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Uplift modeling to identify 
patients who require extensive 
catheter ablation procedures 
among patients with persistent 
atrial fibrillation
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Nobuaki Tanaka 4, Tetsuya Watanabe 5,6, Nobuhiko Makino 7, Yasuyuki Egami 8, 
Takafumi Oka 1,4, Hitoshi Minamiguchi 1,7, Miwa Miyoshi 9, Masato Okada 4, Takashi Kanda 7,10, 
Yasuhiro Matsuda 10, Masato Kawasaki 5, Masaharu Masuda 10, Koichi Inoue 4,11, 
Yasushi Sakata 1 & the OCVC-Arrhythmia Investigators *

Identifying patients who would benefit from extensive catheter ablation along with pulmonary vein 
isolation (PVI) among those with persistent atrial fibrillation (AF) has been a subject of controversy. 
The objective of this study was to apply uplift modeling, a machine learning method for analyzing 
individual causal effect, to identify such patients in the EARNEST-PVI trial, a randomized trial 
in patients with persistent AF. We developed 16 uplift models using different machine learning 
algorithms, and determined that the best performing model was adaptive boosting using Qini 
coefficients. The optimal uplift score threshold was 0.0124. Among patients with an uplift score 
≥ 0.0124, those who underwent extensive catheter ablation (PVI-plus) showed a significantly lower 
recurrence rate of AF compared to those who received only PVI (PVI-alone) (HR 0.40; 95% CI 0.19–
0.84; P-value = 0.015). In contrast, among patients with an uplift score < 0.0124, recurrence of AF did 
not significantly differ between PVI-plus and PVI-alone (HR 1.17; 95% CI 0.57–2.39; P-value = 0.661). 
By employing uplift modeling, we could effectively identify a subset of patients with persistent AF 
who would benefit from PVI-plus. This model could be valuable in stratifying patients with persistent 
AF who need extensive catheter ablation before the procedure.

Utilizing machine learning presents a promising approach to enhance the diagnosis and treatment of various 
ailments, such as cardiovascular diseases. Specifically, appropriate stratification and patient selection are crucial 
steps towards administering effective treatment. Uplift  modeling1, a common machine learning methodology 
used in commercial industries to discern individuals with a greater or lesser propensity to purchase a product 
in response to an intervention, can also facilitate the identification of patients who would benefit most from 
treatment. This technique is unlike traditional statistical analysis, which usually aims to determine whether 
a treatment is effective overall or whether the effectiveness of the treatment differs among a small number of 
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pre-defined subgroups. Uplift models are frequently trained using outcome data in the form of a customer’s 
response to an intervention. Randomized clinical trial data can also be utilized to train uplift models to identify 
patients who would benefit from a particular  treatment2.

Catheter ablation presents itself as a secure and efficacious treatment for atrial fibrillation (AF). While pul-
monary vein isolation (PVI) is typically performed on AF  patients3,4 it exhibits inadequate efficacy in maintain-
ing sinus rhythm among individuals with persistent AF as opposed to those with paroxysmal AF. Despite the 
integration of extensive catheter ablation, such as linear ablation and/or complex fractional atrial electrogram 
(CFAE) ablation, with PVI for individuals with persistent  AF5, randomized clinical trials evaluating the efficacy 
of this combination treatment have failed to produce definitive results, and the efficacy of extensive ablation 
remains a topic of  controversy6,7. This may be attributed to the heterogeneity of patients with persistent AF, thus 
highlighting the importance of suitable stratification and identification of individuals who do or do not require 
extensive substrate ablation in conjunction with PVI. Though numerous previous studies have delved into this 
issue, including our  own8–11, the optimal method for stratification has yet to be elucidated. In this regard, uplift 
modeling would be an appropriate approach.

Here, we report the usefulness of uplift modeling in identifying patients who necessitate extensive catheter 
ablation along with PVI among those afflicted with persistent AF. Moreover, we detail the features of patients 
identified by uplift modeling who stand to benefit from extensive ablation.

Methods
Study design
This study was a post-hoc sub-analysis of the EARNEST-PVI trial, registered at ClinicalTrials.gov (https:// clini 
caltr ials. gov/ ct2/ show/ NCT03 514693, ClinicalTrials.gov Identifier: NCT03514693)7,9,10,12,13, which focused on 
stratification using uplift modeling. The EARNEST-PVI trial is a prospective, multicenter, randomized, and 
open-label non-inferiority trial of patients with persistent AF undergoing an initial catheter ablation procedure 
conducted by the Osaka Cardiovascular Conference Arrhythmia Investigators. Details of the EARNEST-PVI 
trial are described  elsewhere7,12. Briefly, patients with persistent AF undergoing a first-time ablation procedure 
were enrolled in eight medical centers with extensive experience with catheter ablation for AF. Patients were 
randomized to receive either PVI only (PVI-alone) or extensive ablation comprising linear and/or CFAE abla-
tion in addition to PVI (PVI-plus). Before catheter ablation, we collected clinical data, including patient history, 
laboratory data, and transthoracic echocardiography results. Details of the ablation procedures are also described 
 elsewhere7,12. Patients were followed up for 12 months after the ablation procedure. A 12-lead electrocardiogram 
(ECG) was performed before catheter ablation, at discharge, and at 1, 3, 6, 9, and 12 months, and a 24-h Holter 
ECG was conducted at 6 and 12 months to detect recurrence of AF. The primary endpoint of the study was the 
recurrence of AF documented by scheduled or symptom-driven ECG tests during the 12-month follow-up 
period. All patients provided written informed consent to participate and the study was approved by the ethics 
committee of each hospital. This study conformed to the ethical guidelines outlined in the Declaration of Hel-
sinki, and was approved by the Institutional Review Boards of all hospitals. The following institutes approved this 
study: Cardiovascular Center, Sakurabashi-Watanabe Hospital (study number: 17-6); Osaka University Graduate 
School of Medicine (14377); Kansai Rosai Hospital (15D059g); Osaka General Medical Center (27-2035); Osaka 
Police Hospital (548); Osaka Rosai Hospital (28-78); Yao Municipal Hospital: (八病H29-5); and Osaka Hospital, 
Japan Community Healthcare Organization (2016-25).

