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A fragmented neural network 
ensemble method and its 
application to image classification
Xu Zhang , Shuai Liu *, Xueli Wang  & Yumei Li 

In recent years, deep neural networks have evolved rapidly in engineering technology, with models 
becoming larger and deeper. However, for most companies, developing large models is extremely 
costly and highly risky. Researchers usually focus on the performance of the model, neglecting its 
cost and accessibility. In fact, most regular business scenarios do not require high-level AI. A simple 
and inexpensive modeling method for fulfilling certain demands for practical applications of AI is 
needed. In this paper, a Fragmented neural network method is proposed. Inspired by the random 
forest algorithm, both the samples and features are randomly sampled on image data. Images are 
randomly split into smaller pieces. Weak neural networks are trained using these fragmented images, 
and many weak neural networks are then ensembled to build a strong neural network by voting. 
In this way, sufficient accuracy is achieved while reducing the complexity and data volume of each 
base learner, enabling mass production through parallel and distributed computing. By conducting 
experiments on the MNIST and CIFAR10 datasets, we build a model pool using FNN, CNN, DenseNet, 
and ResNet as the basic network structure. We find that the accuracy of the ensemble weak network is 
significantly higher than that of each base learner. Meanwhile, the accuracy of the ensemble network 
is highly dependent on the performance of each base learner. The accuracy of the ensemble network 
is comparable to or even exceeds that of the full model and has better robustness. Unlike other similar 
studies, we do not pursue SOTA models. Instead, we achieved results close to the full model with a 
smaller number of parameters and amount of data.

In recent years, deep neural networks have evolved rapidly in engineering applications. Model complexity is 
continuously increased, moving from the convolutional neural network (CNN) as the classic image recognition 
model and the recurrent neural network (RNN) as a sequence data processing model. Many specific model 
designs have been proposed for various scenarios, such as You Only Look Once (YOLO) for object  detection1, 
Generative Adversarial Networks (GAN) for video  restoration2, Bidirectional Encoder Representation from 
Transformers (BERT) for natural language  processing3, and GPT-34 created by Google for question-and-answer 
systems. These models represent the current trends of AI, which is massive, specialized and expensive. However, 
for most small and medium enterprises, the enormous computing power and labor costs are unaffordable. For 
example, the number of parameters of the GPT-3 mentioned above reached 17.5 billion. Moreover, in terms of 
business practices, such an investment is enormous and yields slow returns. Sometimes, generating direct benefits 
is difficult, and a high risk exists in R&D and productization. Therefore, in AI applications, we sometimes need 
powerful and easily accessible models. We need more general methods for obtaining models with practical value 
at low costs. We need models that can be trained on distributed clusters and achieve relatively high performance 
without requiring special designs by high-level experts. This can make producing models easier, making AI 
applications more accessible and allowing more companies to apply deep learning models in business activities.

The deep ensemble model causes many weak learners to integrate into strong learners using bagging, boosting 
and other methods. Many studies have confirmed that ensemble base learners using various strategies exhibit 
stronger performances and more robustness than single  classifiers5. However, most of the existing papers focus on 
achieving higher test accuracy by designing different ensemble architectures without considering the enormous 
computation and design costs. These performance-oriented ensembles are not conducive to business applications. 
On the other hand, the ensemble algorithm of random  forest6 that constructs multiple decision trees in parallel 
based on sample and feature sampling can effectively improve the computational efficiency. The classic random 
forest algorithm has many advantages. Since all the trees are built independently, we can use massive parallelism 

OPEN

School of Mathematics and Statistics, Beijing Technology and Business University, Beijing, China. *email: ls@btbu.
edu.cn

http://orcid.org/0000-0002-0454-1096
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-52945-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2291  | https://doi.org/10.1038/s41598-024-52945-0

www.nature.com/scientificreports/

for computation. Meanwhile, each tree uses only part of the features and part of the samples, which limits the 
amount of computation required per tree. Moreover, this is a natural distributed computing framework, where 
each node stores a portion of the data for training its own tree. Finally, we do not need to transfer data when 
integrating trees into forests, which aligns with the current idea of federal learning.

