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A clinically relevant computed 
tomography (CT) radiomics 
strategy for intracranial rodent 
brain tumour monitoring
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David O’Brien 5, Jane B. Cryan 6, Philip J. O’Halloran 1,6, Josephine Heffernan 7, 
Francesca Brett 7, Philippe Lambin 4,8, Henry C. Woodruff 4,8 & Annette T. Byrne 1,2,3*

Here, we establish a CT-radiomics based method for application in invasive, orthotopic rodent 
brain tumour models. Twenty four NOD/SCID mice were implanted with U87R-Luc2 GBM cells and 
longitudinally imaged via contrast enhanced (CE-CT) imaging. Pyradiomics was employed to extract 
CT-radiomic features from the tumour-implanted hemisphere and non-tumour-implanted hemisphere 
of acquired CT-scans. Inter-correlated features were removed (Spearman correlation > 0.85) and 
remaining features underwent predictive analysis (recursive feature elimination or Boruta algorithm). 
An area under the curve of the receiver operating characteristic curve was implemented to evaluate 
radiomic features for their capacity to predict defined outcomes. Firstly, we identified a subset of 
radiomic features which distinguish the tumour-implanted hemisphere and non- tumour-implanted 
hemisphere (i.e, tumour presence from normal tissue). Secondly, we successfully translate preclinical 
CT-radiomic pipelines to GBM patient CT scans (n = 10), identifying similar trends in tumour-specific 
feature intensities (E.g. ‘glszm Zone Entropy’), thereby suggesting a mouse-to-human species 
conservation (a conservation of radiomic features across species). Thirdly, comparison of features 
across timepoints identify features which support preclinical tumour detection earlier than is possible 
by visual assessment of CT scans. This work establishes robust, preclinical CT-radiomic pipelines 
and describes the application of CE-CT for in-depth orthotopic brain tumour monitoring. Overall we 
provide evidence for the role of pre-clinical ‘discovery’ radiomics in the neuro-oncology space.

Abbreviations
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CT  Computed tomography
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Glioblastoma (GBM) is an invasive, heterogeneous, and incurable  malignancy1,2 with patients demonstrating a 
low median life expectancy (< 2 years). Radiological imaging is an integral aspect of disease management. Indeed, 
non-invasive monitoring methods are essential in the neuro-oncology setting, due to the intrinsic difficulties 
associated with intracranial  biopsy3. In this context, Magnetic Resonance Imaging (MRI) and Computed Tomog-
raphy (CT) underpin  diagnosis4, longitudinal disease management, and monitoring of therapeutic  response5. 
Nevertheless, while MRI is considered the ‘standard of care’ imaging modality in the clinic, the diagnostic value 
of CT imaging remains  pertinent6,7. Specifically, patients with suspected intracranial malignancies undergo CT 
at first diagnosis, during radiotherapy treatment planning, and when MRI is precluded (e.g. due to the pres-
ence of pacemaker, or older aneurysm clips)6.Response Assessment in Neuro-Oncology (RANO) criteria which 
are implemented in the assessment of patient CT and MRI  scans8,9 facilitate meaningful disease surveillance, 
evaluation of radiographic response and  progression9, and represent the gold standard for first-line treatment 
response evaluation in GBM.

Radiomic analysis of medical images is a disruptive methodology which allows the extraction of quantitative 
features from radiological scans. Overall, radiomics has emerged as a powerful method to gain clinically rel-
evant insights into tumour biology, patient prognosis and treatment prediction. In the context of brain tumours, 
radiomic feature analysis may enhance the use of the RANO criteria (as highlighted by the emergence of the 
‘Artificial Intelligence and Imaging Response (AI-RANO) Criteria’10). Moreover,  radiomics11,12 has been shown 
to support clinical assessment of glioma  staging13,14, characterisation of GBM tumour  heterogeneity15 and may 
reveal critical information underpinning tumour  phenotype16,17, response and progression. Most recently, radi-
omic analysis which has largely focused on MR-based radiomic feature assessment, has been ‘reverse translated’ 
to pre-clinical scan  data18.

