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Unsupervised analysis of whole 
transcriptome data from human 
pluripotent stem cells cardiac 
differentiation
Sofia P. Agostinho 1,2,3,4*, Mariana A. Branco 1,2,3,5, Diogo E. S. Nogueira 1,2,3, 
Maria Margarida Diogo 1,2,3, Joaquim M. S. Cabral 1,2,3, Ana L. N. Fred 1,4 & 
Carlos A. V. Rodrigues 1,2,3

The main objective of the present work was to highlight differences and similarities in gene expression 
patterns between different pluripotent stem cell cardiac differentiation protocols, using a workflow 
based on unsupervised machine learning algorithms to analyse the transcriptome of cells cultured 
as a 2D monolayer or as 3D aggregates. This unsupervised approach effectively allowed to portray 
the transcriptomic changes that occurred throughout the differentiation processes, with a visual 
representation of the entire transcriptome. The results allowed to corroborate previously reported 
data and also to unveil new gene expression patterns. In particular, it was possible to identify a 
correlation between low cardiomyocyte differentiation efficiencies and the early expression of a set 
of non-mesodermal genes, which can be further explored as predictive markers of differentiation 
efficiency. The workflow here developed can also be applied to analyse other stem cell differentiation 
transcriptomic datasets, envisaging future clinical implementation of cellular therapies.

Cardiovascular diseases are, according to the World Health Organization, the leading cause of death in the 
world, representing 32% of all deaths in 20191. Although the heart is composed of a variety of cell types, its 
functional units are the cardiomyocytes which perform a coordinate contraction, ultimately allowing the blood 
to be pumped for the entire body. When myocardial tissue is damaged, as in the case of myocardial infarction, 
there is substantial cardiomyocyte (CM) death. As adult CMs are unable to proliferate2, the damaged tissue is 
replaced by fibroblasts that will form scar tissue and impair the normal contractility of the heart. Additionally, 
unlike in other organs, there is no strong evidence that a pool of CM progenitor cells, capable of replacing the 
lost CMs, exists in the heart3 making the regenerative capacity of this organ residual.

In this scenario, human Pluripotent Stem Cells (hPSCs) are a promising tool to generate human CMs for cell 
replacement therapies. hPSCs not only have the capacity to extensively self-renew but also can hypothetically 
be differentiated into any cell type. Several protocols were already reported to successfully promote differentia-
tion of hPSC into CMs4. However, there are still major challenges limiting the widespread application of these 
cells, such as the upscaling of the human induced Pluripotent Stem Cell (hiPSC) differentiation process, the lack 
of reproducibility, or the still limited understanding of the biological mechanisms involved in hiPSC cardiac 
differentiation.

In this regard, Omics sciences can bring a wealth of new information that may allow exploring hidden lay-
ers of the mechanisms behind the differentiation process. In fact, over the years, the study of the human cell’s 
transcriptome has allowed a significantly better understanding of the mechanisms behind the cellular processes5, 
different tissue gene expression6, and characterization of disease mechanisms7. Transcriptomics analysis rely on 
techniques such as RNA sequencing (RNA-seq), which normally generate information from tens of thousands 
of expressed genes that cannot be analysed one by one. The high dimensionality of this type of data requires 
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appropriate bioinformatics tools and mathematical algorithms to uncover its whole potential. In particular, there 
is the need to develop new methodologies to analyse large datasets and to readily portray differences and simi-
larities in gene expression patterns between a high number of samples without the need for an a priori selection 
of data. Unsupervised machine learning methods allow the extraction of patterns from large data sets with the 
potential of unveiling information that could hardly be obtained with other methodologies. In fact, unsupervised 
machine learning has been applied to group genes according to their expression pattern since the beginning of 
microarray experiments. The three most used methods to cluster gene expression data are Hierarchical Cluster-
ing (HC), K-means and Self-Organizing Map (SOM), by this order8,9. Clustering allows the division of a large 
set of genes into smaller groups and then to infer biologically relevant information such as co-expression and 
co-regulation patterns, or even the functional role of unknown genes8.

The primary objective of this work was to use a simple unsupervised workflow to analyse and compare, from 
a whole transcriptome point of view, RNA-seq data from stem cells undergoing cardiac differentiation. The 
combination of SOM and K-Means algorithms had previously been shown to be an effective strategy to portray 
differences and similarities in gene expression patterns10 and, as such, these algorithms were here used to analyze, 
in an unsupervised way, the differentiation processes. In a recent work by Branco and colleagues11 a new strategy 
for hiPSCs differentiation into CMs as 3D aggregates was proposed. A comparative transcriptomic analysis, using 
RNA-seq, was performed between this new method and the standard 2D protocol12, revealing that the 3D hiPSC 
expansion and subsequent cardiac differentiation contributed to a faster cardiac commitment and an earlier CM 
structural and functional maturation. Throughout these experiments, approximately 1700 genes were found to 
be significantly expressed. However, the original transcriptomics analysis focused on a selected subset of 249 
cardiac-related genes. Although these genes are probably the most relevant for the analysis performed, there is 
still much unexplored information in this dataset that can deepen our understanding of the cardiac differen-
tiation process. The workflow here described was therefore applied to this RNA-seq dataset to further extend 
the analysis previously made11. The method allowed to visualize the gene expression dynamics throughout the 
cardiac differentiation process and to identify differences between the 2D and 3D protocols. Remarkably, our 
analysis allowed to correlate lower differentiation efficiencies with the early expression of a set of genes mostly 
associated with endoderm differentiation.

Results
Methodology overview and dataset description
A workflow was designed to combine multiple unsupervised machine learning methods for the analysis of the 
whole transcriptome of samples obtained during hiPSC cardiac differentiation experiments (Fig. 1A). The final 
goal was to visualize expression patterns of the complete gene set and to identify, in an unbiased way, the most 
relevant genes for the analysis of the differentiation process. The complete description of the methodology can 
be found in the detailed methods section.

After pre-processing the raw data, HC was used on the samples’ dimension. Hierarchical Agglomerative 
Clustering algorithms organize data into a hierarchical structure, known as a dendrogram. In the beginning, 
each gene is considered a cluster and, progressively, the algorithms join the most similar clusters until a single 
cluster, containing all the genes, is obtained. Distinct clustering methods are available, based on the dissimilarity 
measure between samples and on the definition of dissimilarity between clusters (eg. single-link, average-link or 
complete-link)13. A data partition is obtained by cutting the dendrogram at a specific threshold. In this workflow 
9 combinations of metrics (Euclidean, Cosine and Pearson correlation-based distance) and methods (single-link, 
average-link and complete-link) were tested.