In this paper, we propose a fragmented neural network ensemble method based on the random forest sam-
pling strategy, i.e., constructing many weak neural networks to eventually ensemble into a strong neural network. 
Weak neural networks are trained using feature-sampled and sample-sampled data, resulting in weak learners 
that are detail-oriented and randomized. The fragmented network is constructed for the following reasons:

(1)  The main purpose of the fragmented network is not to achieve a state-of-the-art model exhibiting high 
accuracy but rather a model that can be easily implemented and applied under limited computation and 
human labor conditions.

(2)  Based on evaluated scenarios, experts do not need to be much involved in the design and optimization of 
the model architecture, and the base learners are all structurally simple models.

(3)  Parallel and distributed computation can be easily performed, thus transforming the time efficiency prob-
lem into an engineering and control problem.

In this paper, MNIST handwriting classification and recognition data and CIFAR10 classification data are 
used to build a fragmented neural network for image classification. The goal is to propose a learning mechanism 
and demonstrate that ensemble neural networks can be used instead of large and complex networks to a certain 
extent.

In summary, an ensemble learning approach based on a voting system is proposed in this paper. This approach 
is a model strategy, not a specific model. A strong model is formed by ensemble weak models and achieves the 
goals mentioned above. Finally, the model effect is validated on the MNIST and CIFAR10 datasets.

Related work
Ensemble neural networks
An ensemble neural network trains multiple networks first and then combines the predictions of these models 
by specific fusion strategies, eventually obtaining higher accuracy than each separate models due to the diversity 
among the base  learners7. The ensemble strategy primarily includes bagging, boosting, stacking, homogeneous 
and heterogeneous  ensembles8. Among these, bagging is an effective method that can improve the computational 
speed through parallelism. In this paper, we learn the sampling and ensemble method of random forest to build 
image classification neural networks.

Ensemble strategies
To obtain a more general ensemble neural network that does not require elaborate designs, Alvear-Sandoval et al.9 
used the SDAE-3 network as the base model and used bagging and class switching to improve the diversity of the 
ensemble model. The results demonstrated that the model performs well on the MNIST dataset.

Ensemble models can significantly improve accuracy but require considerable time and computational 
resources, which make them difficult to implement in practical situations. To alleviate this problem, Yang et al.10 
proposed the FTBME model, which applies three strategies; feature transferring, a random greedy algorithm and 
fusing weight space. Experimenting on a classic image classification dataset shows that the model can effectively 
reduce the time cost while maintaining accuracy.

Yoon et al.11 proposed a knowledge distillation algorithm that trains a single network with the results of 
the ensemble model. After segmenting the face into different subregions and training the ensemble network 
separately, the output probability is trained as the input of a single neural network in the face recognition task. 
The results show that the accuracy of the ensemble network can be maintained while the time and space costs 
are reduced.

Cao et al.12 proposed an implicit ensemble model that condenses the training results of the ensemble model 
into a single model. It can effectively reduce the training cost but loses the diversity of the ensemble model 
because the features captured by each base model at the beginning layers may be very similar.

Katuwal et al.13 proposed the edRVFL ensemble neural network. In contrast to traditional ensemble models 
that train multiple models, they trained only one dRVFL model and then equally treated the results of each hid-
den layer as the outputs. They obtained excellent results on each benchmark dataset.

Decision fusion strategies
The final stage of ensemble learning requires a decision strategy to make the final prediction. In recent years, 
many in-depth studies have addressed this issue:

Sánchez-Morales et al.14 used CNNs, CapsNets and CDAE as base learners, the output probabilities of each 
model as features, and the K-NN algorithm for training to obtain the weights of each model on each category. 
Afterward, the categories were weighted to obtain the final category, achieving excellent performance on retinal 
image data.

Ju et al.15 used four decision strategies, unweighted averaging, majority voting, the Bayes optimal classifier, and 
the super learner, to test the results on different datasets. They found that the unweighted average is significantly 
better than the other decision strategies when the test accuracies of the base learners are similar. However, the 
results become unusually sensitive when an overconfident model is present in the base learners; in this case, the 
super learner performs better.
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Xia et al.16 proposed a new stacking ensemble model for multiclassification problems. The correlation between 
the labels is also considered in the stacking process to calculate the weights, and the “accelerated proximal gradi-
ent and block coordinate descent optimization” method is then used to accelerate the optimization. This model 
achieved strong results on a cardiovascular disease dataset.