In the present study we sought to establish a CT-radiomics pipeline for application in the monitoring of 
pre-clinical GBM models. Specifically, we demonstrate the utility of pre-clinical CT-radiomics to distinguish 
image features and characteristics which are not visible by eye. Importantly, we show that CT-radiomic features 
facilitate differentiation of the tumour implanted hemisphere when compared to the non-tumour implanted 
hemisphere on CE-CT scans. Additionally, we show that, rodent-derived CT-features interrogated in a clinical 
dataset manifest analogous trends in feature distribution (i.e. similarly increased intensity), suggesting a mouse-
to-human species conservation (a conservation of radiomic features across  species18). Moreover, our hypothesis 
generating study indicates that radiomic features may assist in the identification of tumours by CE-CT earlier 
than is possible by visual assessment of pre-clinical CT images (Fig. 1).

Results
CT-radiomic workflow for analysis of orthotopic GBM tumours
To begin, we performed longitudinal CE-CT imaging of U87R-Luc2 orthotopic tumour bearing NOD/SCID mice 
(n = 10, Fig. S1a) (Figs. 2a, S1c). Tumour-bearing mice underwent CE-CT imaging (Figs. 2d, S1c) at three-weekly 
intervals. Mice were monitored until reaching humane endpoint (Fig. S1a). Upon visual inspection (blinded/
randomized), 16% of CE-CT images were identified as positive for tumour presence (Fig. S1d). Throughout, 
tumour growth was monitored via weekly BLI (Fig. 2b) and tumour presence was confirmed post mortem via 

Figure 1.  Graphical representation of experimental workflow and aims. The Invasive U87R-Luc2 orthotopic 
murine GBM model was firstly established. Longitudinal CE-CT imaging was performed using a dedicated 
small animal CT-system. Following image segmentation, radiomic analysis, including histogram (1st order), 
grey level cooccurrence matrix (GLCM) or second order and higher order features, was performed to assess 
alterations over time and between normal and tumour tissue. Recursive Feature Elimination or Boruta 
algorithm were implemented as feature selection algorithms.
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immunohistochemistry (IHC). IHC analysis further confirmed a consistent phenotype across all animals with no 
significant difference in proliferation (Ki67) or vessel density (CD31). (Fig. S1b). In all, tumours were detectable 
using BLI one week (Week-1) following tumour implantation (Fig. 2c). In contrast, tumours were only detectable 
upon visual inspection in 16% of CE-CT images overall, with none detectable by eye before week 6 (Fig. S1d). As 
expected, these data confirm that BLI is a more sensitive method for pre-clinical intracranial tumour detection 
than CE-CT  imaging19–22. Interestingly, mouse 9 (M9) displays both a strong BLI signal at day 75 (Fig. 2c) and 
an extended survival time compared to other animals (76 days vs 50.5 days median survival; Supplementary 
Figure S1a). Indeed, visual inspection of M9 at the time of euthanasia highlighted the presence of a tumour 
located in close proximity to the skull, thus underpinning this antipodal relationship between BLI signal and 
survival time (Fig. 2c; anecdotal observation).

Next, preclinical GBM radiomic feature extraction pipelines were established (Figs. 1, 3). Delineation of 
reconstructed CE-CT images in DICOM format was performed using PMOD software (version 3.9; PMOD Tech-
nologies). A threshold was determined per image to exclude bone from generated bounding boxes (Fig. 3a). 3D 
Volume of interests (VOIs) were delineated for both the right hemisphere (RH; tumour-implanted hemisphere, 
whole hemisphere delineated) and left hemisphere (LH; non-tumour-implanted hemisphere, whole hemisphere 
delineated) of each animal. ROI binary masks were generated and stored in a 3D volume NIfTI format. Feature 
extraction via PyRadiomics successfully extracted a total of 833 features for both LH and RH (Fig. 3b) including: 
shape (n = 14), first order statistics (n = 18), gray level cooccurrence matrix (GLCM) (n = 22), gray level run length 
matrix (GLRLM) (n = 16), gray level size zone matrix (GLSZM) (n = 16), gray level dependence matrix (GLDM) 

