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Optimization of building 
integrated energy scheduling 
using an improved genetic whale 
algorithm
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Renewable energy generation has become the general trend with increasing environmental problems. 
However, the instability of renewable energy generation and the diversification of user demand are 
highlighted and the optimization of energy scheduling has become the key to solve the problem. 
This study introduces an energy scheduling optimization model tailored for building integrated 
energy systems, encompassing elements like gas turbines, wind and solar modules, ground source 
heat pumps, electric vehicles, central air-conditioning, and energy storage. The model prioritizes 
economic efficiency and minimal carbon emissions by first collecting and pre-processing the data for 
the regional building conformance, and then utilizing an enhanced multi-objective genetic whale 
algorithm. Evaluations on a regional complex building highlighted the algorithm’s robust convergence 
and stability. The resulting optimized scheduling effectively balances economic and environmental 
concerns, reducing costs by about 92.896 yuan per day on average and reducing carbon emissions by 
about 0.091 tons, promoting efficient system operation, reducing costs and mitigating environmental 
impacts.

With the accelerated progress of the economy, the excessive utilization of conventional fossil fuel resources has 
precipitated predicaments of environmental contamination and resource scarcity. Consequently, the advance-
ment of novel energy sources and the enhancement of the efficiency and utilization rate of renewable energy 
have become immediate priorities. To address this issue, the establishment of a multi-energy complementary 
system involving wind, solar, electricity, and heat generation is paramount. By satisfying the electricity con-
sumption demands of users, as well as the cooling and heating requirements of buildings, the achievement of 
“zero scenery waste” holds profound significance in the pursuit of the vision of attaining a carbon peak by 2030 
and carbon neutrality by 2060. However, the present integrated energy dispatching system encountered various 
deficiencies, encompassing insufficient scenery utilization, sluggish energy dispatching speed, and an inequitable 
energy distribution ratio. To mitigate these limitations inherent to the traditional integrated energy system, this 
research proposes a novel integrated building energy optimization scheduling system that leverages an enhanced 
multi-objective genetic whale algorithm, thereby substantially ameliorating these issues 1,2.

Foreign scholars have made a lot of research on the construction of integrated energy optimization scheduling 
for various scenarios and objectives. To address the comprehensive energy optimization and dispatching in a 
park setting, an enhanced dynamic programming algorithm was proposed to establish a multi-objective model. 
Additionally, the Stackelberg master-player game was employed to account for the interplay between the sup-
ply and demand sides, aiming to minimize the anticipated operation cost of the Park Integrated Energy System 
(PIES) 3–5. For the integrated energy dispatching optimization in isolated island environment, a day-ahead model 
was developed that encompasses stepped carbon trading and the integration of photothermal energy storage 
with hydrogen production via wind power. This model not only achieves maximum net income for conventional 
islands but also ensures the optimization of overall energy usage 6,7. Furthermore, to address the issue of low 
efficiency in renewable energy consumption and multi-energy complementarity, a cooperative optimization 
operation method known as “source-network-charge-storage” was proposed for integrated energy systems. This 
method takes into account both wind power consumption and operational economic benefits 8,9. In addition, in 
order to improve the energy utilization rate, more efforts are made to study the energy storage part, and a cloud 
energy storage model is proposed for frequency modulation and peak adjustment of the power system. The 
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optimal energy management of the home microgrid system integrating photovoltaic and battery energy storage 
is proposed, and energy consumption and PV generation are managed through the integration of batteries. Both 
methods effectively ensure energy efficiency and balance the cost to a certain extent10,11. Lastly, considering the 
different needs of different users, the combined supply of cold, heat and electricity is introduced as the core power 
supply unit. An optimal scheduling approach is proposed that possesses flexibility and accounts for uncertainties 
in building heat load, while simultaneously considering the balancing of cold, heat, and electricity, as well as 
equipment constraints 12–14. By integrating various algorithms, the optimization of comprehensive energy sched-
uling for buildings is achieved. Algorithms such as the Grey Wolf algorithm, multi-objective whale algorithm, 
and particle swarm algorithm, among others, have demonstrated the potential to enhance energy scheduling 
efficiency 15–19. Aiming at the uncertainty of renewable energy, robust optimization is proposed, rolling optimiza-
tion theory is applied to emergency energy scheduling, and weight factors are introduced into the optimization 
model to balance the importance of reducing and retaining power20,21. For the study of energy efficient build-
ing management systems, through data-driven optimization models and heating and cooling air conditioning 
systems, combined with indoor comfort environment, to maximize the comfort index while minimizing energy 
consumption22. In summary, the majority of the aforementioned literature focuses on comprehensive energy 
systems within industrial parks and isolated islands, aiming to facilitate the interconnection and conversion of 
electricity, heat, and gas sources. Additionally, these studies incorporate carbon trading mechanisms to account 
for the environmental impact of carbon emissions. On one hand, due to the inadequate energy structure prevalent 
in many buildings, the demand for diverse energy sources is increasing. On the other hand, the use of various 
equipment in buildings exhibits considerable potential to improve energy efficiency and curb carbon emissions.