In parallel, SOM, a model-based algorithm, was applied to the genes to portray gene expression landscapes 
for every sample. SOM starts by randomly choosing a set of k  centroids which are linked in a grid structure and 
are called nodes14. At each iteration, one gene is selected and assigned to the most similar node. This node, and 
its neighbours, will be updated to become more similar to the input gene. As the number of iterations increases, 
the neighbourhood decreases, and eventually, the nodes become stable. This process of node and neighbourhood 
updating will cause near nodes in the grid structure to be more similar than those in far positions of the grid. 
At this point, all genes are mapped to the most similar node and all nodes are, for the last time, updated to the 
average of all genes mapped to it forming an entity here called metagene. This final step is what allows for the 
creation of a topology representation of the input genes’ expression patterns and directly comparing different 
samples. Among the SOM implementations used to study transcriptomic data, the OposSOM package15 has been 
widely used and has proved to be a versatile tool in different contexts16–18 and therefore was the one selected.

The next step consisted of using the K-means algorithm for gene selection and to form biologically relevant 
gene clusters through the differentiation and between culture methods. The K-means algorithm is a partitional 
clustering method that subdivides the genes into a predefined number of k  clusters13. Starting with k  centroids 
randomly chosen from the gene set, the algorithm iterates between a partitioning step, which consists in assigning 
genes to the cluster corresponding to the nearest centroid, and a centroid update step, which is the computation 
of the average of the genes in each cluster, until a stable partition is obtained.

After this step, other biological analyses were made, such as Gene Set Enrichment analysis and Gene Ontol-
ogy over-representation. Lastly, Hierarchical Bi-Clustering (HBC) was performed simultaneously on the genes 
and samples’ dimensions. HBC is a method based on HC which is widely used for gene expression data. This 
method simultaneously performs clustering over the samples and the genes, providing a final representation, 
usually as a heatmap with the samples’ and genes’ dendrograms on the top and side, allowing the visualisation 
of gene expression patterns for different samples.

As previously mentioned, the RNA-seq data from Branco et al.11, which is available through Gene Expression 
Omnibus19 (GEO) Accession Number GSE116574, was reanalysed in this work. This data set is composed of 
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samples from cardiac differentiation using the temporal modulation of the Wnt signalling pathway under a stand-
ard 2D condition and as 3D aggregates. Briefly, after a short hiPSC expansion phase (2–3 days), differentiation 
is induced at day 0 through the activation of the Wnt signalling pathway, with the small molecule CHIR99021. 
The cells were kept in an RPMI medium supplemented with B-27 without insulin. From day 3 to day 5 the Wnt 
pathway was inhibited by supplementing the medium with the IWP-4 small molecule. From day 7 onwards the 
culture medium was changed to RPMI medium with insulin.

For both conditions, samples were collected at ten different time points, as represented in Fig. 1B. Each con-
dition has 3 replicates (except day 12 of the 2D differentiation that was performed in duplicate) which together 
with the hiPSCs seeding samples from which each both 2D and 3D differentiation started, accounts for a total 
of 62 samples.

Hierarchical agglomerative clustering to establish a whole transcriptome sample hierarchy, 
replicate variability and information loss
In the previous work by Branco et al.11, differential expression analysis between the 2D and 3D differentiation 
protocols and culture days was made using a set of 249 cardiac-related genes. Considering that the relationship 
between samples, based on the entire transcriptome, is not yet known and that differential expression analysis 
of such high number of genes is too laborious, hierarchical clustering (HC) was used to organize and distinguish 
groups of similar samples as well as to establish the overall hierarchy created with all the samples.

We started by using HC to generate dendrograms considering the average of the replicates for each time 
point and the whole gene set, as shown in Fig. 2A. The dendrogram reveals a clear separation of data into two 
main clusters, one containing samples until day 5 (orange cluster) and another gathering samples from day 7 
(green cluster).

By analysing the dendrogram in more detail it was possible to see that the hiPSCs sample is more similar to 
the 2D day 0 sample than to 3D day 0, which was already noted before11, and that day 1 samples are quite similar 
between culture conditions. Days 3 and 5 group first according to the differentiation protocol (2D or 3D) and then 
cluster with the previous samples (days 0 and 1). The green cluster is organized temporally, but with complete 

Figure 1.   Methodology overview and dataset description (A) Overview of the proposed workflow, (B) 
Overview of the hiPSC cardiac differentiation protocols and the time points analysed by RNA-seq in the Branco 
et al.11 data set.
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Figure 2.   HC to establish a whole transcriptome sample hierarchy, replicate variability and information loss 
(A, B) Dendrograms considering the average of the replicates for each time point, (A) considering the whole 
geneset and (B) considering the subset of cardiac-related geneset selected by Branco et al.11. Samples are labelled 
according to [Differentiation protocol_Day]. (C) Dendrogram considering each sample and the whole geneset. 
Samples are labelled according to [Differentiation protocol_Day_Replicate] and marked with colours according 
to the protocol and replicate (D) PC1vs PC2 with all samples from day 0 to 20 and coloured according to the 
protocol and replicate (colour codes: turquoise—2D replicate 1, orange—2D replicate 2, purple—2D replicate 3, 
pink—3D replicate 1, green—3D replicate 2, yellow—3D replicate 3).
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segregation between 2D and 3D samples. This segregation between 2D and 3D samples is an indication that the 
culture formats are diverging in gene expression patterns. For both differentiation protocols, there is a cluster 
shift on day 7 possibly associated with IWP4 supplementation, which promoted cardiac specification and, con-
sequently, a major change in gene expression patterns. Moreover, day 7 samples are isolated from the rest of the 
cluster which can also be hypothesised to happen due to the change to an insulin-containing medium afterwards.

The same HC methodology was followed considering only the subset of cardiac-related genes selected in 
the previous work by Branco et al.11. As shown in Fig. 2B, two clusters were also generated, divided by day 7, 
but, in contrast to the results obtained with the whole gene set, in the cluster with the early samples (orange), 
days 3 and 5 are not arranged according to the differentiation protocol but temporarily, which is an indication 
that considering the subset of genes here used, the samples from the same day are more similar to each other 
regardless of the culture format. Similarly, in the green cluster, day 7 samples are grouped which did not occur 
considering the entire gene set. Moreover, the remaining 3D samples form a subcluster, just then merged with 
the 2D samples. This hierarchy may suggest that 3D samples are at a later stage of the differentiation, as far as the 
cardiac-related genes are concerned. These differences confirm that there is information loss when considering 
such a small amount of genes.