Applications
Due to the good performance and accessibility of deep ensemble models, deep ensemble models are being used 
to solve problems in an increasing number of fields.

Gifani et al.17 trained three neural networks, DenseNet201, ResNet50V2 and Inceptionv3. The models with 
lower error rates were given higher weights in the decision phase. They obtained 91.62% accuracy on the public 
covid chest X-ray dataset.

Rai et al.18 used CNN and CNN-LSTM for unweighted average ensemble training; moreover, they used the 
SMOTE-Tomek Link technique to handle imbalanced data, finally obtaining 99.89% accuracy on 123,998 ECG 
heartbeat samples.

Iqbal et al.19–21 trained a CNN that identified diseased cells with 98% accuracy and enabled the discovery of 
normal and diseased cells.

Ensemble models on the MNIST dataset
The MNSIT handwritten recognition dataset is divided into a training and a test set, where the training set 
contains 60,000 images and the test set contains 10,000 images. The MNIST dataset is often used to test the per-
formance of network architectures and to continuously improve the classification accuracy of MNIST datasets. 
Currently, several state-of-the-art models for handwritten digit recognition using deep ensemble networks exist:

(1)  Hirata et al.22 proposed the EnsNet model, which consists of a CNN and multiple FCSNs. The features 
of the last convolutional layer in the CNN are divided, and the different subsets of the division are passed 
as features to the individual FCSNs. Finally, the decision is made using majority voting, obtaining a final 
accuracy of 99.84% on MNIST.

(2) Tabik et al.23 proposed a heterogeneous ensemble model, MNIST-net10, where the base model uses several 
CNN networks with different structures and is ensembled using two different fusion strategies, FS2 and 
FS3. MNIST-net10 obtained 99.9% accuracy in MNIST.

(3)  An et al.24 trained a CNN model using three different convolutional kernels for two-stage ensembles, i.e., 
the final model was a heterogeneous ensemble model consisting of three homogeneous ensemble networks. 
They eventually achieved 99.91% accuracy on MNSIT, the highest accuracy currently achieved on the 
MNIST dataset.

Discussions
In most literatures, the main motivations can be summarized quite similar: how to gain a state-of-the-art model, 
or how to improve the model in some aspects. There are many kinds of model designs due to such a purpose. But 
the strongest model may not the most useful model. In practical applications, we usually limited by the physical 
conditions, such as hardware, software, labor and money. It is important to take them into consideration while 
modeling.

In this paper, the proposed method is carried out under restricted conditions. The parameters and training 
data cannot be large for each model, which ensures low complexity and low computational effort of each model. 
All the base models must be independent, which enables parallel and distributed computing. Meanwhile, ensem-
ble method is used to unite all weak models as a way to ensure model effectiveness. These efforts are important 
for business applications, which means a relatively underpowered model but useful.

Method
The proposed model is an ensemble neural network with fragmented image data. The training set is first sam-
pled by a certain percentage, while the features are sampled according to different window sizes. n training sets 
are collected to train n base learners separately and finally generate an ensemble model using various decision 
strategies. Tabik et al.23 showed that increasing the diversity of ensemble models from the perspective of data, 
models, and decision strategies can effectively improve model generalizability.

For feature sampling, we are inspired by the image processing strategy in the YOLO  model1. A square or 
rectangular window is randomly selected as the sampling window for each feature sampling, and only the image 
fragments within the window are collected. The neighboring pixel information of the image is used, significantly 
improving the computational efficiency. Three models, the feedforward neural network (FNN), CNN, and deep 
residual network (ResNet)25, are selected as the base learners for constructing the model pool. In the final decision 
phase, we compare four voting methods of unweighted average and majority voting combining winner-takes-
all or not. The fragmented ensemble neural network can effectively reduce the time cost while maintaining an 
accuracy comparable to that of the full model. The flow diagram of the proposed method is shown in Fig. 1, and 
the pseudocode of the whole algorithm can be found in Table 1.