Figure 2.  Overview of In vivo study design and imaging data collected. (a) Schematic of U87R-Luc2 model 
imaging schedule. (b) Representative BL image of U87R-Luc2 tumour bearing NOD/SCID mouse. (c) 
Bioluminescence data showing U87R-Luc2 tumour growth in each animal as average radiance [p/s/cm2/sr]. (d) 
Representative reoriented CE-CT images of orthotopically growing U87R-Luc2 tumour bearing mice imaged 
over 4 timepoints (Week-3,- 6, -9 and -12; coronal plane).
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(n = 14) and neighbouring gray tone difference matrix (NGTDM) (n = 5). Wavelet filtering was subsequently 
applied to these features. Shape features were excluded from all analyses (Fig. S2). Definitions for radiomics 
features are available online within the Pyradiomics documentation (https:// pyrad iomics. readt hedocs. io/ en/ 
latest/ featu res. html). Notably, while inclusion of wavelet filtering of images increases data dimensionality, recent 
studies have demonstrated that inclusion of wavelet features increases the reproducibility and repeatability of 
radiomic  signatures23.

Selection of CT radiomic features which discriminate tumour vs normal tissue
We first confirmed that novel preclinical GBM CT-radiomic pipelines facilitate discrimination of tumour pres-
ence within the tumour-implanted hemisphere of the brain (RH). To this end we examined whether CT-radiomic 
features may assist in distinguishing between non-tumour-implanted (LH) and tumour-implanted (RH) rodent 
brain regions across each timepoint. Specifically, we assessed inter-hemisphere (LH vs RH) features at week-
3, week-6 and week-9/12 (Fig. 4a). Comparison of LH and RH features via recursive feature analysis (RFE) 
(Fig. S3a–c), identified a panel of wavelet filtered first order, ngtdm, glcm, glszm and glrlm features which 
effectively differentiate between LH and RH (Fig. 4a, Fig. S3d–f). In all (Fig. 4a), significantly altered features 
(n = 2–5) were identified and performance in validation set generated an AUC > 0.7. By way of summary, Fig. 4b 
tabulates features identified as the best feature subset following RFE analysis. Taken together, CT-radiomic 
features may therefore assist in distinguishing between the tumour-implanted hemisphere and non-tumour-
implanted hemisphere in orthotopic rodent GBM models. Furthermore, these tumour-region specific features 
may facilitate confirmation of tumour growth when BLI  is unavailable.

Performance of preclinical CT-radiomics features in patient datasets: proof of concept
To ascertain preclinical-clinical feature relevance and investigate mouse-to-human species conservation, pre-
clinical, tumour-specific features were assessed in an exploratory, publicly available patient CE-CT cohort 
(n = 10) downloaded from ‘The Cancer imaging archive’ (TCIA) (Fig. 4c,d, S7). This cross-sectional cohort 
comprises a 1:2.3 ratio of female to male patients. Moreover 60% of patients were > 60 years of age upon diag-
nosis, with 30% of patients surviving > 1 year post diagnosis. IDH/MGMT status was unavailable for this cohort 

Figure 3.  Preclinical radiomic pipeline. Representative axial images of segmentations regions (red). (a) Semi-
automatic delineation of CT images in DICOM format was performed using PMOD (version 3.9). 3D Volume-
of-interests (VOIs) were delineated for both right hemisphere (RH; tumour-implanted hemisphere) and the left 
hemisphere (LH; non-tumour-implanted hemisphere). (b) Radiomic features (n = 833) were partitioned into 
training and validation datasets (80:20). Remaining uncorrelated feature number following pair-wise Spearman 
correlation, and AUC and ROC results are determined  for each comparison.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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(supplementary Fig. S7). Features identified as significantly altered (n = 11 features) in the inter-hemisphere (LH/
non-tumour-implanted hemisphere vs RH/tumour-implanted hemisphere) analyses were univariately analysed 
between normal and tumour regions of clinical GBM CT images. As summarised in Fig. S4, several features 
show altered distributions in tumour regions, with wavelet HLL first order maximum (p = 0.00833) significantly 
altered between normal and tumour regions. Moreover, wavelet LHL glszm zone entropy displayed increased 
intensity (p = 0.08768) in tumour regions (Fig. 4d). Markedly, analogous trends towards increased intensity in 
tumour vs normal clinical CT regions of these features tentatively suggests feature conservation across species.

