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Predicting outcomes 
following lower extremity open 
revascularization using machine 
learning
Ben Li 1,2,3,4, Raj Verma 5, Derek Beaton 6, Hani Tamim 7,8, Mohamad A. Hussain 9, 
Jamal J. Hoballah 10, Douglas S. Lee 11,12,13, Duminda N. Wijeysundera 12,13,14,15, 
Charles  de Mestral 1,2,12,13,15, Muhammad Mamdani 3,4,6,12,13,15,16 & 
Mohammed Al‑Omran 1,2,3,4,8,15,17*

Lower extremity open revascularization is a treatment option for peripheral artery disease that 
carries significant peri-operative risks; however, outcome prediction tools remain limited. Using 
machine learning (ML), we developed automated algorithms that predict 30-day outcomes following 
lower extremity open revascularization. The National Surgical Quality Improvement Program 
targeted vascular database was used to identify patients who underwent lower extremity open 
revascularization for chronic atherosclerotic disease between 2011 and 2021. Input features included 
37 pre-operative demographic/clinical variables. The primary outcome was 30-day major adverse limb 
event (MALE; composite of untreated loss of patency, major reintervention, or major amputation) or 
death. Our data were split into training (70%) and test (30%) sets. Using tenfold cross-validation, we 
trained 6 ML models. Overall, 24,309 patients were included. The primary outcome of 30-day MALE or 
death occurred in 2349 (9.3%) patients. Our best performing prediction model was XGBoost, achieving 
an area under the receiver operating characteristic curve (95% CI) of 0.93 (0.92–0.94). The calibration 
plot showed good agreement between predicted and observed event probabilities with a Brier score 
of 0.08. Our ML algorithm has potential for important utility in guiding risk mitigation strategies for 
patients being considered for lower extremity open revascularization to improve outcomes.

Peripheral artery disease (PAD) is a chronic atherosclerotic disorder that primarily causes decreased perfusion 
to the lower extremities, manifesting in claudication, rest pain, and tissue loss1. Affecting over 200 million peo-
ple worldwide, PAD is a major contributor to decreased quality of life, rising health care costs, limb loss, and 
death2–5. Lower extremity open revascularization is a surgical treatment option for PAD that has been recently 
demonstrated in the BEST-CLI trial to achieve superior outcomes compared to endovascular therapy for chronic 
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limb threatening ischemia (CLTI) in patients with an adequate great saphenous vein conduit6. Nevertheless, 
open revascularization carries a high risk of complications, with major adverse limb event (MALE) or death 
occurring in over 40% of the surgical group in the BEST-CLI trial after a median follow-up of 2.7 years6. Others 
have shown that over 30% of patients will suffer a major adverse event within 30 days following lower extrem-
ity bypass7. As a result, the Global Vascular Guidelines recommend careful assessment of surgical risk when 
considering patients for revascularization8.

There are currently no widely used clinical tools to predict adverse events following lower extremity open 
revascularization. In the research setting, current models are limited to trauma patients9, Japanese and Finnish 
cohorts10,11, and prediction of groin wound infections12. Furthermore, tools such as the American College of 
Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) surgical risk calculator13 and Vascular 
Study Group of New England (VSGNE) Cardiac Risk Index (CRI)14 use modelling techniques that require manual 
input of clinical variables, which deters routine use in busy medical settings15. Therefore, there is an important 
need to develop better and more practical surgical risk prediction tools that overcome existing limitations with 
automated modelling techniques, inclusion of more geographically diverse cohorts with atherosclerotic disease, 
and assessment of more clinically relevant outcomes such as MALE or death.

Machine learning (ML) is a rapidly advancing technology that allows computers to learn from data and 
make predictions16. This field has been driven by the explosion of electronic medical record data combined with 
increasing computational power17. Previously, ML has been applied to the ACS NSQIP database to develop algo-
rithms that predict peri-operative complications in a pooled dataset of over 2900 unique procedures, including 
patients undergoing day surgery to those requiring intensive care unit admission18. Given that this cohort rep-
resents a heterogeneous surgical population, better predictive performance may be achieved by developing ML 
algorithms specific to patients undergoing lower extremity open revascularization. In this study, ML was applied 
to the ACS NSQIP database to predict 30-day MALE or death and other outcomes following lower extremity 
open revascularization using pre-operative data.