In the previous examples, the average of the time point replicates was used to generate the dendrograms. 
However, since variability between replicates is commonly observed in hiPSC differentiation experiments, a 
dendrogram was generated with each replicate individually plotted (Fig. 2C). Despite the increased visual com-
plexity of the dendrogram, two clusters divided by day 7 are obtained, increasing evidence that between days 5 
and 7 major shifts in the transcriptome are seen and the impact of the Wnt signalling pathway inhibition can be 
advanced as the major driver for the transcriptional changes occurring during this differentiation.

Analysing the orange cluster, it is possible to observe that the replicate samples from the initial time points 
are similar, but from day 3 onwards, different time points and protocols are interspersed, probably representing 
the gradual increase in variability as the differentiation progresses. On the green cluster, there is still a separation 
between 2D and 3D samples but not directly into two sub-clusters, as in Fig. 2A, being no longer possible to create 
clusters with all samples from each differentiation method. With a closer look, it is possible to notice that some 
samples start to be grouped not according to the differentiation stage, but by the replicate, which is unexpected 
and suggests that different gene expression patterns may be observed in the replicates.

To complement the dendrogram results, a PCA analysis was also performed (Fig. 2D). By analysing PC1 
vs. PC2 it is possible to understand that the samples are displayed in a temporal fashion according to PC1 and 
divided between 2D and 3D protocols by PC2. There is some grouping by replicate (example 2D replicate 2 
marked in orange), but it is not possible to retrieve the grouping by replicate observed in the dendrogram. Over-
all, the first 2 principal components do not allow to infer the hierarchy observed with hierarchical clustering, 
most probably because just around 50% of all variation is observed with these components while the dendrogram 
C represents the calculated distances between each sample considering all genes.

Self‑organising map portraits reveal different gene expression patterns throughout differen-
tiation and between protocols
Hierarchical clustering on the dimension of the sample can provide information on the relationship between 
samples and even replicates. However, this approach does not identify which genes are responsible for such 
structure and does not extract biological information regarding the genes involved in the differentiation process. 
To analyse in more detail the changes in the transcriptome and to visualise this high dimensional data, a SOM 
algorithm was used. As performed in the HC analysis, initially, SOM portraits of the average of the time point 
replicates were plotted (Fig. 3A) and then individual sample portraits were created (supplementary figure 1). All 
SOM portraits are plotted on a relative scale in which for each sample, dark blue and red represent the lowest 
and highest expression values, respectively, in log Fold Change (logFC).

From the analysis of the average SOM portraits (Fig. 3A), it was possible to confirm the high similarity 
between the hiPSCs seeding and day 0 samples. However, this data representation highlights the differences 
between 2D_D0 and 3D_D0 samples, visually attributed to a group of metagenes in the lower-left corner of the 
portrait (black rectangle on days 0 portraits), which are not expressed on the 3D day 0 sample. Surprisingly, the 
portraits for samples from days 1 until 5, which form the first cluster observed previously (Fig. 2A), are con-
siderably different between culture formats. The major difference between these samples consists of the lack of 
expression of the genes in the lower-left corner of the grid (black rectangle) during the 3D protocol. Furthermore, 
the 3D protocol displays a higher expression of the genes in the upper right corner of the grid (black rectangle 
on portrait 3D_5) when compared with the 2D one. Overall these portraits raise the hypothesis that the culture 
format strongly influences the patterns of gene expression during the initial days of differentiation and the impact 
of such variation may be further studied. In both differentiation protocols, the transcriptomes converge, in the 
final time points studied, to similar states with an area of over-expression in the upper-left corner of the portraits 
(black rectangle on days 12 portraits). However, an over-expressed spot in the middle of the left edge of the 2D 
differentiation portraits (black arrow on portrait 2D_12) is also observed. This subset of genes represents a major 
difference between the end-stage of the two protocols. In the 2D protocol, the expression of this subset of genes 
starts around day 9. Although the 2D portraits seem more similar to the 3D ones at this stage, this may be caus-
ing the complete segregation between protocols later observed in the HC dendrograms (Fig. 2A, green cluster).

In order to better understand the variability among the individual time point replicates, SOM portraits for 
each replicate were generated (supplementary figure 1). It is possible to observe that until day 1 all replicates are 
essentially identical to each other, but, from day 3 onwards, much more variability is noticeable, as previously 
described for the dendrogram representation (Fig. 2C). In particular, on day 9 in the 2D protocol, the second rep-
licate does not present the over-expression of the metagenes at the middle of the left edge of the grid (highlighted 
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with a black arrow Fig. 3C). Moreover, for the subsequent days, this area is never over-expressed in opposition 
to the increase in expression for the other replicates. As for the 3D replicates, on day 15 of replicate 1, the same 
previously mentioned spot is expressed but with less intensity (highlighted with a black arrow on Fig. 3C).

To better understand the differences between replicates of the same protocol, the final percentage of cTNT+ 
cells for each replicate, which is a measure of the final efficiency of CM differentiation, was also considered 
(Fig. 3B). It is possible to notice that the replicates with lower differentiation efficiency are the ones with higher 
expression of the metagenes previously highlighted with a black arrow on the left edge of the portrait (Fig. 3A). 
Also, the second replicate of the 2D differentiation, which does not show expression of this group of metagenes, 
had a comparable differentiation efficiency, for instance to the first replicate from the 3D differentiation. How-
ever, due to the low number of samples, it cannot be stated that the expression of these genes is correlated with 
the lower efficiency of the process.

Self‑organising map portraits accurately display commonly known genes for different stages 
of hipsc cardiac differentiation
To validate the SOM portraits, the location of commonly known genes that play a crucial role at different stages 
of hiPSC cardiac differentiation2 were plotted onto the SOM grid (Fig. 4). The Pluripotency marker genes, such 
as Oct4, Sox2 or Nanog, are located in the area of maximum expression for the samples containing cells in the 
pluripotent state (hiPSCs, 2D day 0 and 3D day 0).