Therefore, a new multi-objective optimal scheduling model is proposed in this paper, which combines genetic 
algorithm with improved whale algorithm and introduces fitness function to simulate and analyze building 
energy scheduling. Firstly, the composition of the system’s equipment is analyzed, and the energy flow relation-
ships within the system are delineated. Expanding upon the conventional combined cooling, heating, and power 
supply system, additional components such as wind and solar power generation systems, ground source heat 
pump systems, and energy storage systems are incorporated. Simultaneously, carbon emissions are introduced as 
one of the objective functions within the model to constrain economic costs. Finally, by analyzing and process-
ing the collected data, the Pareto optimal solution set is obtained by using the improved multi-objective genetic 
whale optimization algorithm, and the optimal solution set is derived from it.

This paper is divided into four main parts, and discusses the superiority of the algorithm combined with 
mathematical model in solving the optimization of building energy scheduling. The first part introduces the 
establishment of mathematical models of each part of the system and the setting of objective function constraints. 
The next one introduces the optimization algorithm and the improvement and innovation of the algorithm. The 
third part analyzes the energy scheduling of the same set of data collected under different algorithms and obtains 
the load running diagram. The fourth part reviews the optimization objectives and discusses the adaptability 
of the algorithm in building energy optimization scheduling. Finally, the application prospect of artificial intel-
ligence algorithm in building integrated energy optimization scheduling is prospected.

Building integrated energy optimization scheduling model
This study focuses on the investigation of building integrated energy systems characterized by stable electricity 
demand and heating (cooling) requirements at the load side. The primary objective is to optimize and reconfigure 
the conventional supply structure, to attain the minimization of economic costs and carbon emissions while 
ensuring the fulfillment of cooling, heating, and electricity demands within the building. Figure 1 illustrates the 
flow chart depicting the optimization process of building integrated energy systems.

Objective function
Optimizing and dispatching building integrated energy involves addressing a multi-objective quandary. In addi-
tion to considering system operating costs, environmental factors must also be taken into account. The attain-
ment of both minimum system cost and carbon emission reduction is adopted as the objective function, wherein 
operation and maintenance costs encompass equipment, operational, and maintenance expenses, while carbon 
emission predominantly refers to carbon dioxide emissions.