Uplift modeling
Uplift modeling has been used to predict the difference between class probabilities in a treatment and a control 
group. This approach enables the discovery of a group of patients for which a treatment is more  beneficial2.

A total of 53 variables before catheter ablation (Supplementary information 2, Supplementary Table S1) were 
considered as primary candidates for uplift modeling after excluding factors with missing data of more than 15%. 
Missing values in categorical features were imputed with a constant ‘not available’ value and those in continuous 
features were imputed with the mean value of the feature. This imputation method is the default preprocessing 
method in ‘PyCaret’ 2.3.10, an open-source, low-code machine learning library in Python (https:// pycar et. readt 
hedocs. io/ en/ stable/ index. html). Variables with a correlation coefficient greater than 0.7 or considered clini-
cally highly relevant to each other were removed and replaced with the variable that was considered the most 
informative. Continuous variables were scaled and translated according to the interquartile range in a normal 
distribution. Finally, a total of 26 variables were included in the present analysis (Supplementary information 
2, Supplementary Table S2).

Uplift modeling is commonly conducted using a two-model approach or a one-model  approach2. Here, we 
used the one-model approach. The advantage of the one-model approach is that models are easier to interpret. 
The predictive power of the influence of each variable on the uplift model can easily be evaluated. Xi is defined as a 
predictor variable and Y ∈ {0, 1} as a class variable whose behavior is to be modeled. The uplift score is calculated 
by subtracting the probability of being assigned to the control group ( PC ) from the probability of being assigned 
to the treatment group ( PT ). For the class variable, a 1 value indicates a positive outcome (success) while a 0 value 
indicates a negative outcome (failure). In the present study, success was defined as no recurrence of AF during 
the 1-year follow-up period, and failure was defined as recurrence of AF during the 1-year follow-up period.

The one-model approach uses class variable transformation. The model defines a target variable Z as follows:

Uplift score = PT (Y = 1|Xi)− PC(Y = 1|Xi)

https://clinicaltrials.gov/ct2/show/NCT03514693
https://clinicaltrials.gov/ct2/show/NCT03514693
https://pycaret.readthedocs.io/en/stable/index.html
https://pycaret.readthedocs.io/en/stable/index.html
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Using a probability of event Z = 1 ( P(Z = 1|Xi) ), the uplift score can be calculated as  follows2:

The transformation method above makes two assumptions. First, procedure allocation is independent of Xi. 
Second, the probability of being assigned to the treatment group is equal to the probability of being assigned to 
the control group. These assumptions hold in the present study because patients in the EARNEST-PVI trial were 
randomly allocated to the treatment group (PVI-plus) or control group (PVI-alone) in a 1:1 ratio.

We tested the following probabilistic classification models for uplift modeling: logistic regression, random 
forest, k-nearest neighbor algorithm, quadratic discriminant analysis, naive Bayes, adaptive boosting, decision 
tree, gradient boosting, linear discriminant analysis, radial basis kernel function of support vector machine, extra 
trees classifier, extreme gradient boosting, Gaussian process, light gradient boosting, multi-level perceptron, 
and category boosting.

To evaluate each model’s diagnostic performance, we used a Qini curve because we focused on the efficacy of 
treatment (PVI-plus). The model returns an uplift score for each individual, and the data are sorted in descending 
order. The Qini curve plots the incremental success, which is calculated by

where ST (ϕ) and SC(ϕ) are the number of cumulative successes in individuals with an uplift score ≥ ϕ in the 
treatment group and control group, respectively. NT (ϕ) and NC(ϕ) are the number of individuals with an uplift 
score ≥ ϕ in the treatment group and control group, respectively. In a graph on Qini curve, the horizontal axis 
shows ranking of uplift score sorted in descending order, not uplift score in itself, and the vertical axis shows 
cumulative uplift. Finally, the Qini coefficient is calculated by measuring the area between the Qini curve and the 
diagonal line. The diagonal line represents incremental success if the treatment is randomly allocated. A model 
with a higher Qini coefficient has higher diagnostic performance. The optimal cut-off value is the uplift score of 
an individual with a maximum score of ϕ , calculated by subtracting incremental success on Qinicurve(ϕ) from 
that on the diagonal line. After applying each model to the validation cohort of training dataset, we selected 
the one with the highest Qini coefficient as the best performing model. Gini importance was used to rank the 
importance of the features in the selected model where possible in the cohort of the training dataset for model 
 selection14, which is the default setting in the ‘PyCaret’ package. In addition, we used SHapley Additive exPlana-
tions (SHAP) methodology to speculate impact on model output according to each of the variables in training, 
model selection, and  test15. The SHAP approach enables the identification and prioritization of features that 
determine compound classification and activity prediction using any machine learning  model15.

We have included files to perform uplift score calculations in Supplementary information 3 (Supplementary 
materials).

Dataset
We divided the EARNEST-PVI trial (N = 497) dataset in a 1:1 ratio according to patients’ order of registration. 
The number of patients in the training and test datasets was 249 and 248, respectively. In addition, we further 
divided the training dataset in a 1:1 ratio according to patients’ order of registration: one dataset (N = 124) was 
used to train the models and the other (N = 125) was used to calculate Qini coefficients and determine the optimal 
uplift score cut-off predicted by the trained models. We subsequently selected the model with the highest Qini 
coefficient and used the optimal uplift score cut-off to divide the test dataset into two groups. A study flowchart 
is shown in Fig. 1.