Regarding the Mesoderm markers, it is interesting to see that some are located in the upper right corner of the 
grid and others in the lower part, near the “pluripotency area”. The distribution of the Mesoderm markers between 
the areas of over-expression for day 3 reveals that, although these genes are characteristic of the mesoderm stage, 
their expression profile is substantially different. TBXT is located in the area of over-expression shared with the 
pluripotency samples, indicating that the expression of this gene is rapidly decreasing afterwards, and may have 
started even before day 3. ROR2, which is located in the upper right corner of the grid on the contrary is not 
expressed before day 3 and sustains its expression for longer periods of time. This pattern was previously experi-
mentally identified for a similar differentiation protocol20 and is a good indicator that the SOM is indeed able to 
accurately represent the subtle differences in expression patterns. Additionally, genes located in the same node 
and/or area of the grid could be further tested as alternative marker genes since they have the same expression 
pattern throughout the experiment. As for the Cardiac Mesoderm markers, they are located on three different 
edges of the grid, coincident with the over-expressed metagenes for day 5.

Likewise, the Cardiac Progenitor and Cardiomyocyte markers were also found in the area of over-expression 
for the final samples for both culture formats. However, the markers of CMs are spread in the area just expressed 
in the 3D samples at the end of the differentiation, corroborating the previous analysis by Branco et al.11 which 
reveals a higher degree of maturity of the 3D-generated CMs.

Figure 3.   SOM portraits reveal different gene expression patterns throughout differentiation and between 
protocols (A) SOM portraits of the average of the replicates for each time point, for both 2D and 3D cardiac 
differentiation protocols; (B) Day 20 portraits for each replicate and final percentage of cTNT+ cells, as 
determined by flow cytometry analysis; (C) Portraits for samples 2D_9_1 and 3D_15_1 with a black arrow 
highlighting the metagenes associated with the final cardiomyocyte content. Portraits are labelled according 
to [Differentiation protocol_Day] and [Differentiation protocol_Day_Replicate], respectively, and colour bars 
represent log2FC values of expression.
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Biological interpretation and single gene expression dynamics
To study in more detail the over-expressed areas of the grid, the K-means algorithm was used to divide the 
metagenes into clusters. The resulting partition is presented in Fig. 5A where clusters considered to have a non-
significant expression in any sample (low variability over time) are marked with white circles. HC dendrograms 
were recomputed to assess whether the genes contained in these clusters are sufficient to reconstruct the hier-
archy observed using the whole geneset (Fig. 2A). In fact, as shown in supplementary figure 2 using the average 
of the replicates for each time point, it was possible to obtain the same clusters as the ones previously obtained 
for the whole geneset.

Gene Set Enrichment (GSE) analysis and Gene Ontology (GO) over-representation were done for the 13 
significantly expressed clusters and a complete set of results can be found in supplementary tables 1 and 2 and 
a summary of the most relevant findings is plotted in Fig. 5B.

Clusters M and N, which are over-expressed at the end of the differentiation, presented an over-representation 
of genes from several ontologies related to cardiac development as well as an enrichment in gene sets as the 
hallmarks of myogenesis.

Cluster S, which is the main cluster expressed in pluripotent hiPSC samples, is enriched in gene sets over-
expressed in stem cells, however, from the GO no such clear over-representation was seen. Clusters B and R, 
which are expressed in hiPSCs samples and at the beginning of the 2D differentiation but not in the 3D protocol, 
are correlated with genes regulating the translation process and ribosomal assembly. It was recently proposed 
that both the translational process and ribosome biogenesis and homeostasis are key elements in the regulation 
of stem cell characteristics21. The fact that the day 0 samples from the 3D protocol do not express this cluster 
also suggests that the 3D culture format is priming the cells to a more committed state.

Figure 4.   Location of common differentiation stage markers in the SOM grid and overlap with average 
portraits from hiPSC, days 3, 5, 18 and 20; (A) Pluripotency (turquoise)—POU5F1 (40x1), NANOG (40x1), 
SOX2 (40x1), LIN28A (36x1), ZFP42 (40x1), THY1 (40x4) Mesoderm (orange)—TBXT (37x1), ANPEP 
(40x40), MIXL1 (32x10), ROR2 (40x39) Cardiac Mesoderm (purple)—MESP1 (40x40), KDR (40x30), KIT 
(33x1), CXCR4 (40x40), PDGFRA (1x33) Cardiac Progenitor (pink)—ISL1 (1x34), NKX2-5 (1x40), GATA4 
(1x35), TBX5(1x40), TBX20 (10x34), MEF2C (1x39) Cardiomyocyte (light green)—MYH6 (1x40), TNNT2 
(1x40), TNNI3 (20x36), MYL2 (8x40), EMILIN2 (6x38), SIRPA (8x39). Portraits are labelled according to 
[Differentiation protocol_Day] and colour bars represent log2FC values of expression; (B) Heatmap of stage 
markers expression (log2FC).
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For cluster G, which corresponds to the area of over-expression in the replicates which yielded a lower 
percentage of cTNT+ cells, it was found two genesets with genes over-expressed in the liver and also GO cor-
related with liver and kidney functions. These results allow hypothesising that endoderm differentiation may 
be occurring concurrently, leading to a reduction in CM differentiation efficiency. From the developmental 
perspective, this result is not surprising as both mesoderm and endoderm are derived from the mesendoderm 
which, in mammals, is formed by the activation of the Wnt/b-catenin pathway together with Nodal and Activin22. 
Furthermore, recent results from single-cell RNA-seq also revealed the presence of endoderm-like cells arising 
around day 5 of the differentiation23,24.

Since expression of the genes in this cluster was found to be correlated with the final efficiency of CM dif-
ferentiation, the 10 genes with higher expression values (AFP, SERPINA1, AHSG, TTR, AMBP, TF, TM4SF4, 
FGB, APOC3, SPINK1) were retrieved and their expression through time plotted for each experiment (Fig. 5C 
and supplementary figure 3). As these genes were found to have an expression of up to 7 logFC at differentiation 
day 9, they may be further investigated as markers for early prediction of low cardiac differentiation efficiency.

The SOM portraits generated allowed to have a visualization of differences in the transcriptome throughout 
hiPSC differentiation using two different protocols. However, using only this representation, it is not straight-
forward to assign these differences to specific genes. HBC was then used to further investigate and visualize the 
transcriptomic data. Initially, a bi-cluster heatmap with the entire gene set and all the replicates was performed, 
as well as with the samples’ average (supplementary figure 4A). However, due to the high number of genes, it was 
not possible to extract meaningful information from these representations. A simplified bi-cluster heatmap was 

Figure 5.   Analysis of the K-means clusters on the SOM grid, (A) Representation of the clusters with white 
circles representing clusters removed from further analysis and top expressed genes for the most relevant 
clusters (B, G, M, N, R and S); (B) top Gene Ontology overrepresentation and Gene set Enrichment for these 
clusters; (C) Expression of the 10 proposed efficiency marker genes for replicate experiments 2D replicate 1 and 
3D replicate 2, the lowest and highest in cardiomyocyte content at the final day, respectively.
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then generated, using only the genes from the K-means clusters previously considered relevant (supplementary 
figure 4B). Using this subset of genes, different expression patterns became more evident and it was possible to 
clearly identify a set of genes which are highly expressed only in the 2D differentiation samples, replicates 1 and 
3, from day 9 to 20.