Consent to participate
Consent to participate was obtained from all participants.
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Experiments
Data preprocessing
The MNIST dataset is divided into training and testing sets, where the training set contains 60,000 images and 
the testing set contains 10,000 images. Each of the images is a gray handwritten number from 0 to 9 with 28 × 28 
pixels and 1 channel. The training and testing sets are first normalized. Then, sampling is conducted in the same 
way as random forest. First, a certain number of samples are drawn according to the proportion, for example, 
10,000 samples with replacement. Afterward, image fragment extraction is performed according to the predefined 
square window size range [a, b](a, b ∈ N ,≤ 28) , and the window sizes are equally assigned to each base model. 
For example, the window size range  is15,19, and 10 base models are constructed; then, the window sizes of the 10 
base models are {15, 15, 16, 16, 17, 17, 18, 18, 19, 19}. Finally, the window location is randomly selected within 

Figure 1.  The flow diagram of the proposed method.

Table 1.  pseudocode of the proposed algorithm.

Initialize: window size range [a, b] , base models {Fi}Ni=1 , train set X , test set Xtest , number of base learners N  , voting strategy V  , sample 
size M
Output: ensemble model Fens , prediction y

Step 1: Assign a window size Ci to each Fi . The number of Fi assigned per window size is N//(b− a) , where window size b is assigned 
N%(b− a) base models;
Step 2: for each 1 ≤ i ≤ N do:
Xboot = sample(X,M)
 cut images into fragments, Xboot = Cut(Xboot ,Ci)
 fit models, Fi = Fi .fit(Xboot )
 cut test images into fragments, Xtest = Cut(Xtest ,Ci)

 predict, yi = Fi .predict(Xtest )

Step 3: ensemble, Fens = V
(

{Fi}
N
i=1

)

 , y = V
(

{

yi
}N

i=1

)

;

Step 4: return Fens , y
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the image area; only the image fragments of all sampled samples within the window are retained. Figure 2 depicts 
the schematic diagram of extracting image fragments. For CIFAR10, the data preprocessing is all the same.

Modeling design
FNN, CNN and ResNet networks are selected to construct the model pool for MINIST, and DenseNet for CIFA10. 
To improve the computational efficiency, the parameters of each model should not be overly complex. For the 
FNN network, the dataset is first spread as a vector of window size * window length, after which a 4-layer neural 
network is constructed. The activation function of each layer is the ReLU function, and ten classes are finally 
output. For the CNN network, 2D convolution is first performed on each convolutional layer, followed by the 
ReLU activation function and max pooling layer. After the two convolutional layers, three fully connected layers 
are connected to change the output to ten classes. The ResNet network first performs 2D convolution, after which 
the BatchNorm layer is connected with the ReLU activation function and a max pooling layer. Afterward, four 
BasicBlocks are connected, and each BasicBlock contains two layers. Finally, the output is transformed to ten 
classes using a fully connected network with AdaptiveAvgPool. The underlying architectures of the four neural 

networks are illustrated in Fig. 3, where f = 16

(
(

w−4
2

)

−4

2

)2

 , w represents the size of the input images, and nch 

represents the input number of channels.
After the different base neural networks are selected and trained on fragmented samples, a decision strategy 

is needed to integrate all the models in the model pool. In this paper, four voting strategies are selected, namely, 
unweighted voting, majority voting, winner-takes-all-based unweighted voting (winner-unweighted voting) 
and winner-takes-all-based majority voting (winner-majority voting), where unweighted voting and majority 
voting are the two commonly used decision strategies in ensemble  models8. Winner-takes-all indicates that the 
confidence level is calculated based on the maximum value of each model’s predicted probabilities on 10 cat-
egories. The larger the maximum probability value is, the higher the confidence of the model in the prediction, 
and the greater the weight that should be given. Therefore, only the top n models with the highest confidence 
level are selected for voting:

where wij represents the weight of the base model j for the sample i , pij represents the maximum of the output 
probabilities of the base model j for the 10 categories, B represents the number of base models to be selected, C 
is the number of all base models, and large

(

pik ,B
)

 represents the head B largest values in pik.
Unweighted voting is a soft voting method. The probabilities of all base learners are gathered together, and 

the average probability values of all classes are output as unweighted averages. Finally, the category with the 
highest probability is output as the prediction. In contrast, majority voting is a hard voting method. First, he 
predicted classes are obtained based on the output probabilities of each learner, and the class with the most votes 
among the predicted classes of all base learners is then output. The unweighted average may be more sensitive 
to overconfident models.