Methods
Ethics
All methods were carried out in accordance with the World Medical Association Declaration of Helsinki19. Insti-
tutional research ethics board review and informed patient consent were not required as the data came from a 
large, deidentified registry, which is an accepted practice for studies based on ACS NSQIP data20.

Design
We conducted a multicenter retrospective cohort ML-based prognostic study and findings were reported based 
on the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRI-
POD) statement21.

Dataset
Created in 2004, the ACS NSQIP database contains demographic, clinical, and 30-day outcomes data on surgical 
patients across over 700 hospitals in approximately 15 countries worldwide22. The information is prospectively 
collected from electronic health records by trained and certified clinical reviewers and regularly audited by ACS 
for accuracy23. In 2011, targeted NSQIP registries for vascular operations were developed by vascular surgeons, 
which contain additional procedure-specific variables and outcomes24.

Cohort
All patients who underwent scheduled and unscheduled lower extremity infrainguinal open revascularization 
for chronic atherosclerotic disease between 2011 and 2021 in the ACS NSQIP targeted vascular database were 
included. This information was merged with the main ACS NSQIP database for a complete set of generic and 
procedure-specific variables and outcomes. Patients treated for lower extremity aneurysmal disease, acute limb 
ischemia, trauma, dissection, or malignancy, as well as those with unreported symptom status (CLTI, claudica-
tion, or asymptomatic) or undergoing concurrent major amputation were excluded.

Features
Thirty-seven pre-operative variables were used as input features for our ML models. Demographic variables 
included age, sex, body mass index, race, ethnicity, and origin status. Comorbidities included hypertension, 
diabetes, smoking status, congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), end 
stage renal disease (ESRD) requiring dialysis, functional status, and physiologic high-risk factor [defined as at 
least one of the following: (1) end stage renal disease, (2) age > 80, (3) New York Heart Association CHF class 
III/IV, (4) left ventricular ejection fraction < 30%, (5) unstable angina within 30 days prior to surgery, or (6) 
myocardial infarction (MI) within 30 days prior to surgery]. Medications included antiplatelets, statins, and 
beta blockers. Pre-operative laboratory investigations included serum sodium, blood urea nitrogen (BUN), 
serum creatinine, albumin, white blood cell count, hematocrit, platelet count, international normalized unit 
(INR), and partial thromboplastin time (PTT). Limb hemodynamics based on ankle brachial index (ABI), toe 
pressure, and palpability of pedal pulses, as well as anatomic high-risk factors (defined as a prior bypass or endo-
vascular intervention involving the currently treated segment) were recorded. Concurrent procedures recorded 
included minor amputation (below the ankle) and endovascular iliac or infrainguinal revascularization. Other 
pre-procedural characteristics recorded were symptom status [asymptomatic, claudication, or CLTI (defined as 
rest pain or tissue loss)], primary procedure including inflow, outflow, and conduit, urgency of surgery (elective, 
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urgent, or emergent), and American Society of Anesthesiologists (ASA) class. A complete list of features and 
definitions can be found in Supplementary Table 1.

Outcomes
The primary outcome was 30-day MALE (composite of untreated loss of patency, major reintervention, or major 
amputation) or death. Untreated loss of patency was defined as a loss of graft patency on imaging or physical 
exam with no subsequent open or endovascular revascularization procedure. Major reintervention was defined 
as a new or revision lower extremity bypass, interposition graft revision, or bypass graft thrombectomy/throm-
bolysis. Major amputation was defined as a transtibial or more proximal amputation on the ipsilateral leg. Death 
was defined as all-cause mortality. This composite outcome was chosen because it is frequently reported as a 
primary outcome in landmark studies, including the BEST-CLI trial6.