Evaluation of CT radiomic features for early tumour detection
We lastly sought to determine if CT-radiomic features could support tumour detection as early as experimental 
BLI (Week-1) or prior to tumour detection by visual assessment of CT images. To achieve this, we applied both 
conventional (Fig. 5) and delta radiomics (Fig. 6) approaches. Specifically we assessed radiomic features in our 
initial CT scan at week-3, where tumours were not visually detectable and compared to week-6 and week-9/12. A 
five-feature classifier was identified upon comparison of the tumour-implanted hemisphere (RH) early timepoint 
features at week-3 and week-6 (Performance in validation set; AUC: 0.86, 95% CI 0.53–1), which may be capable 
of distinguishing between early RH timepoints (Fig. S5a). Furthermore, comparison of mid (Week-6) and late 
(Week-9/12) features within the tumour-implanted hemisphere (RH) identifies a five-feature classifier (including 
both original and wavelet filtered features) with a performance in validation set of AUC: 0.81 (95% CI 0.43–1; 
Fig. 5b, S5c). In contrast, analysis of week-3 and week-9/12 features within the tumour region (RH) did not gen-
erate an effective classifier for differentiation between mid- and late timepoints (Performance in validation set; 
AUC: 0.38, 95% CI NA-NA). Here the ROC curve indicates inverted performance (Fig. S5b). By way of summary, 
Fig. 5b tabulates features identified as the best feature subset following RFE analysis (Fig. S5d–f). Taken together, 
these data demonstrate that radiomic features from the CE-CT scans may assist in earlier discrimination of the 

Figure 4.  Assessment of features altered between normal and tumour regions in preclinical and clinical images. (a) 
Best Subset feature number (determined via RFE analysis) for each comparison is indicated within parentheses. 
Remaining uncorrelated feature number following pair-wise Spearman correlation, and AUC and ROC 
results are indicated for each comparison. (b) Tabular representation of Optimum features identified in inter-
hemisphere comparisons (LH vs RH). (c) Representative coronal CE-CT slice of TCIA-TCGA GBM tumour 
delineation and generated 3D VOI (red). (d) Box plots of most significant features identified in total LH vs RH 
analysis analysed in tumour vs normal features. P-value < 0.05 deemed significant, Wilcoxon rank sum test.
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tumour-implanted hemisphere. Moreover, CT-radiomic features can identify the tumour-implanted hemisphere 
3–6 weeks before tumours are detectable on visual inspection of images. (NB: longitudinal radiomic features 
were not verified in clinical datasets due to the absence of a longitudinal clinical imaging dataset).

Evaluation of CT delta radiomic features for early tumour detection
We next evaluated whether analysis of net feature change between normal tissue (LH) and tumour region (RH) 
could improve the ability of CT-radiomic features to determine tumour presence. Here, the Boruta algorithm, 
where features compete with shadow attributes rather than among themselves, was applied (Fig. S6). Firstly, 

Figure 5.  Evaluation of CT radiomic features for early tumour detection. A decision tree-based recursive feature 
elimination method was applied to the training dataset and RFE performed to select features of importance. 
Receiver operating characteristic (ROC) area under the curve (AUC) analysis following comparison of 
(a) CE-CT images across timepoints and (b) Tabular representation of features identified in timepoints 
comparisons. P-value < 0.05 deemed significant, Wilcoxon rank sum test.

Figure 6.  Delta radiomic analysis of relative feature change across timepoints. The Boruta algorithm was 
implemented to assess importance of features within DRF dataset. P < 0.05 deemed significant. Wilcoxon rank 
sum test.
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comparison of week-3 and week-9/12 delta radiomic features (DRFs) identified two features significantly altered 
between timepoints as ‘confirmed important’ (Z-score of feature > Maximum Z-score among shadow attributes). 
This analysis identified original glcm Joint Entropy as significantly increased (p = 0.001954) and original gldm 
small dependence high gray level emphasis as significantly decreased (p = 0.03301) in week-9/12 compared to 
week-3 (Fig S6a,b). Comparison of week-3 and week-6 DRFs, and week-6 and week-9/12 DRFs, rejected all other 
features as potential classifiers (Figs. 6, S6a). Figure 6 illustrates DRFs identified following timepoint comparison. 
Overall, these data indicate that normalisation to the corresponding hemisphere in which there is no tumour 
presence, and therefore delta radiomics, may indeed improve the utility of CT-radiomic features for early tumour 
detection in certain contexts. As above, features now require verification in longitudinal, clinical patient datasets.