Statistical analysis
Statistical analysis was conducted using Python 3.9.12 and R 4.0.5. We performed intention-to-treat analysis 
in this study. Continuous variables are presented as median with interquartile range (median [25th percentile, 
75th percentile]) and categorical data as counts and percentages. Demographic and procedural differences were 
analyzed using the Mann–Whitney U test for continuous variables, and Fisher’s exact test for categorical variables. 
In Tables 1, 2, 3 and 4, continuous values are shown as median with interquartile range (median [25th percentile, 
75th percentile]), and categorical values are shown as number with percentage of positive findings per number of 
patients studied (N (%)). P-values in Tables 1, and 2 were calculated by comparison between PVI-alone and PVI-
plus by uplift score ≥ 0.0124 and uplift score < 0.0124. P-value in Table 3 was calculated by comparison between 
uplift score ≥ 0.0124 and uplift score < 0.0124. P-value in Table 4 was calculated by comparison between PVI-
alone and PVI-plus by uplift score ≥ 0.0124 and uplift score < 0.0124. The cumulative event rate was calculated 
using the Kaplan–Meier method. The hazard ratio (HR), 95% confidence interval (CI), P-value, and P-value for 
interaction between the uplift score cut-off and treatment were calculated using the Cox proportional hazards 
model. The Kaplan–Meier method and the Cox proportional hazards model were applied to the test dataset, 
which was not included in process for training and model selection. The proportional hazards assumption of 
the treatment strategy for the primary endpoint was confirmed using Schoenfeld residuals (P > 0.05). P-values 
< 0.05 were used to indicate statistical significance.

Z =

{

1, if treatment group and success in procedure
1, if control group and failure in procedure
0, otherwise

PT (Y = 1|Xi)− PC(Y = 1|Xi) = 2P(Z = 1|Xi)− 1

Qini curve(ϕ) = ST (ϕ)−
SC(ϕ)NT (ϕ)

NC(ϕ)
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Results
Study subjects and feature importance
A total of 512 patients were enrolled between March 2016 and September 2017. After excluding nine patients for 
protocol violation, five for errors in the electronic data collection system, and one for withdrawal of consent, 497 
patients were analyzed in the EARNEST-PVI trial. Patient characteristic and outcome data in the training dataset 
used to train the models are shown in Table 1, and those used to plot the Qini curve are shown in Table 2. Qini 
curves of all models are shown in Fig. 2. We selected adaptive boosting to conduct predictions in the test dataset 
because this model showed the highest Qini coefficient among the 16 algorithms evaluated. Figure 3 shows the 
Gini importance of the top 13 variables. SHAP values are summarized in Supplementary information 1 (Supple-
mentary Figure S1). Creatinine had the highest impact on prediction in the best model. We summarized patient 
characteristics of the overall cohort in Table 3 and those stratified by treatment arms in Table 4. The optimal uplift 
score cut-off according to the Qini curve was 0.0124. We divided the test dataset according to an uplift score 
of 0.0124 to obtain two groups: uplift score ≥ 0.0124 group (N = 116) and uplift score < 0.0124 group (N = 132) 
(Table 5). As shown in Table 5, patients with uplift score ≥ 0.0124 were mostly female, had lower frequency of 
smoking history and sleep apnea syndrome, and had lower hemoglobin and brain natriuretic peptide (BNP) levels 
than those with uplift score < 0.0124. Patient data based on actual allocation of treatment in the EARNEST-PVI 
trial are shown in Table 6. Supplementary Table S3 shows combination of procedure in in the training dataset 
used to train models, Supplementary Table S4 shows combination of procedure in the training dataset used to 
plot Qini curves, Supplementary Table S5 shows combination of procedure in Uplift score ≥ 0.0124 group in the 
test dataset, and Supplementary Table S6 shows combination of procedure in Uplift score < 0.0124 group in the 
test dataset (Supplementary information 2).

Clinical endpoints
Figure 4 shows the results of Kaplan–Meier analysis for the primary endpoint in test dataset. Among patients 
with uplift score ≥ 0.0124, the event rate of recurrence of AF was significantly lower in those who received 
PVI-plus than those who received PVI-alone in the test dataset (PVI-plus [10/52, 19.2%] vs PVI-alone [26/64, 
40.6%], HR 0.40; 95% CI 0.19–0.84; P-value = 0.015). In contrast, among patients with uplift score < 0.0124, no 
significant differences were observed in the event rate of recurrence of AF between PVI-plus and PVI-alone in the 

Figure 1.  Study flow chart. PVI: pulmonary vein isolation.
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test dataset (PVI-plus [18/72, 25.0%] vs PVI-alone [13/60, 21.7%], HR 1.17; 95% CI 0.57–2.39; P-value: 0.661). 
There was a significant interaction between uplift score and treatment (P-value for interaction: 0.046) (Fig. 5).

Discussion
Main findings
Our study has revealed the utility of uplift modeling in identifying a subset of patients with persistent AF who 
would most benefit from extensive ablation. By Using an adaptive boosting model on data from the EARNEST-
PVI trial, we found that an extensive ablation strategy, such as linear ablation and/or CFAE ablation in addition 
to PVI, was efficacious in patients with uplift score ≥ 0.0124, but demonstrated similar efficacy to PVI-alone in 
those with uplift score < 0.0124. These results imply that calculating the uplift score using the 26 variables identi-
fied in this study (supplemental material) and stratifying patients based on an uplift score threshold of 0.0124 
may be a promising approach for selecting the most appropriate ablation strategy for patients with persistent AF.

