyser working in the lab to recognise the DAB-brown regions in IHC images. The APC and APES are 
the area percentages detected automatically by the computer and after the expert’s supervision, respectively.

Data set #images Se PPV AP F1 APC APES |APC-APES|

SET 1 47 99.2 95.5 95.3 96.1 9.13 9.06 0.07

SET 2 32 99.8 95.4 95.1 97.2 2.68 2.66 0.05

SET 3 14 100.0 100.0 100.0 100 22.92 22.92 0.00
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means that the algorithms detect much more true nuclei in the SET 3. Nevertheless, the positive predictivity 
value is quite similar and high for all sets (about 70%), denoting that the algorithms do no spot many false 
positive nuclei. The average precision includes both types of errors, misdetections and false detections, but it is 
dominated by the sensitivity behaviour (63.8% for SET 3, 41.4% for SET 1 and 14.7% for SET 2). This behaviour 
is also observed in F1-score, which ranged between 24.1% for SET 2 and 96.1% for SET 3. Figure 8 shows the 
F1-score for nuclei detection for all images. Although the nuclei detection in SET 3 is much higher than in the 
remaining data sets, a high variability among images can be observed in all data sets, ranging from 0% (i.e. the 
algorithm does not detect nuclei or detects many false nuclei, so a better option is to manually detect the nuclei 
using a mouse click) up to F1=96%. The nuclei detection algorithms work rather poorly when the nuclei are 
partially masked by the DAB-brown signal.

Classification of nuclei
In order to evaluate the classification of the nuclei according to their level of staining (high, medium, low and no 
staining), an expert assigned a category to all the nuclei in the ROIs studied and, subsequently, the expert’s labels 
were compared with the labels provided by the classifier. Then, the default pre-trained classifier included in the 
BreastAnalyser software was used to predict the category label. The classification accuracy and kappa evaluate 
the agreement between both category labelings. In SET 1, accuracy and kappa are 48.9% and 18.2%, respectively. 

Table 2.   Sensitivity (Se), positive predictivity value (PPV), average precision (AP) and F1-score, in %, of 
BreastAnalyser for the nuclei detection on each set. The value N reports the average number of nuclei per ROI 
or image.

Data set #images #ROI N Se PPV AP F1

SET 1 47 58 55 48.2 71.8 41.4 55.2

SET 2 32 32 50 16.4 66.2 14.7 24.1

SET 3 14 13 45 70.4 76.5 63.8 96.1
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Figure 8.   F1-score (in %) for each image in SET 1 (green diamonds), SET 2 (red circles) and SET 3 (blue 
squares).

Table 3.   Confusion matrix (in %) for nuclei staining classification (high, medium, low and without staining) 
for SET 1. The columns Se, PPV and Sp report the sensitivity, predictive positive value and specificity for each 
class, respectively.

Predicted category

#Nucleus High Medium Low No Se PPV Sp

High 51 0.94 0.54 0.07 0.17 54.90 34.15 98.2

True Medium 327 1.27 5.53 1.81 2.35 50.46 46.87 92.9

Category Low 1638 0.50 4.33 23.47 26.63 42.73 62.72 69.0

No 967 0.03 1.41 12.07 18.88 58.28 39.31 57.0
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The confusion matrix is reported by Table 3. The value in row i and column j is 100Nij/N , where Nij and N are 
the same as in Eq. 1 above. The diagonal numbers (in bold) give the percentage of nuclei correctly classified 
for each category, and the sum of the diagonal gives the classification accuracy. In general, the percentages in 
the main diagonal are higher than the percentages outside it, meaning that the classifier can discriminate the 
categories. Nevertheless, for some categories (e.g. low and no stained) the percentages are quite similar, which 
explains the relatively low values of accuracy, sensitivity and predictive positive value. The specificity is quite 
high for high and medium stained (above 92%) and moderated for low and no stain (about 60%). The staining 
level of the nuclei is a continuous property, so it is possible that the subjectivity of the experts or the non-linear 
responses of the human visual system label the nuclei depending on their surroundings. But, it is important to 
note that the classification is almost always confused with the neighbouring category (i.e., low and no staining). 
Hence, if we consider as success when the classifier predicts the true or the contiguous category, the classification 
accuracy is increased up to 95.59%. In line with this, if our main objective in the biomedical part of this work is 
to discriminate between weak and strong staining, as is customary in the literature, and if we consider only two 
classes (weak=no+low, strong=medium+high), then the accuracy is 89.32%.