Thirty-day secondary outcomes included individual components of the primary outcome, major adverse 
cardiovascular event (MACE), individual components of MACE, wound complication, bleeding requiring trans-
fusion or secondary procedure, other morbidity, non-home discharge, and unplanned readmission. MACE was 
defined as a composite of MI (ischemic electrocardiogram changes, troponin elevation, or physician/advanced 
provider diagnosis), stroke (motor, sensory, or cognitive dysfunction persisting for > 24 h in the setting of sus-
pected stroke), or death. Wound complication was defined as a non-healing or open wound at the surgical 
incision, dehiscence, or cellulitis. Other morbidity was defined as a composite of pneumonia, unplanned reintu-
bation, pulmonary embolism (PE), failure to wean from ventilator (cumulative time of ventilator-assisted respira-
tions > 48 h), acute kidney injury (AKI; rise in creatinine of > 2 mg/dL from pre-operative value or requirement 
of dialysis in a patient who did not require dialysis pre-operatively), urinary tract infection (UTI), cardiac arrest, 
deep vein thrombosis (DVT) requiring therapy, Clostridium difficile infection, sepsis, or septic shock. Non-home 
discharge was defined as discharge to rehabilitation, skilled care, or other facility. These outcomes are defined 
by the ACS NSQIP data dictionary25.

Model development
Six ML models were trained to predict 30-day primary and secondary outcomes: Extreme Gradient Boosting 
(XGBoost), random forest, Naïve Bayes classifier, radial basis function (RBF) support vector machine (SVM), 
multilayer perceptron (MLP) artificial neural network (ANN) with a single hidden layer, sigmoid activation 
function, and cross-entropy loss function, and logistic regression. These were chosen because they demonstrate 
the best performance for predicting surgical outcomes in the literature26–28. XGBoost is a gradient-boosted 
decision-tree-based ensemble model that is highly effective at regression and classification predictive modelling29. 
Random forest is an ensemble learning method that operates through multiple decision trees30. Naïve Bayes 
classifiers apply Bayes’ theorem to generate highly accurate predictions in high-dimensional datasets31. SVM’s 
can find hyperplanes in dimensional space to distinctly separate data points and achieve binary classification32. 
Neural networks resemble biological neurons and consist of an input, hidden, and output layer, capable of making 
meaningful predictions from complex information33. Logistic regression is a traditional statistical method used 
to model the relationship between independent and dependent variables, assuming a linear correlation between 
the predictors and logit of the outcome, as well as a lack of multicollinearity between explanatory variables34. 
The advantage of newer ML techniques over logistic regression is that they apply more advanced analytics to 
better model complex, multicollinear relationships between predictors and outcomes35. Nonlinear associations 
are common in health care data as patient trajectories are often influenced by many clinical, demographic, and 
systems-level factors36. Logistic regression was therefore used as the baseline comparator to assess relative model 
performance because it is the most common modelling technique used in traditional risk prediction tools37.

Our data were split into training (70%) and test (30%) sets38. Ten-fold cross-validation and grid search were 
performed on the training set to find optimal hyperparameters for each ML model39,40. Preliminary analysis of 
our data demonstrated that the primary outcome was uncommon, occurring in 2349/24,309 (9.7%) of patients 
in our cohort. To improve class balance, Random Over-Sample Examples (ROSE) was applied41. ROSE uses 
smoothed bootstrapping to draw new samples from the feature space neighbourhood around the minority 
class and is a commonly used method to support predictive modelling of rare events41. The models were then 
evaluated on test set data and ranked based on the primary discriminatory metric of AUROC. Our best per-
forming model was XGBoost, which had the following optimized hyperparameters for our dataset: number of 
rounds = 100, maximum tree depth = 6, learning rate = 0.3, gamma = 0, column sample by tree = 1, minimum 
child weight = 1, subsample = 1. The process for selecting these hyperparameters through grid search and cross 
validation is detailed in Supplementary Table 2. Once we identified XGBoost as the best performing ML model 
for the primary outcome, we trained the algorithm to predict secondary outcomes.

Statistical analysis
Baseline demographic and clinical characteristics for patients with vs. without 30-day MALE or death were 
summarized as means (standard deviation), medians (interquartile range), or number (proportion). Differences 
in characteristics between outcome groups were assessed using independent t-test for continuous variables or 
chi-square test for categorical variables. Statistical significance was set at two-tailed p < 0.05.