Strength of this study
This study presents the initial evidence that uplift modeling via machine learning is a valuable tool for identifying 
patients with persistent atrial fibrillation who may benefit from extensive catheter ablation or for whom pulmo-
nary vein isolation-alone is adequate for rhythm control. Furthermore, it shows that an uplift score of 0.0124 
derived from our model is an effective threshold for distinguishing between those who will or will not benefit 
from extensive catheter ablation. Several randomized controlled trials have been unable to show the superiority of 
extensive catheter ablation strategies over PVI-alone in persistent AF  patients6,16. A meta-analysis on the efficacy 
of extensive catheter ablation, including CFAE and linear ablation, reported that there were no significant differ-
ences for maintaining sinus rhythm between PVI with extensive catheter ablation and PVI-alone17. Further, supe-
riority of PVI-plus over PVI-alone could not be established also in the EARNEST-PVI trial. These inconclusive 
results related to the superiority of PVI-plus over PVI-alone might be attributed to the heterogeneity of patients 
with persistent AF, and suggest the importance of administering the appropriate treatment to the appropriate 
patients among those with persistent AF. The present study proposes a novel, useful approach, which employs 
uplift modeling to stratify persistent AF patients into those who may benefit from extensive ablation and those 
who may not require more than PVI-alone, has the potential to reduce unnecessary costs and complications. 

Table 1.  Patient characteristics and outcomes in the training dataset used to train models.

PVI-alone PVI-plus P-value

N 63 61

Age 68.00 [60.00, 72.50] 65.00 [58.00, 72.00] 0.379

Female sex 15 (23.8) 18 (29.5) 0.544

Body mass index 24.24 [21.74, 26.87] 23.32 [21.63, 26.02] 0.284

Family history of atrial fibrillation 9 (14.3) 4 (6.6) 0.241

Long-standing persistent atrial fibrillation 13 (20.6) 15 (24.6) 0.670

Hypertension 41 (65.1) 34 (55.7) 0.359

Diabetes mellitus 7 (11.1) 13 (21.3) 0.147

Dyslipidemia 30 (47.6) 30 (49.2) > 0.999

Smoking history 46 (73.0) 37 (60.7) 0.182

Heart failure 12 (19.0) 12 (19.7) > 0.999

Dilated cardiomyopathy 0 (0.0) 0 (0.0) NA

Hypertrophic cardiomyopathy 0 (0.0) 1 (1.6) 0.492

Sick sinus syndrome 1 (1.6) 1 (1.6) > 0.999

Stroke or systemic thromboembolism 4 (6.3) 6 (9.8) 0.526

Sleep apnea syndrome 6 (9.5) 8 (13.1) 0.580

Thyroid disease 2 (3.2) 3 (4.9) 0.677

Chronic obstructive pulmonary disease 5 (7.9) 1 (1.6) 0.208

Liver disease 8 (12.7) 6 (9.8) 0.778

History of use of anti-arrhythmic drug 23 (36.5) 13 (21.3) 0.076

Hemoglobin 14.70 [13.35, 15.50] 14.20 [13.50, 14.90] 0.168

Brain type natriuretic peptide 143.65 [91.30, 200.45] 130.30 [86.47, 204.15] 0.958

Creatinine 0.88 [0.75, 0.97] 0.85 [0.77, 1.01] 0.697

C-reactive protein 0.10 [0.05, 0.13] 0.10 [0.08, 0.18] 0.243

Left ventricular ejection fraction 63.60 [59.88, 69.38] 63.37 [57.07, 66.39] 0.383

Left atrial diameter 41.00 [38.70, 44.00] 41.00 [37.10, 44.60] 0.670

Mitral regurgitation 0 (0.0) 0 (0.0) NA

Recurrence of atrial fibrillation 18 (28.6) 11 (18.0) 0.205
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Further prospective studies are needed to confirm the clinical applicability of this approach and the factors we 
have identified for determining appropriate catheter ablation strategies.

Stratification of persistent atrial fibrillation
This study is the first report to employ uplift modeling for identifying a particular subgroup of patients with 
persistent AF who may derive benefits from extensive ablation, such as linear ablation or CFAE ablation, in addi-
tion to PVI, to maintain sinus rhythm. Several previous investigations have reported predictors of AF recurrence 
after catheter ablation, regardless of extensive ablation, including left atrial size, type of AF, AF duration, female 
gender, and machine learning  models18–20. Nevertheless, only a few studies have been aimed at identifying a 
specific patient group that requires additional extensive ablation among those with persistent AF. We previously 
reported possible stratification by sex and DR-FLASH  score9,10. We observed that PVI-plus presented a lower 
risk of AF recurrence than PVI-alone in patients with a DR-FLASH score of > 3, suggesting that the DR-FLASH 
score is a valuable tool for identifying patients with persistent AF who will benefit from PVI-plus10. In this 
novel study, we utilized a novel machine learning approach to identify patients who may benefit from extensive 
ablation by testing 16 probabilistic classification models using uplift modeling with 26 clinical factors. Through 
adaptive boosting, we obtained a hazard ratio of 0.40 (95% CI 0.19–0.84) for PVI-plus compared to PVI-alone 
in patients with an uplift score ≥ 0.0124, which was lower than that observed in patients with DR-FLASH score 
> 3 (HR 0.45, 95% CI 0.28–0.72) in our previous  study10. Moreover, the clinical factors employed in this study 
can be non-invasively obtained via medical interview, blood examination, and transthoracic echocardiography. 
These results suggest that uplift modeling can be a valuable noninvasive tool to improve our ability to identify 
patients who require extensive ablation in addition to PVI among those with persistent AF. Nevertheless, further 
prospective studies may be warranted to assess the superior strategy between the DR-FLASH score and uplift 
modeling. Additionally, efforts to reduce the number of factors required for uplift modeling while maintaining 
discrimination power will be pivotal to enhance the practicality of this model in daily clinical practice. The uplift 
score is more difficult to implement in the clinical setting because our uplift modeling requires 26 variables and 
a substantial technical skillset. Nevertheless, the reason why we performed uplift modeling is because we were 
motivated to comprehensively analyze the dataset of the EARNEST-PVI trial. The present study on stratification 
with uplift modeling is data-driven research, whereas the previous study on stratification with DR-FLASH score 
is theory-driven research. Although hazard ratios in both studies appear almost identical in result, stratification 

Table 2.  Patient characteristics and outcomes in the training dataset used to plot Qini curves.