In the context of this context,ftoc, and ftoe denote the variables representing operating and maintenance costs, 
as well as carbon emissions, respectively.

where, fB represents the cost of equipment,L represents the electric vehicle; M stands for gas turbine; N stands 
for ground source heat pump.

where, fG represents the expenditure for the acquisition of gas. Mi symbolizes the i gas turbine. PM(t) denotes 
the generated power output by the gas turbine in a specific period, t. fg(t) represents the cost associated with the 
procurement of natural gas during the mentioned period, t.

min F =
{

ftoc , ftoe
}

fB =
∑

i=1

L(i)+
∑

i=1

M(i)+
∑

i=1

N(i)

fG =
∑

i=1

∑

t∈R+

Mi × PM(t)× fg (t)



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2386  | https://doi.org/10.1038/s41598-024-52995-4

www.nature.com/scientificreports/

where,Ni symbolizes the I platform source heat pump, whereas PN(t) represents the power generated by the 
ground source heat pump in the specific period denoted as t. fe1(t) signifies the price of electricity procured from 
the grid during the same period t. Pi(t) represents the power consumption of unit i, while fe2(t) denotes the price 
at which electricity is purchased from the grid during the aforementioned period.

where Ps(t) and fes(t) represent the selling power and selling price of the t period respectively.

where,η1,η2,η3 represents the utilization frequency of electric vehicles, heat storage tanks, and cold storage 
tanks, PEin(t), PEout(t) represents the power stored and discharged by the electric vehicle during period “t”. 
PHin(t), PHout(t) denotes the heat storage and heat release power associated with the heat storage tank during 
the period “t”, and PCin(t), PCout(t) represents the power employed for storage and refrigeration in the storage 

fEb =
∑

i=1

∑

t∈R+

Ni × PN (t)× fe1(t)+
∑

i=1

∑

t∈R+

Pi(t)× fe2(t)

fEs =

T
∑

t=1

Ps(t)× fes(t)

fMC =
∑

i=1,t∈R+

η1 × fE(i)× [PEin(t)− PEout(t)]+
∑

i=1,t∈R+

η2 × fH(i)× [PHin(t)− PHout(t)]

+
∑

i=1,t∈R+

η3 × fC(i)× [PCin(t)− PCout(t)]+
∑

i=1

fp(i)+
∑

i=1

fw(i)

Figure 1.   Flow chart of building integrated energy optimization.
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tank during the period “t”. Finally, fp(i), and fw(i) signifies the fixed maintenance costs for photovoltaic and 
wind modules, respectively.

where,Egt,t+1, E
e
t,t+1 respectively denote the rate of natural gas and electricity consumption per unit of time. 

ηg,co2 ,ηe, and co2 respectively signify the conversion factors for carbon dioxide emissions resulting from the com-
bustion of natural gas and the generation of thermal power from electricity.

Constraints
Constraints on the balance of cooling, heating, and electricity
The equilibrium between energy supply and demand within the system primarily encompasses the balance of 
electrical power, thermal power, and cooling power.

where,Pb(t), PPV(t), PWT(t) signifies the purchased power, photovoltaic power, and wind power during the 
period t, each respectively. PEi(t), PHi(t), and PCI (t) respectively denote the periods associated with the user’s 
electricity, heat, and cooling load. ηh1 represents the heating efficiency of the waste heat boiler in the gas boiler 
system, ηh2, ηc and represents the heating and cooling efficiency of the ground source heat pump.

Constraints on the energy storage system
The energy storage system mainly includes electric storage, heat storage, and cold storage devices. The energy 
storage device does not generate and consume energy spontaneously but only realizes energy transfer on a time 
scale. Take the electric storage device as an example:

where,Smin
E  and Smax

E  are employed to signify the lower and upper bounds of the electric storage device, respec-
tively. Correspondingly, Pmax

in  and Pmax
out  are utilized to denote the maximum charging power and maximum 

discharge power, respectively. �e is indicative of the charge and discharge status of the storage device, constrained 
between the range of [0, 1].

Constraints on device running
In scenarios where the gas turbine’s output is relatively low, the economic cost is considered, and a shutdown 
threshold is established to prevent inefficiencies arising from low generation efficacy. Accordingly, the gas tur-
bine’s output must surpass the predetermined shutdown power. The constraints are outlined as follows

where, φM represents the shutdown factor associated with a gas turbine, while Pmax
M  denotes the maximum output 

power generated by the gas turbine. On the other hand, other devices do not impose any shutdown constraints. To 
illustrate, let us consider the ground source heat pump, which is subject to the following operational constraints:

where Pmax
N  symbolizes the maximal power output of the ground source heat pump.