The primary metric for assessing model performance was AUROC (95% CI), a validated method to assess 
discriminatory ability that considers both sensitivity and specificity42. Secondary performance metrics were 
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). To fur-
ther assess model performance, we plotted a calibration curve and calculated the Brier score, a measurement 
of the agreement between predicted and observed event probabilities43. In the final model, feature importance 
was determined by ranking the top 10 predictors based on the variable importance score (gain), a measure of 
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the relative impact of individual covariates in contributing to an overall prediction44. Feature importance was 
determined for the overall cohort, CLTI patients, and asymptomatic/claudication groups. To assess model robust-
ness on various populations, we performed subgroup analysis of predictive performance based on age (under 
vs. over 70 years), sex (male vs. female), race (White vs. non-White), ethnicity (Hispanic vs. Non-Hispanic), 
symptom status (CLTI vs. asymptomatic/claudication), procedure type (femoropopliteal bypass vs. femoral to 
tibial/pedal bypass vs. popliteal to tibial/pedal bypass vs. femoral endarterectomy/profundoplasty), and urgency 
(urgent/emergent vs. elective).

Based on a validated sample size calculator for clinical prediction models, to achieve a minimum AUROC of 
0.7 with an outcome rate of ~ 10% and 37 input features, the minimum sample size required is 6960 patients with 
696 events45,46. Our cohort of 24,309 patients with 2349 primary events meets this sample size requirement. There 
was less than 5% missing data for variables of interest; therefore, complete-case analysis was applied whereby only 
non-missing covariates for each patient were considered47. This has been demonstrated to be a valid analytical 
method for datasets with small amounts of missing data (< 5%) and reflects predictive modelling of real-world 
data, which inherently includes missing information48,49. All analyses were performed in R version 4.2.150 with 
the following packages: caret51, xgboost52, ranger53, naivebayes54, e107155, nnet56, and pROC57.

Results
Patients and events
From an initial cohort of 25,318 patients who underwent lower extremity open revascularization in the NSQIP 
targeted database between 2011 and 2021, we excluded 1,009 patients for the following reasons: treatment for 
lower extremity aneurysmal disease (n = 669), acute limb ischemia (n = 24), trauma (n = 4), or dissection (n = 2), 
unreported symptom status (n = 306), and concurrent major amputation (n = 4). Overall, we included 24,309 
patients. The primary outcome of 30-day MALE or death occurred in 2349 (9.3%) patients. The 30-day secondary 
outcomes occurred in the following distribution: untreated loss of patency (n = 457 [1.9%]), major reinterven-
tion (n = 1,11 [4.9%]), major amputation (n = 689 [2.8%]), death (n = 547 [2.3%]), MACE (n = 1,346 [5.5%]), MI 
(n = 771 [3.2%]), stroke (n = 225 [0.9%]), wound complication (n = 3241 [13.3%]), bleeding requiring transfusion 
or secondary procedure (n = 4041 [16.6%]), other morbidity (n = 1799 [7.4%]; composite of pneumonia (n = 343), 
unplanned reintubation (n = 380), PE (n = 62), failure to wean from ventilator (n = 223), AKI (n = 123), UTI 
(n = 328), cardiac arrest (n = 230), DVT (n = 185), sepsis (n = 475), septic shock (n = 190), Clostridium difficile 
infection (n = 85)), non-home discharge (n = 6954 [28.6%]), and unplanned readmission (n = 3621 [14.9%]).

Pre‑operative demographic and clinical characteristics
Compared to patients without a primary outcome, those who developed 30-day MALE or death were older 
and more likely to be female, Black, Hispanic, and transferred from another hospital, with a greater proportion 
residing in nursing homes. They were also more likely to have insulin dependent diabetes, CHF, ESRD requiring 
dialysis, and at least 1 physiologic high-risk factor. Functionally, patients with 30-day MALE or death were more 
likely to be partially or totally dependent. Despite being at higher cardiovascular risk, patients with 30-day MALE 
or death were less likely to receive antiplatelets. Notable differences in laboratory investigations included patients 
with 30-day MALE or death having higher levels of creatinine and BUN. Patients with a primary outcome were 
more likely to have an ABI ≤ 0.39 and a previous bypass or endovascular intervention involving the currently 
treated segment, with a greater proportion undergoing a concurrent minor amputation or endovascular infrain-
guinal revascularization. Patients with 30-day MALE or death were more likely to have CLTI, undergo a bypass 
to a tibial/pedal target, receive urgent/emergent surgery, and be ASA class 4 or higher (Table 1).