In the SETS 2 and 3 the classification was evaluated within the routinary use of BreastAnalyser. After drawing 
the ROIs, the automatic detection of nuclei is executed and classification is performed on the nuclei detected 
automatically. Afterwards, the expert supervised jointly the detection and classification results. In these experi-
ments, the accuracy was 100% for the SET 2 and 93% for SET 3. This accurate classification of the staining level 
can be explained by two reasons: (1) the expert did not change the nuclei labels; and (2) the correctly detected 
nuclei are not partially masked by other types of tissues, and then, in these cases, the classifier predicts correctly 
the true category.

Elapsed time and system usability
The elapsed time for the analysis of an IHC image depends mainly on the time required to review the automatic 
recognition of DAB-brown areas and the nuclei detection. This values were estimated by the INIBIC lab experts 
using a stopwatch to measure the time needed to load, process, review and save the results for each image on a 
standard personal computer with 4 cores AMD Ryzen 5 3500U at 2.10 GHz and 8 GB of RAM memory under 
Windows operative system. The average elapsed time estimated was 3.75 minutes. Obviously, the analysis time 
is dominated by the review time. So, in order to estimate the time spent by the automatic processing, additional 
experiments were done on a computer with 8 Intel® CoreTM i7-9700K CPUs at 3.60 GHz and 64 GB of RAM 
memory under Linux Kubuntu 20.04. The average time spent to process an image of 2040× 1436 pixels was 0.43 
miliseconds to BrownDetector algorithm, 0.49 miliseconds to EBA and 0.16 miliseconds to RBA.

The subjective expert perception and system usability was evaluated using the System Usability Scale (SUS) 
questionnaire43, which measures the learning abitity and perceived usability of the software. The SUS has 10 
items with a five-point scale. If the score is below 25 it is the worst imaginable system; between 25 and 39 is 
“from worst imaginable to poor”; between 40 and 52 is “from poor to OK”; from 52 to 73 is “OK to good”; from 
73 to 85 is “good to excellent” and from 85 to 100 is “excellent to best imaginable”44. Ten experts from the par-
ticipating biomedical laboratories belonging to clinical pathology and biomedical research areas filled out the 
questionnaire and gave an average score of 85.5 points, ranging from 67 to 97.5 points. This result means that 
BreastAnalyser is perceived as excellent.

Biomedical results
BreastAnalyser was used to quantitate Cx43 immunostaining in various invasive breast cancer tissue samples, 
representative of the complexity and inter-patient variability of clinical specimens. This study was performed for 
the first two data sets: (1) SET 1 to analyse potential variations in Cx43 expression depending on the breast cancer 
subtype; and (2) SET 2 to discern possible differences in Cx43 levels in invasive breast cancer luminal B HER2- 
tissues according to their Oncotype DX Breast Recurrence Score Test results (Figs. 1 and 2 show representative 
IHC images). All images of SET 1 and SET 2 were automatically analysed and supervised, semi-automatically, 
by an histopathological expert using BreastAnalyser.