Constraints on power purchase and sale

where,Pmin
b  and Pmax

b  are used to signify the minimum and maximum power purchased, respectively. Similarly, 
Pmin
s  and Pmax

s  are employed to denote the minimum and maximum power sold, respectively.

Building integrated energy optimization scheduling system algorithm
Multi‑objective whale optimization algorithm
The optimization scheme suggested in this research for building integrated energy scheduling necessitates the 
simultaneous consideration of economic and environmental aspects, thereby establishing it as a multi-objective 

fCO2 =
∑

t∈R+

E
g
t,t+1 × ηg ,co2 +

∑

t∈R+

Eet,t+1 × ηe,co2

Pb(t)− Ps(t)+ PM(t)+ PPV (t)+ PWT (t)+ PEout(t) = PN (t)+ PEi(t)+ PEin(t)

ηh1 × PM(t)+ ηh2 × PN (t)+ PHout(t) = PHi(t)+ PHin(t)

ηc × PN (t)+ PCout(t) = PCi(t)+ PCin(t)

Smin
E ≤ SE(t) ≤ Smax

E

0 ≤ PEin(t) ≤ �eP
max
in

0 ≤ PEout(t) ≤ (1− �e)P
max
out

φM × Pmax
M ≤ PM(t) ≤ Pmax

M

0 ≤ PN (t) ≤ Pmax
N

Pmin
b ≤ Pb(t) ≤ Pmax

b

Pmin
s ≤ Ps(t) ≤ Pmax

s

Pb(t)Ps(t) = 0
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optimization problem. The utilization of the Whale Optimization Algorithm (WOA) stems from the imitation of 
humpback whale groups’ hunting behavior in nature. Through a series of sequential actions including searching, 
encircling, hunting, and attacking prey, the WOA aims to accomplish the objective of optimization search. The 
conventional WOA comprises distinct stages such as prey encircling, spiral bubble formation, and prey detection. 
A visual representation of the WOA principle is illustrated in Fig. 2.

Based on improved multi‑objective whale optimization algorithm
To enhance the convergence speed and prevent the Whale Algorithm from converging to local optima, this 
study incorporates the Genetic Algorithm (GA) and refines its fitness model. This integration serves to augment 
the global search capability and convergence speed of the Whale Algorithm, while concurrently ensuring the 
population’s diversity and elevating the algorithm’s accuracy.

Whale algorithm
After setting parameters, the whale position and fitness are first initialized, and when the global optimal solution 
and the whale optimal position are updated later, it is easy to fall into the local optimal. Therefore, optimiza-
tion methods such as genetic algorithm are introduced later. Figure 3 shows the process of the whale algorithm 
initializing and updating the optimal solution.

Cross operation
Crossover is the driving force of genetic algorithm, resulting in the structured and accidental exchange of genetic 
material between solutions, and it is possible that special chromosomes produce better chromosomes, and 
random crossover is a necessary process of genetic algorithm. Figure 4 shows the random crossover of genetic 
algorithm.

Mutation operation
After cross operation, the chromosome is maintained in the mutation process. This operation is designed to pre-
vent the genetic algorithm from falling into local minima. Mutations have two main purposes, one is to restore 
extinct genetic material, and the other is to destroy genetic information. Appropriate mutation probabilities can 
maintain the diversity of the population23. Figure 5 shows the compilation operation process.