Model performance
Of the 6 ML models evaluated on test set data for predicting 30-day MALE or death following lower extremity 
open revascularization, XGBoost had the best performance with an AUROC (95% CI) of 0.93 (0.92–0.94) com-
pared to random forest [0.92 (0.91–0.93)], Naïve Bayes [0.87 (0.86–0.88)], RBF SVM [0.85 (0.84–0.86)], MLP 
ANN [0.80 (0.78–0.82)], and logistic regression [0.63 (0.61–0.65)]. The other performance metrics of XGBoost 
were the following: accuracy 0.86 (95% CI 0.85–0.87), sensitivity 0.84, specificity 0.89, PPV 0.90, and NPV 0.83 
(Table 2).

For 30-day secondary outcomes, XGBoost achieved the following AUROC’s (95% CI): untreated loss of 
patency [0.90 (0.89–0.91)], major reintervention [0.91 (0.89–0.93)], major amputation [0.95 (0.94–0.96)], death 
[0.96 (0.95–0.96)], MACE [0.93 (0.92–0.94)], MI [0.88 (0.87–0.89)], stroke [0.91 (0.90–0.92)], wound complica-
tion [0.90 (0.88–0.92)], bleeding requiring transfusion or secondary procedure [0.92 (0.91–0.93)], other morbid-
ity [0.91 (0.89–0.92)], non-home discharge [0.95 (0.95–0.96)], and unplanned readmission [0.87 (0.86–0.89)] 
(Table 3).

The ROC curve for prediction of 30-day MALE or death using XGBoost is demonstrated in Fig. 1. Our model 
achieved good calibration with a Brier score of 0.08, indicating excellent agreement between predicted and 
observed evented probabilities (Fig. 2). The top 10 predictors of 30-day MALE or death in our XGBoost model 
were the following: (1) symptom status: CLTI, (2) pre-operative dialysis, (3) functional status, (4) pre-operative 
CHF, (5) pre-operative creatinine, (6) urgency of surgery, (7) procedure type: conduit/target/inflow, (8) physi-
ologic high-risk factor, (9) pre-operative antiplatelet, and (10) anatomic high-risk factor (Fig. 3). On subgroup 
analysis based on symptom status, 9/10 of the most important predictive features were the same for patients 
with CLTI and those who were asymptomatic or had claudication, with the two most important predictors being 
functional status and pre-operative dialysis for both groups (Supplementary Fig. 1).
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Absence of MALE or death at 30 days (n = 21,960) Presence of MALE or death at 30 days (n = 2349) P

Demographics

Age, years, mean (SD) 67.7 (9.9) 68.4 (10.7)  < 0.001

Female 7240 (33.0) 871 (37.1)  < 0.001

BMI, kg/m2, mean (SD) 27.8 (5.8) 27.7 (6.3) 0.29

Race

White 14,165 (64.5) 1,405 (59.8)

 < 0.001

Black or African American 3595 (16.4) 454 (19.3)

American Indian or Alaskan Native 72 (0.3) 6 (0.3)

Native Hawaiian or Other Pacific Islander 18 (0.08) 0

Asian 178 (0.8) 19 (0.8)

Other 15 (0.07) 3 (0.1)

Unknown or not reported 3917 (17.8) 462 (19.7)

Hispanic ethnicity 1072 (4.9) 130 (5.5) 0.004

Origin status

Transferred from another hospital 1534 (7.0) 277 (11.8)

 < 0.001

Home 19,768 (90.0) 1,956 (83.3)

Nursing home 523 (2.4) 90 (3.8)

Other facility 128 (0.6) 25 (1.1)

Unknown 7 (0.03) 1 (0.04)

Comorbidities

Hypertension 17,924 (81.6) 1908 (81.2) 0.66

Diabetes

Non-insulin dependent 4228 (19.3) 417 (17.8) 0.15

Insulin dependent 5993 (27.3) 690 (29.4) 0.03

Current smoker 9404 (42.8) 990 (42.1) 0.69

Congestive heart failure 762 (3.5) 138 (5.9)  < 0.001

Chronic obstructive pulmonary disease 2754 (12.5) 315 (13.4) 0.24

Dialysis 1205 (5.5) 252 (10.7)  < 0.001

Functional status

Independent 20,463 (93.2) 2057 (87.6)