Nonetheless, this representation is still difficult to interpret and therefore we decided to further investigate the 
SOM results by generating a heatmap (supplementary figure 5A) considering only the SOM clusters G, M, N and 
S, which have the higher expression values and their biological significance already clarified. Also, to facilitate 
the interpretation, in supplementary figure 5 the samples were not clustered. Using this simplified heatmap, a 
5-cluster cut was done, providing a cluster where the highly expressed genes for 2D replicates 1 and 3 can be 
isolated. Supplementary figure 5B presents a magnification of this cluster and, remarkably, 9 out of the 10 genes 
previously proposed as potential early markers of differentiation efficiency are here depicted and marked in light 
green. With this comparative analysis between SOM and HBC, it can be concluded that in contrast to SOM, 
HBC is not suitable for a whole-genome representation, but the use of both can be complementary since they 
provide visualizations with different resolutions of the gene expression patterns. While SOM portrays global gene 
expression patterns, in the form of metagenes, HBC can be used to generate heatmaps that allow the visualisation 
of single gene expression dynamics.

Discussion
Cardiovascular diseases are a huge burden on healthcare systems worldwide and have profound impacts on 
society25, being the focus of intense research to meet the undeniable need for better and more effective treatments. 
Cellular therapies are evolving and may become promising alternatives to the current therapeutic programs 
but there are still important challenges to address before a clinically approved treatment can be made available.

hPSCs are the perfect raw material for the in vitro mass production of CMs, which can be used in multiple 
therapeutic approaches. Despite the recent advances in the field, hPSC cardiac differentiation still presents some 
limitations, including the lack of efficient and scalable protocols for CM generation. During the differentiation 
process, hPSCs are expected to undergo significant gene expression changes in response to the differentiation 
stimuli and a study of this dynamic transcriptome is expected to provide a wealth of new information that 
ultimately will improve the CM production, both quantitatively and qualitatively. However, such a whole tran-
scriptome study was not yet presented. The in-depth analysis of the increasingly high number of available hPSCs 
cardiac differentiation transcriptomic datasets requires an easy-to-use and robust workflow.

In this work, a whole transcriptome analysis methodology which combines different unsupervised machine 
learning approaches is applied to extend the previous analysis by Branco et. al11 to study the transcriptional 
changes between two different hiPSC cardiac differentiation protocols.

HC was used for a sample-centred analysis, to reveal the overall hierarchy of the samples, demonstrating the 
impact of Wnt signalling pathway inhibition at the transcriptional level. This algorithm also allowed us to observe 
the impact of selecting a restricted number of genes which causes information loss and can be visually identified 
by a disruption in the overall relationship between samples. Furthermore, the similarity between replicates could 
be evaluated by analyzing the organisation obtained in the dendrogram C.

SOM provided a whole transcriptome visualization of each sample highlighting the differences and similari-
ties in transcriptional states between differentiation time points and protocols. With this new visualization of 
the transcriptome, we confirmed that heterogeneity between replicate samples is present. We were also able to 
observe that, regardless of the culture platform used (2D or 3D), a subset of genes was overexpressed in samples 
with low cardiac differentiation efficiency (low % of cTNT positive cells). It was also interesting to observe that 
the “3D-day 0” samples do not express a group of metagenes present in the hiPSC samples and in the “2D-day 
0” samples. Moreover, despite the final convergence of both protocols to the same highly expressed metagenes, 
between days 3 and 7 the areas of high expression differ between protocols, suggesting different gene expression 
“trajectories” throughout the differentiation process. Overall, the methodology here presented allowed to obtain 
information that would not be uncovered without the analysis of the whole transcriptome and would not be 
detectable with, for instance, the PCA analysis shown in Fig. 2D.

The K-means algorithm was applied on the SOM nodes to create 20 clusters of metagenes and clusters with 
significant gene expression over time were selected for further analysis. Using these clusters, we were able to 
confirm previously described results in an unsupervised way and also to find new and unexpected gene expres-
sion patterns. This analysis revealed that endoderm-related genes were over-expressed in the replicates with low 
CM differentiation efficiency. As a complementary approach, Hierarchical Bi-cluster was used to visualize the 
transcriptome, remarkably confirming the correlation between the expression of the identified set of genes and 
the efficiency of the process. Another interesting result retrieved from this clustering result was the understand-
ing that the group of genes that ceased to be expressed in the 3D culture conditions right from day 0 (Clusters 
B and R) are annotated as regulators of the mRNA translation process and ribosomal assembly. The expression 
of these genes and the processes which they regulate have been associated with undifferentiated stem cells and 
therefore it would be interesting to further understand the impact of these genes in the differentiation process.

Typically, the progression and efficiency of hiPSC differentiation into CM is monitored for instance by count-
ing the number of beating aggregates or using the gold standard flow cytometry analysis of specific sarcomeric 
and surface stage-related markers3. Despite the quantitative and qualitative information obtained with this 
method, there is a lack of monitoring strategies for the early detection of low differentiation efficiency outcomes, 
which is of particular importance in large-scale cultures for future industrial cell manufacturing. Having these 
considerations in mind, the 10 genes with higher expression (supplementary figure 3) were identified as good 
candidates to predict the CM differentiation efficiency at an early stage. The expression of this group of genes 
was found as early as differentiation day 7-9 and thus the possibility to predict deviations at this early stage 
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could be addressed in more detail in future studies. Since RNA-seq is still considerably expensive and also not 
suitable for daily monitoring, simpler techniques such as real-time quantitative PCR or flow cytometry analysis 
could be used for this purpose. The function and biological relevance of such genes is also an important aspect 
to further take into account. Likewise, the role and impact of the genes found on clusters B and R should be 
further studied as this knowledge may be important to better understand stem cell commitment into the cardiac 
and other differentiated lineages.

Unlike the commonly used approaches that focus the transcriptomics analysis on a subset of genes considered 
to be differentially expressed or relevant for the aims of the study, this holistic and unsupervised analysis and 
visualization of the complete set of transcripts present throughout the differentiation process has the potential 
to unveil new relevant information that, by other means, would not be discovered, ultimately improving our 
understanding of the differentiation processes.