PVI-alone PVI-plus P-value

N 62 63

Age 66.00 [59.00, 72.75] 67.00 [60.00, 73.00] 0.711

Female sex 16 (25.8) 18 (28.6) 0.841

Body mass index 24.71 [22.24, 27.03] 24.77 [21.68, 26.40] 0.853

Family history of atrial fibrillation 5 (8.1) 7 (11.1) 0.763

Long-standing persistent atrial fibrillation 11 (17.7) 17 (27.0) 0.284

Hypertension 34 (54.8) 37 (58.7) 0.720

Diabetes mellitus 11 (17.7) 10 (15.9) 0.815

Dyslipidemia 32 (51.6) 29 (46.0) 0.593

Smoking history 39 (62.9) 38 (60.3) 0.855

Heart failure 13 (21.0) 14 (22.2) > 0.999

Dilated cardiomyopathy 2 (3.2) 0 (0.0) 0.244

Hypertrophic cardiomyopathy 0 (0.0) 1 (1.6) > 0.999

Sick sinus syndrome 1 (1.6) 1 (1.6) > 0.999

Stroke or systemic thromboembolism 4 (6.5) 9 (14.3) 0.241

Sleep apnea syndrome 9 (14.5) 6 (9.5) 0.423

Thyroid disease 2 (3.2) 6 (9.5) 0.273

Chronic obstructive pulmonary disease 3 (4.8) 2 (3.2) 0.680

Liver disease 2 (3.2) 3 (4.8) > 0.999

History of use of anti-arrhythmic drug 13 (21.0) 13 (20.6) > 0.999

Hemoglobin 14.80 [14.03, 15.60] 14.20 [13.45, 14.90] 0.003

Brain type natriuretic peptide 132.20 [91.50, 208.10] 162.30 [104.70, 239.00] 0.258

Creatinine 0.89 [0.79, 0.99] 0.88 [0.76, 0.96] 0.582

C-reactive protein 0.10 [0.07, 0.19] 0.10 [0.07, 0.19] 0.924

Left ventricular ejection fraction 62.39 [55.04, 67.48] 64.04 [56.61, 68.61] 0.498

Left atrial diameter 41.60 [40.00, 44.20] 43.20 [39.90, 47.00] 0.104

Mitral regurgitation 0 (0.0) 4 (6.3) 0.119

Recurrence of atrial fibrillation 19 (30.6) 12 (19.0) 0.151
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by the uplift modeling was more accurate than by the DR-FLASH score. It is meaningful to reveal usefulness of 
uplift modeling for strictly selecting a catheter ablation strategy.

Characteristics of patients with high uplift score
The clinical factors that contribute to a high uplift score using an adaptive boosting strategy offer insight into 
the characteristics of patients who would benefit from extensive ablation. Our adaptive boosting approach 
identified serum creatinine level, left ventricular ejection fraction, hemoglobin level, BNP, C-reactive protein 
(CRP), left atrial diameter, smoking history, body mass index, history of heart failure and sleep apnea syndrome 
as the top ten factors with high feature importance (Fig. 3). Although all of these factors have already been 
reported to be predictors of AF recurrence after catheter  ablation21,22, we were unable to determine the exact 
relationship between these variables and the uplift score due to the non-linear nature of machine learning. We 
therefore conducted a comparison of patient characteristics between those who had an uplift score ≥ 0.0124 
and those who had a score < 0.0124 to assess the effect of each factor on the uplift score (Table 5). The analysis 
revealed that patients with an uplift score greater ≥ 0.0124 were predominantly female, had lower frequencies 
of smoking history and sleep apnea syndrome, and had lower hemoglobin and BNP levels, as well as larger left 
atrial diameters (Table 5). These observations suggest that these features may contribute to a high uplift score. 
Furthermore, given that female  sex23, lower  hemoglobin24 and larger left atrial  size25,26 are already known to be 
associated with arrhythmogenic substrate, which can cause AF recurrence, these findings suggest that patients 
with arrhythmogenic substrate would benefit from extensive ablation. In contrast, patients with high uplift score 
also had lower frequencies of smoking  history27 and sleep  apnea28, and lower BNP  levels29, which are generally 
considered to be associated with lower risk of recurrence after catheter ablation. While the true reasons for this 
discrepancy are unknown, one possible explanation is that machine learning using an adaptive boosting strategy 
led to the identification of patients who would benefit from extensive ablation based on different criteria from 
those previously reported, such as the presence of arrhythmogenic substrate. Another possible explanation is 
that smoking, sleep apnea and high BNP are less strongly associated with arrhythmogenic substrate than factors 
like female sex, lower hemoglobin and larger atrial size. Given that uplift modeling is used to identify patients 
who would benefit the most from an intervention, rather than to predict recurrence of an event, these results 
suggest that extensive ablation may not be effective at all for patients with smoking, sleep apnea and high BNP. 
Nevertheless, these findings suggest that the uplift score and machine learning may be useful for identifying a 

Table 3.  Patient characteristics in three datasets. *Comparison among three groups.