Finally, the models are evaluated by accuracy, which can be described by formula:

Results
Results on MINIST
For the FNN, CNN, and ResNet networks, we test two groups of hyperparameters, and each model is trained for 
50 epochs. The tested accuracy barely improves after 50 epochs of training. The initial parameters are initialized 
randomly. The first set of hyperparameters is trained with 20 base learners, and the sample size is 10,000, which 
reduces the computing complexity while maintaining the model accuracy. The sampling window size is set 
between 16 and 20, which is equally distributed among the 20 base learners. In this paper, the decision strategy 
is fixed on the winner-majority vote method, i.e., for each image fragment, the models with the highest predicted 

(1)wij =

{

1 pij ≤ large
(

pik ,B
)

k∈[1,C]
0 else

,

(2)accuracy = numberofcorrectlyclassifiedsamples/totalsamplesize.

Figure 2.  Extracting image fragments on different subsamples with different windows.
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probability are selected for majority voting. The number of base learners is increased to 30 for the second set of 
hyperparameters, and the sample size is increased to 15,000. The sampling window size ranges from 18 to 22, 
increasing the accuracy of the base models to test the stability of the ensemble results. Figures 4, 5 and 6 show the 
variations between the accuracies of all base learners and the ensemble model on test data, with increasing epochs 
under two sets of parameters and three kinds of networks. All results show that the accuracy of the ensemble 
model is significantly higher than the accuracy of each base learner. This indicates that the advantages of each 

Figure 3.  Network architecture of the base models, which are FNN, CNN and ResNet.

(a) FNN model results for the first set of parameters (b) FNN model results for the second set of parameters

Figure 4.  Comparison of the testing accuracy of each base learner of the FNN with the ensemble model during 
training.
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base learner can be effectively fused by an ensemble to improve accuracy. The bottom solid line indicates that 
the model tested accuracy is always the lowest, which may be due to the low amount of information contained 
in that image fragment.

Meanwhile, as shown by the results in Table 2, as the model parameters and complexity of FNN, CNN and 
ResNet increase, the average accuracy of the base model and the accuracy of the ensemble model increase sig-
nificantly, which indicates that the accuracy of the ensemble model is highly dependent on the training effect 
of the base model.

To compare with the full model, the full model of the three neural networks is trained with 50 epochs on all 
60,000 images. The accuracy comparisons between the full models and ensemble models with the winner-major-
ity voting strategy are shown in Figs. 7, 8, and 9. The results indicate that the accuracy of the fragmented ensemble 
network of the three models is comparable to or even exceeds the accuracy of the full model. Meanwhile, the 
ensemble model is more stable in terms of test accuracy than the full model, indicating better robustness. This 
suggests that weak neural network integration using fragmented images can be assumed to be an approximate 

(a) CNN model results for the first set of parameters (b) CNN model results for the second set of parameters

Figure 5.  Comparison of the testing accuracy of each CNN base model with the ensemble model during 
training.

(a) ResNet model results for the first set of parameters (b) ResNet model results for the second set of parameters

Figure 6.  Comparison of the test accuracy of each ResNet base model with the ensemble model during 
training.

Table 2.  Comparison of each ensemble model with its base models, where 20 in FNN-20 represents the 
number of base models.

FNN-20 FNN-30 CNN-20 CNN-30 ResNet-20 ResNet-30

Maximum accuracy in base models 0.9506 0.9625 0.9497 0.9804 0.9855 0.9912

Ensemble model accuracy 0.9715 0.9768 0.9814 0.9874 0.9895 0.9934
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substitute for a strong neural network. Since weak neural networks are independent of each other and simple 
in structure, we can easily implement engineering techniques such as parallel and distributed computing to 
improve computational efficiency.

The accuracy of the ensemble model under the four voting strategies is depicted in Table 3. The results show 
that unweighted voting has the highest average accuracy. However, unweighted voting requires more time than 
the other voting strategies since the prediction results of all the base learners are used, which is more obvious 
when the data volume is large.

Figure 7.  Variation in the test accuracy of the FNN ensemble model and full model during training.

Figure 8.  Variation in the test accuracy of the CNN ensemble model and full models during training.