Beyond the new information uncovered in this work, future work opportunities have been identified. While 
the strategy here presented was informative to highlight differences between replicates within this dataset, it will 
be necessary to evaluate if these differences are universal across experiments and cell lines for cardiac differentia-
tion. It will be also important to perform  the experimental validation of the early low-efficiency marker genes 
here proposed as well as the single-cell deconvolution26 of this data to evaluate if there are indeed cells from endo-
dermal lineage in the samples with lower efficiency. Furthermore, this methodology could be further improved 
by searching on the SOM grid for long non-coding RNAs and micro RNAs as they have been correlated with 
the mechanisms of differentiation27. Moreover, re-training the SOM grid with additional information on splic-
ing variants could also be an interesting approach, as isoform switching was reported during CM maturation28.

This work highlights the important role that the application of machine learning algorithms may have for the 
future developments of stem cell biotechnology. These techniques can be used for the analysis of large Omics 
data sets, to obtain new insights on stem biology and also for the development of bioprocesses with multiple 
applications in regenerative medicine and in the pharmaceutical industry.

Detailed methods
RNA‑seq data pre‑processing
To start this workflow, raw read counts from all samples were considered. To filter the dataset, the function 
filterByExpr (Filter Genes By Expression Level) of the R package EdgeR29 was used. This function removes out 
genes with less than 10 read counts adjusted as counts per million (CPM) and assures that for a gene to be kept 
in the dataset, at least n samples show a significant expression, being n the number of samples in the class with 
fewer replicates.

The geneset was normalized using the TMM method, by the application of the EdgeR function calcNormFac-
tors. With the normalization factors calculated, raw counts were divided by the corrected library size and log2 
transformed using the EdgeR function logCPM with a prior count of 3.

Additionally, gene expression data was centralised so that log-fold changes concerning the ensemble average 
of each gene were obtained. Eq. 1 detail this procedure where e is the log expression vector for one gene and �∗� 
denotes the average.

For all steps of this work, when referring to gene expression is the same as �e and logFC values are always com-
pared to the mean expression of the gene over all samples.

Besides studying the individual replicates, the average gene expression for each group of replicate samples 
was computed.

Hierarchical agglomerative clustering
As a first approach to reveal the relationship between samples, the function cluster.hierarchy.linkage from the 
SciPy python package30 was used. Complete, average, and single linkages were tested, as well as Euclidean, 
Cosine, and Pearson correlation distances. To separate the clusters the lifetime criteria, proposed by Fred and 
Jain31, available in the BiosPPy32 python package, was used. Dendrograms were plotted using the function cluster.
hierarchy.dendrogram from the SciPy python package. Each colour in the dendrogram represents a cluster, and 
samples in blue are the ones composing a single sample cluster.

For the nine partitions thus obtained, two internal cluster validation measurements were calculated: Silhouette 
Coefficient and Calinski-Harabasz Index available in the scikit-learn python package33. The partition with better-
defined clusters, which means, the partition with the densest and most well-separated clusters was chosen for fur-
ther analysis. In practical terms, one of the partitions with the best Silhouette Coefficient and Calinski-Harabasz 
Index is chosen. When the two validation measurements are not in coherence a partition which is obtained from 
different combinations of distance metrics and linkages and that has one of the best indexes is chosen.

The results for the internal cluster validation are in supplementary tables 3 to 5.

Self‑organising map
The R package OposSOM15 was chosen for the SOM training and mapping since is one of the most used packages 
for the application of SOM to transcriptomics data sets.

The OposSOM method receives as input the filtered, normalised, log-transformed and centred gene expres-
sion matrix. In the context of this SOM implementation, when training the SOM, the only distance available to 
calculate the winning node is the Euclidean distance and the grid topology available is a square grid. However, the 

(1)logFC = �e = e − �e�all samples .



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3110  | https://doi.org/10.1038/s41598-024-52970-z

www.nature.com/scientificreports/

size of the grid should be set by the user and must contain a number of nodes which is one order of magnitude 
lower than the original number of genes in the dataset.

In this implementation, the authors named the SOM models of metagenes, since, at the end of the training 
and after the mapping step, they will represent the mean expression of the genes assigned to that SOM node. 
Like the grid size, the number of epochs should be defined by the users, and in this work, it was experimentally 
defined so that the SOM grid has a well-defined area with metagenes with lower entropy and variance, and a 
high gene-metagene correlation, without the need to wait several hours for the outputs. The entropy, variance 
and correlation definitions can be found in34.

A SOM grid size of 40x40 was chosen and 3 epochs were experimentally set as the best training extension.

SOM expression portraits
After training, OposSOM automatically maps the genes onto the trained grid. Each node of the SOM grid, or pixel 
of the SOM portrait, will have several genes mapped onto it forming a small cluster. The mean of this cluster is 
computed and corresponds to a metagene. From the metagene grid, individual sample transcriptomic portraits 
are plotted, as well as the mean portrait formed with the mean expression of the samples from the same class.

These portraits are essentially a topographic map where each pixel is coloured accordingly with the expression 
value of the metagene for that particular sample. In this work, the portraits are created so that, for each sample, 
the maximum and minimum values of expression are taken to be the maximum and minimum on the colours of 
the portrait, as such, the metagenes with lower expression are represented in blue, the ones with higher expression 
in red, and the intermediate values of expression are represented in shades of green and yellow.

SOM grid partition by K‑means and gene selection
To further analyze the over-expressed and under-expressed spots identified on the SOM portraits, the K-Means 
algorithm was used to divide the grid into 20 clusters, named A to T. This functionality is built in the OposSOM 
package.

Since some parts of the SOM grid are composed of practically invariant metagenes, which do not contribute 
much to the organisation of the samples, some K-means clusters were excluded from the analysis as they were 
considered to have no significant expression for any sample.

As a proof of concept that the genes contained in the remaining clusters are the ones responsible for the 
majority of the differences between samples, and that this methodology serves as a feature selection technique, 
the hierarchical clustering of the samples was reconstructed and the corresponding dendrograms plotted.

Biological information extraction from the k‑means clusters
To extract biological information about the genes contained in each of the clusters in the study, Gene Ontology 
(GO) over-representation and Gene Set Enrichment (GSE) analysis were made.

GO over-representation was done using the PANTHER classification system35,36 (17.0 release), with a Fisher 
test, using Homo Sapiens as a reference list and the GO biological process complete as an annotation set.