 < 0.001
Partially dependent 1310 (6.0) 247 (10.5)

Totally dependent 106 (0.5) 27 (1.2)

Unknown 81 (0.4) 18 (0.8)

Physiologic high-risk factora 4578 (20.8) 735 (31.3)  < 0.001

Medications

Antiplatelet 17,947 (81.7) 1814 (77.2)  < 0.001

Statin 15,900 (72.4) 1666 (70.9) 0.08

Beta blocker 12,394 (56.4) 1368 (58.2) 0.11

Laboratory investigations

Sodium, mmol/L, mean (SD) 138.0 (3.4) 137.0 (3.6)  < 0.001

BUN, mmol/L, mean (SD) 56.2 (31.6) 60.1 (39.1)  < 0.001

Creatinine, umol/L, median (IQR) 88.4 (70.7–115.0) 91.1 (70.7–124.0)  < 0.001

Albumin, g/L, mean (SD) 26.3 (10.2) 26.3 (9.6) 0.92

White blood cell count, cells/mm3, mean (SD) 8.4 (4.4) 9.3 (4.6)  < 0.001

Hematocrit, L/L (%), mean (SD) 37.4 (6.2) 35.9 (6.5)  < 0.001

Platelet count, 109/L, mean (SD) 251.0 (92.3) 265.0 (111.0)  < 0.001

INR, mean (SD) 1.1 (0.3) 1.2 (0.4)  < 0.001

PTT, sec, mean (SD) 34.0 (13.9) 37.0 (17.2)  < 0.001

Anatomy/hemodynamics

Limb hemodynamics

Continued
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Table 1.   Pre-operative demographic and clinical characteristics of patients undergoing lower extremity open 
revascularization with and without major adverse limb event or death at 30 days. Values are reported as No. 
(%) unless otherwise indicated. MALE (major adverse limb event), BMI (body mass index), BUN (blood 
urea nitrogen), INR (international normalized ratio), PTT (partial thromboplastin time), ABI (ankle brachial 
index), ASA (American Society of Anesthesiologists), SD (standard deviation). a At least 1 of the following: (1) 
end stage renal disease, (2) age > 80, (3) New York Heart Association congestive heart failure class III/IV, (4) 
left ventricular ejection fraction < 30%, (5) unstable angina within 30 days prior to surgery, or (6) myocardial 
infarction within 30 days prior to surgery.

Absence of MALE or death at 30 days (n = 21,960) Presence of MALE or death at 30 days (n = 2349) P

ABI ≥ 1.3 and toe pressure ≥ 30 mmHg 164 (0.7) 20 (0.9)

 < 0.001

ABI ≥ 1.3 and toe pressure < 30 mmHg 158 (0.7) 24 (1.0)

ABI ≥ 1.3 and no toe pressure recorded 341 (1.6) 48 (2.0)

ABI 0.90 – 1.29 599 (2.7) 60 (2.6)

ABI 0.40 – 0.89 6861 (31.2) 502 (21.4)

ABI ≤ 0.39 4060 (18.5) 502 (21.4)

ABI not recorded and palpable pedal pulse 941 (4.3) 78 (3.3)

ABI not recorded and pedal pulse not palpable 3947 (18.0) 567 (24.1)

Not documented 4889 (22.3) 548 (23.3)

Anatomic high-risk factor

Prior bypass involving currently treated segment 4655 (21.2) 670 (28.5)

 < 0.001Prior endovascular intervention involving currently treated 
segment 4013 (18.3) 419 (17.8)

None/not documented 13,292 (60.5) 1,260 (53.6)

Concurrent procedures

Minor amputation 870 (4.0) 119 (5.1) 0.01

Endovascular iliac revascularization 789 (3.6) 92 (3.9) 0.46

Endovascular infrainguinal revascularization 499 (2.3) 78 (3.3) 0.002

Other pre-procedural characteristics

Symptom status

Asymptomatic 431 (2.0) 21 (0.9)