Figure 2.   Flowchart of whale algorithm.
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Genetic algorithm fitness function improvement
To address the necessity of balancing the global and local search capabilities within the Whale Algorithm, this 
study proposes the integration of an adaptive weight mechanism alongside the calculation of an individual’s 
relative position within the entire population to enable adaptive position updates. The conventional adaptive 
weight approach solely divides the whale individuals into best, worst, and average groups, wherein the clas-
sification of most general group individuals remains inadequate. In this paper, an enhanced adaptive function 
fitness model is introduced, enabling a more detailed classification of general group individuals into superior, 
inferior, and ordinary groups. The specific workflow proceeds as follows: the fitness of individual whales in the 
population is ranked in ascending order, generating the respective averages for the preceding, succeeding, and 

Figure 3.   Initial and updated optimal solutions of whale algorithm.

Figure 4.   Genetic algorithm to optimize cross operation.
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complete subsets. Subsequently, the individual whales are classified based on their current fitness and allocated 
corresponding weights.

1.	 In circumstances where the fitness value f(i) of an individual whale falls below a certain threshold, it signifies 
that said individual belongs to the optimal group within the population. In response, a minor weight value 
is assigned to reinforce its local search proficiency.

2.	 When the fitness value f(i) of an individual whale falls within the interval [lower bound] and [upper bound], 
it signifies that said individual belongs to the general group within the population. Consequently, a weight 
value of 1 is assigned, ensuring that the individual can continue approaching the optimal position through 
the algorithm mechanism.

3.	 When comparing the fitness value f(i) of an individual whale with that of the optimal whale, a situation 
arises wherein the former surpasses the latter, signifying the individual’s classification as belonging to the 
inferior group within the population. In this case, it becomes imperative to reinforce its capability for global 
exploration. This is achieved by selecting a larger or smaller weight, with a probability of 50%, to facilitate 
the prompt evasion of local optima.

To achieve a more refined classification of general group individuals in (2), the individuals are subjected to a 
detailed categorization, enabling a clearer differentiation between superior and inferior individuals within this 
group. This improved classification is facilitated by the introduction of an adaptive function.

where, refers to the coefficient which takes values within the range of [0,1]. denotes the length of the feature 
subset, while C represents the total number of feature attributes. Additionally, signifies the degree of dependence 
of the conditional attribute on the decision attribute.

Calculate the difference between individual whale I and the best and worst individual in the group di,good and 
dj,inf . If yes di, good > exp

(

− Iter
Itermax

dj,inf

)

 , it is the better group. If yes di, good ≤ exp
(

− Iter
Itermax

dj,inf

)

 , it is the worse 
group.

Fit(i) = α × γR(D)+ β ×
|C| − |R|

|C|

di,j =
∣

∣Fiti , Fitj
∣

∣

Figure 5.   Genetic algorithm to optimize mutation operation.
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where f(i) represents the fitness value of the first whale. Moreover, k is a random number that falls within the 
inclusive range of [0,1]. Additionally, ω1, ω2, ω3 denotes the adaptive weight limit, while ω3 > ω2 > ω1 refers 
to a variable. Utilizing the aforementioned adaptive weights, the position update formula of the whale algorithm 
is improved to:

where, is a stochastic variable, uniformly distributed in the interval [0,1].
The results depicted in Figs. 6, 7, and 8 demonstrate the efficacy of the algorithm’s enhancements. When 

considering an objective function with two objectives and a defined opposition, the curve of the optimal solu-
tion set closely approximates the Pareto frontier. It is evident that the algorithm successfully achieves a close 
approximation to the Pareto frontier, thereby significantly enhancing its accuracy.