Figure 9.  Variation in the test accuracy of the ResNet ensemble model and full model during training.
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Afterward, we gradually increase the number of base learners, the sample size, and the sampling window size 
to observe the variations in model accuracy and time consumption. To simplify the calculation, we use 15 training 
epochs because convergence can almost occur in 15 training epochs. The training is conducted for the FNN and 
CNN models using the same number of processes as the number of base learners to parallelize the computation. 
For each set of parameters, we train ten groups of models and calculate the time intervals consumption and accu-
racy. To compare the gains of the models under parameter variations, we use the following metric as a measure:

where σ and η are the tuning parameters, �acc represents the accuracy variation, and �t represents the time vari-
ation. We aim tune the results to a smaller interval to make them more observable, and thus, we set σ = 1× 103 , 
η = 1× 105 . We hope that the changes in parameters will result in a larger accuracy gain with a smaller increase 
in training time. Figures 10, 11, and 12 show the changes in St as the sample size, sampling window size, and 
number of models increase.

The results show that the gain from the ensemble model gradually decreases as the sample size increases, 
which means that the accuracy improvement decreases while the time consumption rapidly increases. The 

(3)St = σ�acc/e
�t
η ,

Table 3.  Test accuracy of each ensemble model under the four voting strategies compared to the full model.

Full model Winner-unweighted Majority Winner-majority Unweighted

FNN 0.9787 0.9801 0.9812 0.9804 0.9813

CNN 0.9892 0.9884 0.9884 0.9889 0.9885

ResNet 0.9939 0.9937 0.9942 0.9937 0.9941

Figure 10.  Variation in St for FNN and CNN with different sample sizes.

Figure 11.  Variation in St for the FNN and CNN with different window sizes.
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increase in the number of learners greatly benefits the ensemble model in the early stage, but the benefit no longer 
improves significantly when the number of learners reaches 20. The effects of the sampling window size on the 
FNN and CNN differ. The variation in the window size of the FNN does not significantly impact the training 
time, and accuracy does not significantly increase. In contrast, the accuracy of the CNN is more sensitive to the 
sampling window size due to the convolutional layers in the model. Therefore, a larger sampling window size of 
the CNN yields a strong improvement in St.

Tables 4, 5 and 6 show detailed information about the time consumption, accuracy, and St of the FNN and 
CNN. The complex base learners do not have a significant advantage over the simple base learners under the 
random forest style ensemble network with voting decisions. Considering time consumption, they may be even 
less cost-effective.

Results on CIFAR10
DenseNet is used to build model pool for CIFAR10, since the previous research shows it is better for high noisy 
data like CIFAR10. The modeling process is the same with MINIST. 20 base learners are trained with 50 epochs, 
the sample size is 10,000, the sampling window size is set between 25 and 29. The test accuracy of ensemble model 
and base models are shown in Fig. 13. The results are the same with MINIST, ensemble model is significant higher 
than any base model. Ensemble of week models with fragmented images is effective.

Figure 14 is the comparation of ensemble model with full model. We found it is not that good like MINIST, 
since the accuracy of ensemble model is 0.7407 and does not reach that of full model of 0.7617. That is because 
CIFAR10 contains much more noise than MINIST, the full model with larger parameters and full image will gain 
more advantages than MINIST. However, the accuracy of ensemble model still converges on full model after 50 
epochs. The ensemble method still reaches our expectation, it is a useful method.

Heterogeneous model pool
A heterogeneous model pool means that each base learner should be as diverse as possible in terms of samples, 
features, and model structures while maintaining a certain accuracy. This allows the final model to combine 
different learning preferences of each base learner to obtain a stronger learning capability. To compare the het-
erogeneous ensemble model with the homogeneous ensemble model, we select the FNN, CNN, support vector 
machine (SVM), eXtreme Gradient Boosting (XGBoost), and ResNet10t models for training. First, the sampling 
window size ranges  between16,22, which is equally distributed to each model, i.e., each model trains 5 base models 
with different sampling window sizes. Table 7 depicts the highest tested accuracy of each ensemble model under 
the four voting strategies. The ensemble of all five kinds of base learners yields an accuracy of 98.15%. Although 
this significantly higher than four of the homogeneous ensemble models, it is lower than the 99.11% accuracy of 
the ResNet ensemble. When ResNet is removed, the accuracy of the ensemble network reaches 97.55%, which 
is higher than the accuracy of the four ensemble models. Ensemble-5 achieves a lower accuracy than ResNet 
because unweighted voting is very sensitive to overconfident base learners. The base learners must be somewhat 
comparable when using average voting. Additionally, structural differences or different learning preferences 
among the learners are required for better integration. Utilizing a super learner may be a good strategy when 
an overconfident base learner is  used15. However, the proposed approach uses bootstrap sampling and does not 
apply cross-validation in optimization, so it is not suitable for use with a super learner.