GSE analysis was done by the OposSOM package, which automatically identifies, from various sources of 
gene sets, the ones present in the data studied. In total 6324 gene sets available on the GSEA (Gene Set Enrich-
ment Analysis) website (http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​genes​ets.​jsp), were considered in this analysis.

The gene sets are subdivided into categories, briefly explained in Table 1, with the description taken from 
the GSEA website directly.

Hierarchical bi‑clustering
Knowing that SOM can create easy-to-interpret portraits of the sample, hierarchical bi-cluster heatmaps were 
used as a comparison method.

To perform hierarchical bi-cluster the function clustermap from the Seaborn python package37 was used. 
For this step of the work, the distance metric considered more appropriate was Euclidean distance, as it is the 
one used by the SOM algorithm, and the linkage providing the most interpretable results was complete linkage.

Table 1.   Gene set categories description.

Category Description #Gene sets

Chr “Gene sets corresponding to each human chromosome and each cytogenetic band” 24

H “Hallmark gene sets summarize and represent specific well-defined biological states or processes and display 
coherent expression” 50

C2 “Gene sets in this collection are curated from various sources, including online pathway databases and the 
biomedical literature” 4373

BP “Gene sets derived from the GO Biological Process ontology” 1186

CC “Gene sets derived from the GO Cellular Component ontology” 326

MF “Gene sets derived from the GO Molecular Function ontology” 365

http://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp
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Data availability
The RNA-seq data analysed in this study is available through Gene Expression Omnibus (GEO) Accession 
Number GSE116574. Until a final version of the workflow is made publicly available, the code used in this study 
is available from the corresponding author on reasonable request.

Received: 24 May 2023; Accepted: 25 January 2024

References
	 1.	 WHO. Cardiovascular diseases (CVDs). https://​www.​who.​int/​news-​room/​fact-​sheets/​detail/​cardi​ovasc​ular-​disea​ses-​(cvds). 

Accessed 16 May 2022 (2021).
	 2.	 Burridge, P., Keller, G., Gold, J. & Wu, J. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and 

direct reprogramming. Cell Stem Cell 10, 16–28. https://​doi.​org/​10.​1016/j.​stem.​2011.​12.​013 (2012).
	 3.	 Kempf, H., Andree, B. & Zweigerdt, R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv. Drug 

Deliv. Rev. 96, 18–30. https://​doi.​org/​10.​1016/j.​addr.​2015.​11.​016 (2016).
	 4.	 Branco, M. A., Cabral, J. M. & Diogo, M. M. From human pluripotent stem cells to 3D cardiac microtissues: progress, applications 

and challenges. Bioengineering 7, 92. https://​doi.​org/​10.​3390/​bioen​ginee​ring7​030092 (2020).
	 5.	 Van Verk, M. C., Hickman, R., Pieterse, C. M. & Van Wees, S. C. RNA-Seq: revelation of the messengers. Trends Plant Sci. 18, 

175–179. https://​doi.​org/​10.​1016/j.​tplan​ts.​2013.​02.​001 (2013).
	 6.	 Aguet, F. et al. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330. https://​doi.​

org/​10.​1126/​scien​ce.​aaz17​76 (2020).
	 7.	 Jiang, W. & Chen, L. Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing. Comput. 

Struct. Biotechnol. J. 19, 183–195. https://​doi.​org/​10.​1016/J.​CSBJ.​2020.​12.​009 (2021).
	 8.	 D’haeseleer, P. How does gene expression clustering work?. Nat. Biotechnol. 23, 1499–1501. https://​doi.​org/​10.​1038/​nbt12​05-​1499 

(2005).
	 9.	 Oyelade, J. et al. Clustering algorithms: Their application to gene expression data. Bioinform. Biol. Insights 10, BBI.S38316. https://​

doi.​org/​10.​4137/​BBI.​S38316 (2016).
	10.	 Schmidt, M., Loeffler-Wirth, H. & Binder, H. Developmental scRNAseq trajectories in gene-and cell-state space-the flatworm 

example. Genes 11, 1–21. https://​doi.​org/​10.​3390/​genes​11101​214 (2020).
	11.	 Branco, M. A. et al. Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster 

cardiomyocyte maturation compared to 2D culture. Sci. Rep. 9, 9229. https://​doi.​org/​10.​1038/​s41598-​019-​45047-9 (2019).
	12.	 Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt 

signaling. Proc. Natl. Acad. Sci. 109, E1848–E1857. https://​doi.​org/​10.​1073/​pnas.​12002​50109 (2012).
	13.	 Aggarwal, C. & Reddy, C. Data Clustering: Algorithms and Applications. Chapman & Hall/CRC Data Mining and Knowledge Dis‑

covery Series (CRC Press, 2018).
	14.	 Kohonen, T. MATLAB Implementations and Applications of the Self-Organizing Map (Unigrafia Oy, 2014).
	15.	 Löffler-Wirth, H., Kalcher, M. & Binder, H. oposSOM: R-package for high-dimensional portraying of genome-wide expression 

landscapes on bioconductor. Bioinformatics 31, 3225–3227. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv342 (2015).
	16.	 Kunz, M. et al. RNA-Seq analysis identifies different transcriptomic types and developmental trajectories of primary melanomas. 

Oncogene 37, 6136–6151. https://​doi.​org/​10.​1038/​s41388-​018-​0385-y (2018).
	17.	 Schmidt, M. et al. Single-cell trajectories of melanoma cell resistance to targeted treatment. Cancer Biol. Med. 19, 56–73. https://​

doi.​org/​10.​20892/j.​issn.​2095-​3941.​2021.​0267 (2022).
	18.	 Arakelyan, A. et al. Transcriptome patterns of BRCA1-and BRCA2-mutated breast and ovarian cancers. Int. J. Mol. Sci. 22, 1–18. 

https://​doi.​org/​10.​3390/​ijms2​20312​66 (2021).
	19.	 Barrett, T. et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991–D995. https://​doi.​org/​

10.​1093/​nar/​gks11​93 (2012).
	20.	 Tompkins, J. D. et al. Mapping human pluripotent-to-cardiomyocyte differentiation: Methylomes, transcriptomes, and exon DNA 

methylation memories. EBioMedicine 4, 74–85. https://​doi.​org/​10.​1016/j.​ebiom.​2016.​01.​021 (2016).
	21.	 Gabut, M., Bourdelais, F. & Durand, S. Ribosome and translational control in stem cells. Cells 9, 497. https://​doi.​org/​10.​3390/​cells​

90204​97 (2020).
	22.	 Vliet, P. V., Wu, S. M., Zaffran, S. & Pucéat, M. Early cardiac development: A view from stem cells to embryos. Cardiovasc. Res. 