Training dataset used to train models Training dataset used to plot Qini curves Test dataset *P-value

N 124 125 248

Age 66.50 [58.00, 72.00] 66.00 [59.00, 73.00] 67.00 [59.00, 72.00] 0.886

Female sex 33 (26.6) 34 (27.2) 54 (21.8) 0.399

Body mass index 23.98 [21.60, 26.82] 24.73 [22.13, 26.71] 24.34 [22.29, 26.46] 0.462

Family history of atrial fibrillation 13 (10.5) 12 (9.6) 13 (5.2) 0.112

Long-standing persistent atrial fibrillation 28 (22.6) 28 (22.4) 68 (27.4) 0.468

Hypertension 75 (60.5) 71 (56.8) 153 (61.7) 0.661

Diabetes mellitus 20 (16.1) 21 (16.8) 44 (17.7) 0.951

Dyslipidemia 60 (48.4) 61 (48.8) 106 (42.7) 0.430

Smoking history 83 (66.9) 77 (61.6) 142 (57.3) 0.192

Heart failure 24 (19.4) 27 (21.6) 41 (16.5) 0.465

Dilated cardiomyopathy 0 (0.0) 2 (1.6) 0 (0.0) 0.125

Hypertrophic cardiomyopathy 1 (0.8) 1 (0.8) 5 (2.0) 0.689

Sick sinus syndrome 2 (1.6) 2 (1.6) 3 (1.2) 1.000

Stroke or systemic thromboembolism 10 (8.1) 13 (10.4) 16 (6.5) 0.408

Sleep apnea syndrome 14 (11.3) 15 (12.0) 24 (9.7) 0.755

Thyroid disease 5 (4.0) 8 (6.4) 11 (4.4) 0.658

Chronic obstructive pulmonary disease 6 (4.8) 5 (4.0) 11 (4.4) 0.960

Liver disease 14 (11.3) 5 (4.0) 9 (3.6) 0.014

History of use of anti-arrhythmic drug 36 (29.0) 26 (20.8) 56 (22.6) 0.269

Hemoglobin 14.35 [13.47, 15.12] 14.50 [13.70, 15.30] 14.80 [13.80, 15.60] 0.036

Brain type natriuretic peptide 137.95 [87.65, 203.62] 148.75 [100.05, 237.62] 145.90 [99.25, 224.20] 0.465

Creatinine 0.86 [0.76, 1.00] 0.88 [0.78, 0.98] 0.88 [0.80, 1.01] 0.359

C-reactive protein 0.10 [0.06, 0.13] 0.10 [0.07, 0.20] 0.10 [0.06, 0.20] 0.602

Left ventricular ejection fraction 63.49 [59.34, 67.58] 63.27 [56.00, 68.03] 63.69 [57.64, 68.98] 0.654

Left atrial diameter 41.00 [38.00, 44.00] 42.30 [39.95, 46.00] 43.00 [39.00, 46.00] 0.006

Mitral regurgitation 0 (0.0) 4 (3.2) 6 (2.4) 0.145

Recurrence of atrial fibrillation 29 (23.4) 31 (24.8) 67 (27.0) 0.746
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specific population that would benefit from extensive ablation, and that there may exist previously unrecognized 
criteria or algorithms that could enhance our ability to identify such a population.

Limitations
Several limitations exist in the current study. Firstly, the techniques employed for additional left atrial ablation 
in the PVI-plus category of the EARNEST-PVI trial were not pre-specified, resulting in heterogeneity. The trial 
was initially designed to investigate the non-inferiority of PVI-alone against any extensive catheter ablation for 
patients with persistent AF. Secondly, the study was conducted solely in an East Asian population, thus limiting 
the generalizability of the findings to other ethnic groups. Thirdly, the primary endpoint, recurrence of AF, may 
have been underestimated since only regular 12-lead ECG and Holter ECG were employed at each visit, while 
event recorders or implantable devices were not utilized to detect recurrence. Fourth, the uplift score is difficult 
to implement in the clinical setting because our uplift modeling requires 26 variables plus an advanced degree to 
calculate. Finally, all the included patients underwent their first procedure and therefore results are not applicable 
to redo procedures as is so often the case with persistent AF patients.

Table 4.  Patient characteristics in three datasets for each treatment branch. *Comparison among six groups.

Training Validation Test

P-value*PVI-alone PVI-plus PVI-alone PVI-plus PVI-alone PVI-plus

N 63 61 62 63 124 124

Age 68.00 [60.00, 72.50] 65.00 [58.00, 72.00] 66.00 [59.00, 72.75] 67.00 [60.00, 73.00] 68.00 [60.75, 73.00] 66.00 [58.00, 71.00] 0.421

Female sex 15 (23.8) 18 (29.5) 16 (25.8) 18 (28.6) 32 (25.8) 22 (17.7) 0.426

Body mass index 24.24 [21.74, 26.87] 23.32 [21.63, 26.02] 24.71 [22.24, 27.03] 24.77 [21.68, 26.40] 24.40 [22.14, 26.81] 24.21 [22.34, 26.43] 0.709

Family history of atrial 
fibrillation 9 (14.3) 4 (6.6) 5 (8.1) 7 (11.1) 9 (7.3) 4 (3.2) 0.110

Long-standing persis-
tent atrial fibrillation 13 (20.6) 15 (24.6) 11 (17.7) 17 (27.0) 35 (28.2) 33 (26.6) 0.648

Hypertension 41 (65.1) 34 (55.7) 34 (54.8) 37 (58.7) 75 (60.5) 78 (62.9) 0.803

Diabetes mellitus 7 (11.1) 13 (21.3) 11 (17.7) 10 (15.9) 20 (16.1) 24 (19.4) 0.702

Dyslipidemia 30 (47.6) 30 (49.2) 32 (51.6) 29 (46.0) 50 (40.3) 56 (45.2) 0.740

Smoking history 46 (73.0) 37 (60.7) 39 (62.9) 38 (60.3) 68 (54.8) 74 (59.7) 0.302