Discussion
In the current study we have established preclinical CT-radiomic workflows and have shown that CT-radiomic 
features have the potential to distinguish the tumour-implanted hemisphere from the non-tumour-implanted 
hemisphere, thereby supporting early detection of tumours during longitudinal analysis. Moreover in a proof of 
concept study we have successfully translated preclinical radiomic pipelines to patient datasets. In this context, 
pre-clinical CT-features interrogated in clinical datasets demonstrated analogous trends in intensities (i.e. simi-
larly increased intensity in regions of tumour tissue), suggesting species  conservation30.

Firstly, we employed the  invasive24, orthotopic U87R-Luc2 GBM model (xenograft) to optimise preclinical 
brain tumour radiomic pipelines and identify radiomic features which may indicate tumour presence. Initially, 
CE-CT images were visually assessed, with only 16% of tumours visually discernible on average (Fig. S1d). We 
next interrogated CE-CT images to optimise radiomic feature analysis and assess if radiomic features could assist 
in discrimination of the tumour-implanted hemisphere compared to the non- tumour-implanted hemisphere. 
Strict reduction of redundant features (removal of shape and highly inter-correlated features) and implementation 
of robust statistical methods were employed throughout this study. Moreover, open-source software and tools 
were implemented to ensure reproducibility of the preclinical pipeline. When radiomic features in tumour and 
normal tissue were compared, we identified a three-feature classifier which putatively discriminates between the 
non-tumour-implanted hemisphere (LH) and tumour-implanted hemisphere (RH) regions. Aligning with previ-
ous studies, here LLH firstorder total energy wavelet feature was identified. Total Energy is the value of Energy 
feature, scaled by the voxel volume (cubic mm)25, and has previously been identified as significantly altered 
between Grade II and III gliomas (MRI)26. Similarly, GLCM cluster shade (measure of skewness and uniform-
ity) which is significantly increased (representing greater asymmetry about the mean) in tumour regions in our 
analyses has been utilised in the discrimination of high grade and lower grade primary brain  tumours27. There-
fore, these features may collectively facilitate discrimination of tumour-implanted and non-tumour implanted 
hemispheres. Further validation in larger cohorts is now required.

Next, features identified in preclinical CE-CTs were assessed in an exploratory, clinical TCGA-TCIA cohort 
of newly diagnosed  GBMs28. As no robust longitudinal clinical datasets were available for analysis, radiomic 
features identified as discriminators of normal vs tumour tissue, were univariately assessed for alterations between 
normal and tumour regions. Analogous trends in First Order Maximum (indicative of the maximum gray level) 
and Zone Entropy feature intensity (a higher zone entropy value indicates more texture heterogeneity) across 
animal and patient CTs were identified, suggesting species conservation. Moreover, entropy has been previ-
ously shown to correlate with glioma  grade27, further indicating features identified in the preclinic may indeed 
translate to the clinic.

Lastly, our results indicate that CT-radiomic features could support earlier detection of tumour presence when 
features were compared between timepoints (early RH (tumour-implanted hemisphere)-timepoint (Week-3 vs 
Week-6) comparison, and RH-mid (Week-6) and RH-late (Week-9/12)). Here we identified a number of wavelet 
gray level emphasis features (a higher value indicates a greater concentration of high gray-level values present) 
which have been shown to have prognostic utility when considered alongside GBM clinical  predictors29. Moreo-
ver, identified among these features, NGTDM Coarseness (A measure of average difference between the center 
voxel and its neighbourhood—higher values indicates a more uniform texture) has been shown to be significantly 
altered in the early thermographic detection of breast  cancer30. Overall, these data suggest that comparison of 
pre-clinical CT-radiomic features across timepoints represents a viable strategy for identification of imaging 
biomarkers for early brain tumour detection. Indeed, interrogation and verification of these features in longitu-
dinal datasets which incorporate clinical characteristics such as IDH mutation and MGMT methylation status, 
patient age and overall survival as additional variables is now warranted. Notably, raw radiomic features values 
vary in intensity between datasets due to inter-scanner differences and key differences between clinical and pre-
clinical scanners (E.g. scan energies, voxel size etc.). Therefore future expanded preclinical-clinical studies, which 
multivariately assess CT-radiomic features, will require harmonisation of data (E.g. via the ComBAT method).