ensemble-4 and ensemble-5 are heterogeneous ensemble models with all kinds of base learners, where ensem-
ble-4 represents the ensemble of all models except the ResNet networks, and ensemble-5 represents the ensemble 
of all models.

Figure 12.  Variation in St values for FNN and CNN with different numbers of base learners.
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Conclusions
In this paper, we propose a fragmented neural network approach that ensembles many small weak networks. 
This approach is expected to reduce the technical difficulty and hardware requirements of deep learning and 
thus provide an AI approach that is more accessible for practical use. We conduct experiments on the MNIST 
and CIFAR10 datasets with FNN, CNN, DenseNet, and ResNet as the base network structure. The following 
conclusions are obtained by comparing the ensemble weak networks and the single full model.

(1) By using fragmented images to build weak neural networks as base learners, the accuracy of the ensemble 
model is significantly higher than that of each base learner. Although each base learner can represent only 
the information of its randomly extracted image fragments, the ensemble network can still effectively fuse 
the information of each base learner. Thus, similar to random forest, a strong ensemble neural network with 
higher accuracy is created. Meanwhile, the accuracy of the ensemble network increases significantly as the 
base learner becomes more complex; that is, the accuracy of the ensemble network is highly dependent on 
the performance of the base learners.

(2)  Comparing the ensemble network with the full neural network, which is trained with full data shows that 
the accuracy of the ensemble network is comparable to or even exceeds the accuracy of the full network. 
The accuracy of the ensemble network is also more stable than that of the full model, which suggests that 
the ensemble network can achieve better robustness. It is reasonable to conclude that the ensemble of 
weak networks trained with fragmented images can be an approximate substitute for the full network. In 

Figure 13.  Comparison of the testing accuracy of each DenseNet base model with the ensemble model during 
training.

Figure 14.  Variation in the test accuracy of the DenseNet ensemble model and full models during training.

Table 7.  Comparison of the test accuracy of each ensemble model with heterogeneous ensemble models.

Model XGBoost ensemble SVM ensemble FNN ensemble CNN ensemble ResNet ensemble Ensemble-4 Ensemble-5

Accuracy 0.9627 0.9703 0.97 0.9748 0.9911 0.9755 0.9815
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addition, since the weak networks are independent of each other and have a simple structure, we can use 
parallel and distributed computing techniques to reduce the time consumption.

(3) We can build a heterogeneous model pool, which allows the ensemble model to have multiple learning 
preferences. This can effectively enhance model diversity and improve model performance.

Future work
The research in this paper still has many shortcomings, for example, the way of model ensemble is relatively 
simple and the model pool is not diversified enough.

In future work, we plan to conduct further research on fragmented ensemble neural networks. We hope to 
build a control system for dynamic model pools that can easily conduct operations such as adding, deleting, 
and querying to the model pool in engineering applications. This allows us to inspect the performance, samples, 
and features of each base learner in real time. We can also eliminate poor models or outdated models and then 
integrate new models trained with new data in real time, which provides evolutionary capability to the ensemble 
model.

On the other hand, since the base learners exhibit good independence from each other, we can try to apply 
this method in federated learning. Each data node can be considered as a fragment of data. We can train the 
model locally at each data node and then transfer the models to the central node. Ensemble decisions are formed 
at the central node through voting. This is simpler than transmitting parameters for federated learning, and it 
significantly reduces the communication cost.

Data availability
The datasets used in this work come from public datasets, which are available at http:// yann. lecun. com/ exdb/ 
mnist/, and https:// www. cs. toron to. edu/ ~kriz/ cifar. html.
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