Result
In order to evaluate the effectiveness of the above model and algorithm and comprehensively solve the problems 
related to economic cost and environmental pollution, the example adopts the improved multi-objective genetic 
whale algorithm. The parameter setting and operator selection are consistent with the above description, and 
the convergence speed and accuracy as well as the reliability of the results are demonstrated by comparing with 
other algorithms. This study takes the regional complex building as an example to optimize the simulation. 
Specifically, we chose a single day as the focus of our analysis. The building primarily relies on grid power, gas 
turbines, and new energy generation for its electricity supply. As for heat energy, the waste heat boiler, central 
air conditioning, and ground source heat pump play prominent roles by utilizing micro-gas turbines to absorb 
heat from high-temperature flue gas. Additionally, the cold energy is sourced from the central air conditioning 
and ground source heat pump. The system configuration is depicted in Fig. 9.
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ω1 + (ω2 − ω1)×
f (i)− fmin

µa1 − fmin
, f (i) ≤ µa1

ω1 − (ω2 − ω1)×
f (i)− fmax

µa3 − fmax
, f (i) ≥ µa3, k ≥ 0.5

ω2 + (ω3 − ω2)×
f (i)− fmax

µa3 − fmax
, f (i) ≥ µa3, k ≤ 0.5

ω2 + (ω2 − ω1)×
f (i)− fmax

µa2 − fmax
,µa1 ≤ f (i) ≤ µa2, k ≥ 0.5

ω2 + (ω2 − ω1)×
f (i)− fmin

µa1 − fmin
,µa1 ≤ f (i) ≤ µa2, k ≤ 0.5

ω3 + (ω3 − ω2)×
f (i)− fmax

µa3 − fmax
,µa2 ≤ f (i) ≤ µa3, k ≥ 0.5

ω3 + (ω3 − ω2)×
f (i)− fmin

µa2 − fmin
,µa2 ≤ f (i) ≤ µa3, k ≤ 0.5

X(t + 1) =

{

ω × X∗(t)− A× D, p > 0.5

ω × X∗(t)+ D′ × ebl cos(2π l), p ≤ 0.5

Figure 6.   No algorithm used.
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Basic data
In this paper, load data of a comprehensive commercial building in a province of China is collected, initial data 
is cleaned, abnormal data is deleted, and blank data is supplemented by K-nearest neighbor Imputation. Pur-
chase and sale prices, heating and cooling prices and incentive subsidy prices ref. 18, while Table 1 provides an 
overview of the operational parameters of the equipment.

Algorithm comparison
The main experimental tools for building energy optimization scheduling are matlab, custom programming 
algorithms, and general optimization packages.

In order to verify the feasibility of the proposed algorithm in building comprehensive energy optimization 
scheduling, algorithms were compared for the same scenario.

Algorithm 1: The improved genetic whale algorithm proposed in this paper is used for energy scheduling, 
and the adjustment of gas turbines, wind power generation and energy storage equipment is realized by analyz-
ing demand data and response data.

Algorithm 2: The improved whale algorithm is used for energy scheduling, and its data analysis is consistent 
with algorithm 1.

Figure 10 presents a comparative analysis of the iteration speed and accuracy between the original Whale 
Algorithm and the enhanced Genetic Whale Algorithm. The simulation results indicate that the improved algo-
rithm not only enhances the iteration speed but also exhibits a substantial improvement in accuracy.

Figure 7.   Algorithm used for 100 iterations.

Figure 8.   Algorithm used for 500 iterations.
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Table 2 shows the comparison of economic costs and carbon emissions of power grid procurement scheduling 
and integrated energy system scheduling under different algorithms in wind power and photovoltaic forecast 
scenarios.

Result analysis
Following a thorough analysis of the scheduling outcomes, the resulting electrical load, thermal load, cooling 
load, and power diagram are visually represented in Figs. 11, 12, 13, and 14, respectively.

Based on the representation in Fig. 9, it can be observed that the main sources of power demand for the build-
ing are the main supply and gas turbine generation. This can be attributed to the stable supply from the mains 
grid, accompanied by the advantages of high power quality and low maintenance costs associated with the full 
operation of micro-gas turbines. Moreover, photovoltaic power generation is primarily concentrated between 
9 and 16 h, with minimal involvement in power supply during other periods. On the other hand, wind power 
generation remains relatively stable throughout the day. The building relies on the battery for electricity provision 
in scenarios where the power supply is insufficient, while surplus power is stored during periods of excess supply.