Heart failure 12 (19.0) 12 (19.7) 13 (21.0) 14 (22.2) 21 (16.9) 20 (16.1) 0.890

Dilated cardiomyo-
pathy 0 (0.0) 0 (0.0) 2 (3.2) 0 (0.0) 0 (0.0) 0 (0.0) 0.030

Hypertrophic cardio-
myopathy 0 (0.0) 1 (1.6) 0 (0.0) 1 (1.6) 2 (1.6) 3 (2.4) 0.849

Sick sinus syndrome 1 (1.6) 1 (1.6) 1 (1.6) 1 (1.6) 1 (0.8) 2 (1.6) 0.990

Stroke or systemic 
thromboembolism 4 (6.3) 6 (9.8) 4 (6.5) 9 (14.3) 8 (6.5) 8 (6.5) 0.468

Sleep apnea syndrome 6 (9.5) 8 (13.1) 9 (14.5) 6 (9.5) 8 (6.5) 16 (12.9) 0.442

Thyroid disease 2 (3.2) 3 (4.9) 2 (3.2) 6 (9.5) 6 (4.8) 5 (4.0) 0.638

Chronic obstructive 
pulmonary disease 5 (7.9) 1 (1.6) 3 (4.8) 2 (3.2) 6 (4.8) 5 (4.0) 0.690

Liver disease 8 (12.7) 6 (9.8) 2 (3.2) 3 (4.8) 6 (4.8) 3 (2.4) 0.057

History of use of anti-
arrhythmic drug 23 (36.5) 13 (21.3) 13 (21.0) 13 (20.6) 31 (25.0) 25 (20.2) 0.223

Hemoglobin 14.70 [13.35, 15.50] 14.20 [13.50, 14.90] 14.80 [14.03, 15.60] 14.20 [13.45, 14.90] 14.70 [13.57, 15.60] 14.90 [13.90, 15.60] 0.003

Brain type natriuretic 
peptide 143.65 [91.30, 200.45] 130.30 [86.47, 204.15] 132.20 [91.50, 208.10] 162.30 [104.70, 

239.00] 142.70 [98.90, 223.60] 146.20 [101.20, 
223.58] 0.670

Creatinine 0.88 [0.75, 0.97] 0.85 [0.77, 1.01] 0.89 [0.79, 0.99] 0.88 [0.76, 0.96] 0.86 [0.78, 1.03] 0.90 [0.82, 1.01] 0.579

C-reactive protein 0.10 [0.05, 0.13] 0.10 [0.08, 0.18] 0.10 [0.07, 0.19] 0.10 [0.07, 0.19] 0.10 [0.06, 0.20] 0.10 [0.06, 0.16] 0.758

Left ventricular ejec-
tion fraction 63.60 [59.88, 69.38] 63.37 [57.07, 66.39] 62.39 [55.04, 67.48] 64.04 [56.61, 68.61] 64.70 [59.88, 69.65] 63.11 [55.83, 67.71] 0.361

Left atrial diameter 41.00 [38.70, 44.00] 41.00 [37.10, 44.60] 41.60 [40.00, 44.20] 43.20 [39.90, 47.00] 43.00 [39.35, 46.00] 43.00 [39.00, 46.00] 0.023

Mitral regurgitation 0 (0.0) 0 (0.0) 0 (0.0) 4 (6.3) 2 (1.6) 4 (3.2) 0.087

Recurrence of atrial 
fibrillation 18 (28.6) 11 (18.0) 19 (30.6) 12 (19.0) 39 (31.5) 28 (22.6) 0.209
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Conclusions
We demonstrated that the application of machine learning using uplift modeling can be useful for identifying 
a specific subgroup of patients with persistent AF who would most benefit from an extensive ablation strategy, 
comprising linear ablation and/or CFAE ablation in addition to PVI. An uplift score of 0.0124, calculated using 
our model, may be a useful threshold for stratifying patients with persistent AF who do and do not require 
extensive ablation in addition to PVI. However, additional prospective investigations are necessary to determine 
the efficacy of this approach.

Figure 2.  Qini curves of all models. The horizontal axis shows ranking of uplift score sorted in descending 
order, not uplift score in itself, and the vertical axis shows cumulative uplift.
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Figure 3.  Feature importance of the top 13 variables.

Table 5.  Patient characteristics in the test dataset.

Uplift score ≥ 0.0124 Uplift score < 0.0124 P-value

n 116 132

Age 68.00 [59.75, 73.00] 66.00 [59.00, 70.00] 0.393

Female sex 37 (31.9) 17 (12.9) < 0.001

Body mass index 24.17 [22.29, 25.76] 24.45 [22.30, 27.15] 0.305

Family history of atrial fibrillation 6 (5.2) 7 (5.3) > 0.999

Long-standing persistent atrial fibrillation 35 (30.2) 33 (25.0) 0.394

Hypertension 75 (64.7) 78 (59.1) 0.432

Diabetes mellitus 20 (17.2) 24 (18.2) 0.869

Dyslipidemia 48 (41.4) 58 (43.9) 0.701

Smoking history 41 (35.3) 101 (76.5) < 0.001

Heart failure 24 (20.7) 17 (12.9) 0.123

Dilated cardiomyopathy 0 (0.0) 0 (0.0) NA

Hypertrophic cardiomyopathy 2 (1.7) 3 (2.3) > 0.999

Sick sinus syndrome 3 (2.6) 0 (0.0) 0.101

Stroke or systemic thromboembolism 9 (7.8) 7 (5.3) 0.451

Sleep apnea syndrome 3 (2.6) 21 (15.9) < 0.001

Thyroid disease 4 (3.4) 7 (5.3) 0.549

Chronic obstructive pulmonary disease 6 (5.2) 5 (3.8) 0.759

Liver disease 2 (1.7) 7 (5.3) 0.180

History of use of anti-arrhythmic drug 22 19.0) 34 (25.8) 0.225

Hemoglobin 14.40 [13.40, 15.10] 15.20 [14.38, 16.00] < 0.001

Brain type natriuretic peptide 138.15 [90.62, 178.90] 152.90 [103.20, 252.50] 0.017