To refine and further exploit the availability of longitudinal data, relative net change in preclinical GBM 
CT-radiomic features was also  studied31. It has previously been shown that Delta radiomic features (DRF; ∆) 
may generate an improved performance compared to standard radiomics  signatures32. DRF analysis was there-
fore implemented to interrogate DRF ability to facilitate early tumour prediction. Interrogation of net relative 
differences between LH and RH identified a number of features of importance. Among the features identified 
by the Boruta algorithm, GLCM Joint entropy (randomness/variability in neighbourhood intensity values) has 
previously been identified as indicative of oesophageal tumour  stage33. Overall, the identification of these fea-
tures indicates that CT-features representative of heterogeneity may be a suitable marker for tumour presence 
in preclinical orthotopic GBM CE-CTs.

While small animal CT imaging is not without challenges, including diffuse tissue margins and relatively poor 
soft tissue  contrast34,35, we have established a clinically relevant CT-radiomics pipeline for application in rodent 
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brain tumour models. Notably, while the RANO criteria have not yet been translated to the preclinical setting, 
the clinical Response Evaluation Criteria in Solid Tumours (RECIST)  criteria23 has been adapted for use in PDX 
clinical trials (mRECIST)24,25, indicating the strong value in the preclinical translation of clinical workflows, and 
ultimately improving translatability of preclinical models. Indeed, application of both conventional and delta 
CT-radiomics may enhance the utility of CT when applied to rodent brain tumour models, which may thus rep-
resent a clinically relevant and viable alternative to invasive biological sampling. Importantly, randomisation of 
outcomes throughout these analyses resulted in undefined AUC’s and CIs, indicating that despite relatively low 
cohort animal numbers in certain cases, the established feature analysis pipeline produced rational predictions.

Overall, limitations of this study include relative low sample numbers in both preclinical (experimental group 
numbers limited due to study design and adherence to the 3Rs) and clinical cohorts (lack of availability of public, 
longitudinal GBM CE-CT datasets). Future studies will require test–retest analyses to ensure robustness and reli-
ability of features over time. In addition, studies which implement an expanded panel of GBM models, directly 
comparing tumour size (via harvested tissue and IHC), tumour infiltration pattern (to account for tumour 
growth within the needle tract) and radiomic features, are warranted. Moreover, these studies would benefit 
from comparative, quantitative MRI to assist in overcoming discrepancies arising in the estimation of tumour 
burden and tumour progression when BLI is used alone, and when tumours are located close to the  skull36,37. 
These studies will underpin the future application of specific, tumour-region CT-radiomic features in earlier 
tumour detection. Therefore, to build on this hypothesis generating work, additional studies are now warranted. 
These studies should implement more frequent, longitudinal CT imaging, more adequately powered preclinical 
imaging groups and comparative MR imaging. Likewise, studies of radiomic features in a panel of GBM PDXs 
could yield classifiers which are progressively more clinically translatable compared to xenograft GBM  models38. 
Finally, development of deep learning methods to remove labour intensive and oftentimes subjective tumour 
segmentation is required.

In conclusion, this study demonstrates a promising role for pre-clinical CT-radiomic pipelines. Our data sup-
ports the application of a pre-clinical CT-radiomics strategy as an alternative monitoring method for rodent brain 
tumour models when BL and MR imaging is unavailable. Notably, we illustrate that identified radiomic features 
have capacity for translation to clinical images, indicating that preclinical models may provide discovery plat-
form for clinically relevant radiomic features. Overall, we demonstrate the potential for preclinical CT-radiomic 
classifiers to support the detection of orthotopic brain tumours which are otherwise difficult to detect visually.

Methods
Cell culture
The  invasive24,39 human GBM cell line U87R-Luc2 (gift from Peter Forsyth, Moffitt Cancer Center, Tampa, FL) 
was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) F12 supplemented with 10% fetal bovine serum 
and 400 mg/mL  G41822.

GBM orthoxenograft studies
In vivo studies were licensed and approved by the Heath Products Regulatory Authority (License number 
AE18982/P123) and University College Dublin’s Animal Research Ethics Committee (Protocol number P17-21). 
Animal experiments were carried out under Directive 2010/63/EU of the European Parliament on protection of 
animals used for scientific purposes. All sections of this manuscript adhere to ARRIVE Guidelines.