The analysis of Fig. 10 reveals that the heat load primarily relies on waste heat absorption and the ground 
source heat pump. Throughout the daytime, the ground source heat pump predominantly provides the requisite 
heat supply, with a minor contribution from the boiler. However, during nighttime, the majority of the heat 

Figure 9.   Integrated energy system structure diagram.

Table 1.   Equipment operating parameters.

Device name Argument

Rated power of gas turbine 100 kw

Rated power of waste heat boiler 100 kw

Rated power of ground source heat pump 40 kw

Rated power of central air conditioning 50 kw

Rated power of electric vehicles 50 kw

Battery capacity 120 kw

Capacity of heat storage tank 200kw

Capacity of cold storage tank 200kw

Gas turbine power generation efficiency 0.55

Charging and discharging efficiency of heat storage tank 0.95

Charging and discharging efficiency of cold storage tank 0.95

Battery charging and discharging efficiency 0.95
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Figure 10.   Compares the iteration speed and accuracy of the algorithm.

Table 2.   Scheduling comparison under different algorithms.

Algorithm
Power purchasing and dispatching cost/
yuan Comprehensive energy dispatch cost/yuan Economic cost/yuan Carbon emissions/ton

Algorithm1 2201.012 820.545 3021.557 1.790

Algorithm2 2312.177 802.276 3114.453 1.881

Figure 11.   Power load running balance diagram.
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Figure 12.   Heat load operation diagram.

Figure 13.   Cooling load running balance diagram.

Figure 14.   Operation power diagram of each system.
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requirement is fulfilled by the boiler. Additionally, a surplus of heat energy is observed between 12 and 14 noon, 
which is stored in the heat storage tank for subsequent heating purposes at other times.

According to the representation in Fig. 11, the primary origins contributing to the cooling load comprise 
the ground source heat pump and central air conditioning systems. From 8 to 21 h, a robust cooling demand 
persists through the day. To fulfill this demand, intermittent cooling supply is employed, alongside periodic 
replenishment of the cooling load within the cold storage tank, which ensures the fulfillment of the cooling load 
requirements during the night-time period.

As depicted in Fig. 12, the primary source of electricity supply is derived from the mains, resulting in a higher 
demand for purchased power during most daylight hours. However, during peak solar irradiation at noon, pho-
tovoltaic power generation yields a surplus, leading to a reduction in purchased power and enabling the heat 
storage tank to accumulate a substantial portion of the generated heat. During nighttime, the electrical load 
demand significantly decreases, resulting in excess power generation across all systems. In addition to storing a 
portion of this excess load, the remaining surplus power is exported back to the grid.

Conclusion
By utilizing an enhanced multi-objective whale algorithm, this study formulates a model for optimizing the 
scheduling of building-integrated energy systems. Through the incorporation of simulation cases, the paper 
derives the subsequent conclusions: this study addresses the conflicting objectives of minimizing economic costs 
and carbon emissions through the formulation of an objective function that simultaneously satisfies both criteria. 
A Pareto dynamic optimization approach is employed to obtain the curve representing the optimal solution set. 
Moreover, an enhanced multi-objective genetic whale algorithm is proposed in this research. Simulation results 
show that the improved algorithm effectively reduces the sensitivity of whale algorithm to local optimization, 
and improves the global search ability and convergence speed. In the case of using the algorithm, the daily cost 
is saved 92.896 yuan, and the carbon emission is reduced by 0.091 tons. In addition, the enhanced algorithm has 
strong adaptability in solving multi-objective scheduling problems.

The future work should further test the application and schedule the acquisition analysis for a variety of build-
ings to improve the universality of the algorithm. In addition, it can be applied by combining various optimiza-
tion methods to continuously improve the speed and accuracy of the algorithm in solving practical problems.

Data availability
All data generated or analyzed during this study are included in this published article.
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