For SET 1, Fig. 9 shows bar charts representing Cx43 expression in core needle biopsies of invasive tumours 
not subjected to chemotherapy or radiotherapy and healthy control tissues, quantitated as brown area in pixels 
relativized to cell density for each patient. According to these measurements, all breast tumour samples showed 
significantly lower Cx43 immunostaining than healthy mammary controls. Furthermore, Cx43 signal seemed 
to be inversely and significantly correlated with breast cancer subtype aggressiveness, being the lowest in the 
most serious subtype triple negative (ER, PR and HER2 negative), slightly higher in non-luminal HER2+ (ER 
and PR negative, HER2 positive) and luminal B HER2- (ER and/or PR positive, HER2 negative), and the highest 
in luminal B HER2+ (ER and/or PR positive, HER2 positive) and in the better-prognosis luminal A (ER and/
or PR positive, HER2 negative). In line with these results, Cx43 and/or GJ function downregulation has been 
extensively described in breast cancer cell lines27,28 and primary tumour tissues, suggesting a tumour-suppressing 
role for Cx43 in primary breast tumours27,31. Several studies have also appointed a positive correlation between 
Cx43 gene and protein levels and ER and PR status, and a negative relationship with HER2 expression30,45. In 
our work, no significant difference was observed regarding Cx43 immunostaining between HER2+ and triple 
negative breast cancer, as also reported in the literature29,46.

Next, this analysis was mirrored with images from SET 2, comprising invasive breast cancer luminal B HER2- 
tissues assessed for Oncotype DX Breast Recurrence Score Test. Indeed, Cx43 expression was significantly higher 
in low cancer recurrence risk tissues than in high risk ones (Fig. 10 left). In order to move one step forward in 
analysing Cx43 levels in these samples, nuclear Cx43 signal was compared among them, categorizing the cel-
lular nuclei in high, medium, low or without Cx43 staining (Fig. 10 right). The majority of the samples were 
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Figure 9.   Cx43 is progressively downregulated with increasing breast cancer subtype malignancy. Graph 
represents Cx43 expression (quantitated as brown area in pixels) relativized to cell density for each patient. 
Mean+SD; mean values specified in the graph. n=5-8/subtype, each n is represented as a dot in the graph. One-
way ANOVA. * P < 0.05 , **P < 0.01 , ***P < 0.001.

Figure 10.   Higher Cx43 is associated to lower cancer recurrence risk in Oncotype DX-tested luminal B HER2- 
samples. Left graph represents Cx43 expression (quantitated as brown area in pixels) relativized to cell density 
for each patient. Right graph shows the percentage of cellular nuclei with high, medium, low or no Cx43 nuclear 
signal. Mean+SD; mean values specified in the graph. n=6/category, each n is represented as a dot in the graph. 
T-test. **P < 0.01 , ***P < 0.001.
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characterized by null (“without” category) or almost null (“low” category) nuclear Cx43 signal, with high-risk 
patients having significantly more Cx43-null nuclei than low-risk ones (95% versus 84.9%, respectively). As for 
nuclei with low Cx43 levels, they were significantly more abundant in low-risk tissues than in high-risk samples 
(13.2% versus 4.1%, respectively). Regarding nuclei with medium Cx43 staining, low-risk patients tended to 
present more than high-risk ones, although the difference was not significant (1.8% versus 0.1%, respectively, 
Fig. 10 right). It became apparent that nuclear Cx43 levels mimicked those of the whole tissue (Fig. 10), with 
low-risk samples having significantly higher Cx43/more Cx43-positive nuclei (even with low staining levels) than 
high-risk tissues. In agreement with these data, higher Cx43 transcript and protein levels have previously been 
significantly associated with better prognosis in breast cancer, namely high overall and relapse-free survival and 
lower disease recurrence, further reinforcing the potential prognostic value of Cx43 in breast carcinoma29,30,47,48. 
It is key to note that our study is the first to validate BreastAnalyser and to address Cx43 expression in the context 
of breast cancer samples scored according to the pioneering diagnostic test Oncotype DX, putting forward the 
possibility of Cx43 as a complementary prognostic marker to take into consideration.

Finally, regarding images from SET 3, explicitly included just for the assessment of inter-laboratory software 
performance, brown signal was subsequently not evaluated at the biomedical level. Nevertheless, it is relevant to 
note that they present different magnifications and belong to antigens routinely assessed in breast cancer clinical 
environment. The positive outcome and efficiency of Breast Analyser in this context presents this software as a 
versatile tool which can also potentially support anatomo- and histo-pathological clinical decisions.