In vivo studies, which adhere to the PREPARE guidelines, were performed at the University College Dublin 
specific pathogen free (SPF) facility. Mice imported from Charles River UK (Cambridge, UK) were housed in 
groups of 4–6 in individually ventilated cages (Techniplast, London, UK) and given access to food and water 
ad libitum. A 12 h light/12 h dark cycle, 40–50% humidity and temperature of 18–22 °C were maintained 
throughout. Environmental enrichment of red polycarbonate houses, pura wooden chew stick, nesting material 
and clear plastic tunnels were provided. Animals were visually assessed daily to monitor overall health status. 
Experimental animal cohort numbers were calculated based on Workman et al.40.

For tumour implantations, NOD/SCID (4–6 weeks; female; 18–22 g) were anesthetized with O2/isoflurane 
mixture (1.5% isoflurane in 100% O2) and fixed in a stereotaxic frame. 2 ×  105 of U87R-Luc2 cells (NOD/
SCID [n = 20]) were orthotopically implanted at a depth of 2 mm into the right hemisphere (RH) as previously 
 described22. Adverse effects were scored on a multi-category scale and a rodent coma scale monitored neuro-
logical status.

In vivo data were analysed using GraphPad Prism (GraphPad Software, San Diego, CA USA) or Excel (Micro-
soft, Redmond, WA, USA). Student’s t-test, and ANOVA were performed to assess statistical significance. Sta-
tistical analysis of in vivo data was performed using a log-rank test for survival studies with p < 0.05 deemed 
significant.

In vivo study design
A cohort of U87R-Luc2 tumour-bearing mice (n = 10) underwent repeated CE-CT imaging at week-3, week-6, 
week-9 and week-12 post implantation (Fig. 2a). Late timepoint (Week-9 and Week-12) images were combined 
for analyses due to low number of remaining animals (n = 3 and n = 2 remaining at Week-4).

Bioluminescence imaging: Weekly BLI was  performed22 with an IVIS Spectrum (Perkin Elmer, Waltham, MA, 
USA) as previously described. Imaging was carried out under anesthesia (1.5% isoflurane/100%  O2) on a heated 
stage. 15 min prior to imaging, mice received 150 mg/kg luciferin (Perkin Elmer, Waltham, MA, USA) via subcu-
taneous injection. A 1 s reference image was taken (binning = 4, F-stop = 1). Living Image software (V4.3.1, Perkin 
Elmer Waltham, MA, USA) was utilised for BLI image analysis and average radiance (p/s/cm2/sr) was analysed.
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Immunohistochemistry
Post-mortem, whole brains were excised, rinsed in Dulbecco’s-(D)PBS solution and fixed in 4% formaldehyde 
(48 h). Tissues were embedded in paraffin and 5 μm thick sections cut. Routine hematoxylin and eosin (H&E) 
staining was performed to facilitate histological evaluation. Standard immunohistochemistry methods were used 
to stain for Ki67 and CD-31 (Mouse IgG; 1:150 dilution; Cell Signaling Technology, London, UK).

Preclinical CT Image acquisition and reorientation
Longitudinal CT images were acquired on the  TRIUMPHX-O-CT system (LabPet 4, X-O CT) (1.5% isoflurane/100% 
 O2). 0–1 min prior to imaging 300ul warmed iodine based-contrast (300 mg iodine/mL41) was administered via 
intravenous lateral tail-vein injection. CE-CT images were acquired at 50 kV, 200 projections, voxel size 120 µm, 
FOV 61.44 mm, slice thickness 2 mm and 88 µA. Delineation of each reconstructed CT DICOM was carried out 
using PMOD (version 3.9; PMOD Technologies). DICOMs were reoriented to the same focal plane for visual 
assessment (Fig. S1). To prevent inter-observer variability, two experts semi-automatically delineated regions of 
interest (ROI). 3D Volume of interests (VOIs) were delineated for both right hemisphere (RH; tumour-implanted 
hemisphere) and the left hemisphere (LH; non-tumour-implanted hemisphere), with a threshold determined 
per image to exclude bone from the generated bounding boxes. Specifically, features that completely represent 
the tumour-implanted hemisphere were selected via segmentation of the right hemisphere (RH). Features that 
represent the non-tumour-implanted hemisphere were selected via segmentation of the left hemisphere (LH).