Creatinine 0.85 [0.75, 1.05] 0.90 [0.82, 0.98] 0.199

C-reactive protein 0.10 [0.06, 0.19] 0.10 [0.06, 0.20] 0.488

Left ventricular ejection fraction 63.87 [56.63, 71.16] 63.27 [58.98, 68.69] 0.950

Left atrial diameter 44.00 [39.00, 46.40] 42.45 [39.58, 45.00] 0.063

Mitral regurgitation 5 (4.3) 1 (0.8) 0.101

Recurrence of atrial fibrillation 31 (23.5) 36 (31.0) 0.199
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Table 6.  Patient characteristics in the test dataset according to uplift score and allocation of procedure.

Uplift score ≥ 0.0124 Uplift score < 0.0124

PVI-alone PVI-plus P-value PVI-alone PVI-plus P-value

n 64 52 60 72

Age 69.00 [60.75, 73.00] 66.50 [57.50, 73.00] 0.432 67.00 [60.75, 73.00] 65.50 [58.75, 70.00] 0.069

Female sex 22 (34.4) 15 (28.8) 0.554 10 (16.7) 7 (9.7) 0.299

Body mass index 24.42 [22.16, 25.81] 23.98 [22.34, 25.06] 0.585 24.37 [22.12, 27.49] 24.52 [22.40, 26.50] 0.996

Family history of 
atrial fibrillation 4 (6.2) 2 (3.8) 0.690 5 (8.3) 2 (2.8) 0.244

Long-standing persis-
tent atrial fibrillation 20 (31.2) 15 (28.8) 0.840 15 (25.0) 18 (25.0) > 0.999

Hypertension 42 (65.6) 33 (63.5) 0.847 33 (55.0) 45 (62.5) 0.477

Diabetes mellitus 8 (12.5) 12 (23.1) 0.147 12 (20.0) 12 (16.7) 0.656

Dyslipidemia 23 (35.9) 25 (48.1) 0.255 27 (45.0) 31 (43.1) 0.861

Smoking history 23 (35.9) 18 (34.6) > 0.999 45 (75.0) 56 (77.8) 0.837

Heart failure 11 (17.2) 13 (25.0) 0.360 10 (16.7) 7 (9.7) 0.299

Dilated cardiomyo-
pathy 0 (0.0) 0 (0.0) NA 0 (0.0) 0 (0.0) NA

Hypertrophic cardio-
myopathy 0 (0.0) 2 (3.8) 0.199 2 (3.3) 1 (1.4) 0.591

Sick sinus syndrome 1 (1.6) 2 (3.8) 0.586 0 (0.0) 0 (0.0) NA

Stroke or systemic 
thromboembolism 5 (7.8) 4 (7.7) > 0.999 3 (5.0) 4 (5.6) > 0.999

Sleep apnea syndrome 1 (1.6) 2 (3.8) 0.586 7 (11.7) 14 (19.4) 0.243

Thyroid disease 1 (1.6) 3 (5.8) 0.324 5 (8.3) 2 (2.8) 0.244

Chronic obstructive 
pulmonary disease 4 (6.2) 2 (3.8) 0.690 2 (3.3) 3 (4.2) > 0.999

Liver disease 2 (3.1) 0 (0.0) 0.501 4 (6.7) 3 (4.2) 0.701

History of use of anti-
arrhythmic drug 14 (21.9) 8 (15.4) 0.477 17 (28.3) 17 (23.6) 0.555

Hemoglobin 14.20 [13.20, 15.12] 14.60 [13.60, 15.10] 0.543 15.40 [14.35, 16.00] 15.00 [14.38, 16.00] 0.638

Brain type natriuretic 
peptide 132.45 [90.88, 169.28] 143.35 [88.78, 218.88] 0.625 151.90 [101.70, 

249.60]
155.40 [105.75, 
252.68] 0.902

Creatinine 0.82 [0.71, 1.05] 0.90 [0.78, 1.06] 0.101 0.90 [0.81, 1.03] 0.90 [0.83, 0.97] 0.633

C-reactive protein 0.10 [0.05, 0.14] 0.10 [0.08, 0.22] 0.158 0.10 [0.06, 0.21] 0.08 [0.05, 0.13] 0.048

Left ventricular ejec-
tion fraction 65.50 [59.90, 71.26] 62.39 [52.47, 68.76] 0.064 63.22 [59.72, 68.95] 63.27 [57.63, 67.51] 0.499

Left atrial diameter 45.00 [39.00, 47.00] 43.00 [39.00, 46.00] 0.356 42.45 [40.00, 45.00] 42.40 [39.00, 45.00] 0.965

Mitral regurgitation 1 (1.6) 4 (7.7) 0.172 1 (1.7) 0 (0.0) 0.455

Recurrence of atrial 
fibrillation 26 (40.6) 10 (19.2) 0.016 13 (21.7) 18 (25.0) 0.685

Figure 4.  Kaplan–Meier analysis with a log-rank test of recurrence of atrial fibrillation in patients with uplift 
score ≥ 0.0124 (left) and uplift score < 0.0124 (right) in test dataset. PVI: pulmonary vein isolation.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2634  | https://doi.org/10.1038/s41598-024-52976-7

www.nature.com/scientificreports/

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to institutional 
review board restrictions, but are available from the corresponding author on reasonable request.
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