96, 352–362. https://​doi.​org/​10.​1093/​CVR/​CVS270 (2012).
	23.	 Ruan, H. et al. Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage com-

mitment. BMC Biol. 17, 1–16. https://​doi.​org/​10.​1186/​s12915-​019-​0709-6 (2019).
	24.	 Churko, J. M. et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. 

Nat. Commun. 9, 1–14. https://​doi.​org/​10.​1038/​s41467-​018-​07333-4 (2018).
	25.	 Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. 

Coll. Cardiol. 76, 2982–3021. https://​doi.​org/​10.​1016/j.​jacc.​2020.​11.​010 (2020).
	26.	 Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 

37, 773–782. https://​doi.​org/​10.​1038/​s41587-​019-​0114-2 (2019).
	27.	 Iancu, C. B. et al. Molecular signatures of cardiac stem cells. Rom. J. Morphol. Embryol. 56, 1255–1262 (2015).
	28.	 Murphy, S. A., Chen, E. Z., Tung, L., Boheler, K. R. & Kwon, C. Maturing heart muscle cells: Mechanisms and transcriptomic 

insights. Semin. Cell Dev. Biol. 119, 49–60. https://​doi.​org/​10.​1016/j.​semcdb.​2021.​04.​019 (2021).
	29.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital 

gene expression data. Bioinformatics 26, 139–140. https://​doi.​org/​10.​1093/​BIOIN​FORMA​TICS/​BTP616 (2010).
	30.	 Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272. https://​doi.​

org/​10.​1038/​s41592-​019-​0686-2 (2020).
	31.	 Fred, A. L. & Jain, A. K. Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 

835–850. https://​doi.​org/​10.​1109/​TPAMI.​2005.​113 (2005).
	32.	 Carreiras, C. et al. BioSPPy: Biosignal processing in Python. https://​github.​com/​PIA-​Group/​BioSP​Py/ (2015). Accessed 16 May 

2022.
	33.	 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. https://​doi.​org/​10.​5555/​19530​

48.​20781​95 (2011).
	34.	 Wirth, H. Analysis of large-scale molecular biological data using self-organizing maps. Ph.D. thesis, University of Leipzig (2012).
	35.	 Mi, H. et al. Panther version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. 

Nucleic Acids Res. 49, D394–D403. https://​doi.​org/​10.​1093/​nar/​gkaa1​106 (2021).
	36.	 Mi, H. et al. Protocol update for large-scale genome and gene function analysis with panther classification system (v.14.0). Nat. 

Protoc. 14, 703. https://​doi.​org/​10.​1038/​S41596-​019-​0128-8 (2019).
	37.	 Waskom, M. L. seaborn: Statistical data visualization. J. Open Source Softw. 6, 3021. https://​doi.​org/​10.​21105/​joss.​03021 (2021).

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds)
https://doi.org/10.1016/j.stem.2011.12.013
https://doi.org/10.1016/j.addr.2015.11.016
https://doi.org/10.3390/bioengineering7030092
https://doi.org/10.1016/j.tplants.2013.02.001
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1016/J.CSBJ.2020.12.009
https://doi.org/10.1038/nbt1205-1499
https://doi.org/10.4137/BBI.S38316
https://doi.org/10.4137/BBI.S38316
https://doi.org/10.3390/genes11101214
https://doi.org/10.1038/s41598-019-45047-9
https://doi.org/10.1073/pnas.1200250109
https://doi.org/10.1093/bioinformatics/btv342
https://doi.org/10.1038/s41388-018-0385-y
https://doi.org/10.20892/j.issn.2095-3941.2021.0267
https://doi.org/10.20892/j.issn.2095-3941.2021.0267
https://doi.org/10.3390/ijms22031266
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.ebiom.2016.01.021
https://doi.org/10.3390/cells9020497
https://doi.org/10.3390/cells9020497
https://doi.org/10.1093/CVR/CVS270
https://doi.org/10.1186/s12915-019-0709-6
https://doi.org/10.1038/s41467-018-07333-4
https://doi.org/10.1016/j.jacc.2020.11.010
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1016/j.semcdb.2021.04.019
https://doi.org/10.1093/BIOINFORMATICS/BTP616
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TPAMI.2005.113
https://github.com/PIA-Group/BioSPPy/
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1093/nar/gkaa1106
https://doi.org/10.1038/S41596-019-0128-8
https://doi.org/10.21105/joss.03021


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3110  | https://doi.org/10.1038/s41598-024-52970-z

www.nature.com/scientificreports/

Acknowledgements
The authors acknowledge funding received from Fundação para a Ciência e Tecnologia (FCT) through iBB - 
Institute for Bioengineering and Biosciences (UIDB/04565/2020 and UIDP/04565/2020), Associate Laboratory 
i4HB (LA/P/0140/2020), project “SMART” (PTDC/EQU-EQU/3853/2020); from IT - Instituto de Telecomuni-
cações - research Grant BIM/No16/2022 - B-B01049; from GFI – The Good Food Institute granted to the project 
VitaminSea (22-CM-PT-DG-1-317).

Author contributions
S.P.A. performed the bioinformatics work and analysis; M.A.B., D.E.S.N., J.M.S.C., M.M.D., A.L.N.F and C.A.V.R. 
discussed the results and the methodology; S.P.A., A.L.N.F and C.A.V.R. wrote the paper; All authors reviewed 
the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​52970-z.

Correspondence and requests for materials should be addressed to S.P.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-52970-z
https://doi.org/10.1038/s41598-024-52970-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Unsupervised analysis of whole transcriptome data from human pluripotent stem cells cardiac differentiation
	Results
	Methodology overview and dataset description
	Hierarchical agglomerative clustering to establish a whole transcriptome sample hierarchy, replicate variability and information loss
	Self-organising map portraits reveal different gene expression patterns throughout differentiation and between protocols
	Self-organising map portraits accurately display commonly known genes for different stages of hipsc cardiac differentiation
	Biological interpretation and single gene expression dynamics

	Discussion
	Detailed methods
	RNA-seq data pre-processing
	Hierarchical agglomerative clustering
	Self-organising map
	SOM expression portraits
	SOM grid partition by K-means and gene selection
	Biological information extraction from the k-means clusters

	Hierarchical bi-clustering

	References
	Acknowledgements