Conclusions
Breast cancer is the most diagnosed cancer worldwide and represents the fifth cause of cancer mortality globally. 
Immunohistochemistry can support the oncological diagnosis, therapeutic decisions and biomarker discovery 
but, currently, its evaluation is often subjective and qualitative due to the lack of suitable image analysis tools. It 
is also known the heterogeneity of IHC images, intimately related to the high complexity of breast cancer and to 
the inherent intricacy of pathological images due to differences in tissue processing, staining, image acquisition, 
etc. The available software tools can be grouped into: (1) generic free tools to analyse the images, in which the user 
needs some programming skills for an optimal use; and (2) sophisticated algorithms that perform specific task, 
but are often very time consuming. Some drawbacks of both approaches are the lack of suitable tools to review 
the analysis before the IHC image quantification, or the need of programming and image analysis knowledge 
for an optimal use.

Our software BreastAnalyser combines the automatic processing of the IHC image using sophisticated algo-
rithms with a friendly GUI that allows experts to review the analysis before image quantification. The segmenta-
tion algorithms implicitly include image variability, saving normalization time. The recognition of DAB-brown 
signal is almost perfect for all data sets tested (sensitivities higher than 99% and positive predictivities above 
95%). The detection of nuclei achieves lower performances strongly depending on the image ( F1-score from 0 
to 96% for different images). Nuclei classification according to their staining level into categories high, medium, 
low and without staining is very good (accuracy higher than 93% for SET 2 and SET 1). The elapsed time to 
automatically process the IHC images was less than one second, and the analysis time of an expert per image 
depends on the review requirements, but it can be estimated in 3.7 minutes per image, spending only 0.43 ms for 
brown detection and 0.49 or 0.16 for nuclei detection depending on the method (EBA or RBA) used. The overall 
perception of BreastAnalyser using the SUS questionnaire reported an average of 85.5 points, which means that 
the system is perceived as excellent.

Within the biomedical context, BreastAnalyser allowed to perform quantifications of the breast cancer IHC 
images, leading to the following conclusions: (1) Cx43 is deeply downregulated at the protein level in human 
invasive breast cancer tissue samples when compared to normal breast, with a tendency to decrease its expression 
as the subtype malignancy increases. It is minimal in triple negative breast cancer (the most aggressive), fol-
lowed by HER2+, luminal B HER2-, luminal B HER2+ and finally luminal A (the least aggressive) breast cancer, 
with the highest levels; and (2) higher Cx43 protein expression is associated to lower cancer recurrence risk in 
Oncotype DX-tested luminal B HER2- breast cancer tissues. Nuclear Cx43 levels in these samples mimicked 
those of the whole tissue, with low-risk samples having significantly higher Cx43/more Cx43-positive nuclei 
(although marginally stained) than high-risk tissues.

BreastAnalyser software can competently support both basic and translational research, offering a straight-
forward and reliable approach for IHC analysis that overcomes some other available softwares in terms of 
simplicity and pragmatism. It might also be advantageous for certain tasks of pathological anatomy research, 
namely automatization of IHC-brown signal quantitation, presenting a potential clinical tool for breast cancer 
diagnosis and prognosis. Future work includes the validation of BreastAnalyser in more biomedical labs and to 
test it to quantify positivity on IHC images of other tissues, for which our preliminary visual experiments are 
very encouraging. From the image segmentation point of view, future work will focus on the improvement of 
automatic nuclei detection and stratification.

Ethical approval statement
The present study was conducted following the guidelines of the Declaration of Helsinki and later amendments, 
and was approved by the regional research ethics committees of the Autonomous Community of Galicia-CAEIG 
(registry codes 2019/535 and 2015/029, INIBIC lab samples) and the Albacete Integrated Care Management 
System (registry code 2020/06/071, CRIB lab samples). All tissue donors were adults and informed consent was 
obtained from them.
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Supplementary Material
The user guide of the BreastAnalyser software is included as a supplementary material.

Data availability
BreastAnalyser software and the data sets analysed and annotated during the current study are available in the 
CiTIUS repository https://​citius.​usc.​es/​trans​feren​cia/​softw​are/​breas​tanal​yser.
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