Patient CT Image acquisition and segmentation
Cross-sectional and publicly available GBM patient CT (n = 10) images were downloaded from The Cancer 
Genome Atlas Glioblastoma Multiforme (TCGA-GBM) data  collection42 (The Cancer imaging archive (TCIA)28 
(https:// www. cance rimag ingar chive. net/)). Tumour and normal tissue were manually delineated from baseline 
(pre-treatment) scans (Fig. 4e) using the polygon tool and thresholding in ITKSnap  software34.

CT-radiomic feature extraction
Radiomic features are extracted over the whole ROI representing the left or right hemisphere using PyRadiomics 
(V2.7.7) (Harvard Medical School, Boston, MA, USA)25. Extraction parameters applied were: original = {}, wave-
let = {}, bin width = 25, correctMask = true, interpolator = 2, resampledPixelSpacing = [2.5, 0.390625, 0.390625] 
(‘Extraction Parameter File’, Supplementary Materials). A fixed bin width of 25 was used for discretisation of 
the image grey level. Feature classes extracted (n = 843 total features) include First Order Statistics, Shape-based 
features, Gray Level Cooccurence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size 
Zone Matrix (GLSZM), Neighbouring Gray Tone Difference Matrix (NGTDM), Gray Level Dependence Matrix 
(GLRLM), and finally the same features extracted from wavelet filtered versions of images. Mathematical defini-
tions of each feature is located in online pyRadiomics documentation.

Analytical pipeline
R software (version 3.5.2, R Foundation for Statistical Computing, Vienna, Austria; http:// www.r- proje ct. org) 
was employed for all the statistical analysis.

Reduction of preclinical data dimensionality: To avoid overfitting (large number of extracted features (n = 843) 
and low sample number can find many spurious correlations), all shape features were removed (n = 14, Fig. S2; 
highly conserved between LH and RH). Remaining features underwent predictive  analysis38 as follows. In all, 
outcome was assigned (0-LH; Normal tissue, 1-RH; tumour tissue) and datasets partitioned into training and 
validation cohort (80%:20% random split). Inter-correlated features were removed (determined in training 
dataset by pairwise Spearman correlation (> 0.8543) and removal of most highly correlated features). Reduction 
of clinical data dimensionality: All shape features (n = 14) were removed from downstream analyses.

Analysis of preclinical data: A decision tree-based recursive feature elimination method was applied to the 
training dataset, and recursive feature elimination performed using the recursive feature elimination (RFE) func-
tion (Caret package, version 6.0–8441; Cross-Validated (CV) via Repeated CV, five-fold, repeated 5 times). Most 
informative and non-redundant CT-radiomic features were selected to train a random forest, and to measure 
performance area under the receiver operator characteristic (ROC) curve (AUC) was calculated (pROC version 
1.15.3). AUC, sensitivity and specificity are reported for each RCV (Fig. 3b). R packages implemented throughout 
are tabulated within supplementary materials (Supplementary Table 1). Assignment of randomised outcomes and 
re-analysis via the aforementioned pipeline was subsequently performed to validate detection of signal vs noise 
(Data not shown). Analysis of clinical data: CT-radiomic features identified in the analyses of preclinical data (LH/
non- tumour-implanted hemisphere vs RH/tumour-implanted hemisphere analysis) were univariately analysed 
across normal and tumour regions of segmented clinical GBM CT images. Trends in feature intensity between 
tumour and normal regions were identified and demonstrated via box plot. Longitudinal radiomic features were 
not verified in clinical datasets due to the absence of a longitudinal clinical imaging dataset.

Delta Radiomic analysis: Feature-level changes were calculated by the relative net change between features 
from LH and RH (∆features = [featuresRH-featuresLH]/featuresLH). The Boruta  algorithm44 (version 7.0.0), which 
implements a wrapper around a random forest classification algorithm, was employed to identify delta radiomic 
features of importance (Fig. S6) across timepoints (Week-3, -6, -9/12). Importance scores were generated across 
features and Tentative Rough Fix performed to assess weaker features. Features ‘confirmed important’ exhibit a 
feature Z-score > Maximum Z-score among shadow attributes.

https://www.cancerimagingarchive.net/
http://www.r-project.org
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