 < 0.001
Claudication 5808 (26.4) 296 (12.6)

Chronic limb threatening ischemia: rest pain 6408 (29.2) 808 (34.4)

Chronic limb threatening ischemia: tissue loss 9313 (42.4) 1,224 (52.1)

Primary procedure

Femoropopliteal bypass with single segment saphenous vein 6928 (31.5) 550 (23.4)

 < 0.001

Femoropopliteal bypass with prosthetic, spliced vein, or 
composite 5649 (25.7) 450 (19.2)

Femoral to tibial/pedal bypass with single segment saphenous 
vein 4337 (19.7) 575 (24.5)

Femoral to tibial/pedal bypass with prosthetic, spliced vein, or 
composite 2348 (10.7) 433 (18.4)

Popliteal to tibial/pedal bypass with single segment saphenous 
vein 1549 (7.1) 195 (8.3)

Popliteal to tibial/pedal bypass with prosthetic, spliced vein, 
composite, or non-saphenous conduit 460 (2.1) 67 (2.9)

Femoral endarterectomy 257 (1.2) 35 (1.5)

Profundoplasty 69 (0.3) 5 (0.2)

Not documented/other 363 (1.7) 39 (1.7)

Urgency

Elective 14,632 (66.6) 1,164 (49.6)

 < 0.001Urgent 6050 (27.6) 887 (37.8)

Emergent 1267 (5.8) 295 (12.6)

ASA class

1 37 (0.2) 5 (0.2)

 < 0.001

2 813 (3.7) 70 (3.0)

3 15,594 (71.0) 1449 (61.7)

4 5476 (24.9) 815 (34.7)

5 15 (0.07) 8 (0.3)

Not reported 25 (0.1) 2 (0.09)
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Table 2.   Model performance on test set data for predicting 30-day major adverse limb event or death 
following lower extremity open revascularization using pre-operative features. Abbreviations: XGBoost 
(Extreme Gradient Boosting), AUROC (area under the receiver operating characteristic curve), CI (confidence 
interval), PPV (positive predictive value), NPV (negative predictive value), RBF SVM (radial basis function 
support vector machine), MLP ANN (multilayer perceptron artificial neural network).

AUROC (95% CI) Accuracy (95% CI) Sensitivity Specificity PPV NPV

XGBoost 0.93 (0.92–0.94) 0.86 (0.85–0.87) 0.84 0.89 0.90 0.83

Random forest 0.92 (0.91–0.93) 0.85 (0.84–0.86) 0.84 0.86 0.86 0.83

Naïve bayes 0.87 (0.86–0.88) 0.85 (0.84–0.86) 0.83 0.85 0.86 0.82

RBF SVM 0.85 (0.84–0.86) 0.77 (0.75–0.79) 0.75 0.80 0.83 0.71

MLP ANN 0.80 (0.78–0.82) 0.73 (0.70–0.75) 0.71 0.75 0.79 0.69

Logistic regression 0.63 (0.61–0.65) 0.58 (0.56–0.60) 0.55 0.71 0.60 0.56

Table 3.   XGBoost performance on test set data for predicting 30-day primary and secondary outcomes 
following lower extremity open revascularization using pre-operative features. XGBoost (Extreme Gradient 
Boosting), AUROC (area under the receiver operating characteristic curve), CI (confidence interval), PPV 
(positive predictive value), NPV (negative predictive value), MALE (major adverse limb event; composite of 
untreated loss of patency, major reintervention, or major amputation), MACE (major adverse cardiovascular 
event; composite of myocardial infarction, stroke, or death).

AUROC (95% CI) Accuracy (95% CI) Sensitivity Specificity PPV NPV

MALE or death 0.93 (0.92–0.94) 0.86 (0.85–0.87) 0.84 0.89 0.90 0.83

Untreated loss of patency 0.90 (0.89–0.91) 0.83 (0.81–0.84) 0.81 0.85 0.86 0.79

Major reintervention 0.91 (0.89–0.93) 0.84 (0.82–0.86) 0.83 0.85 0.87 0.80

Major amputation 0.95 (0.94–0.96) 0.88 (0.87–0.89) 0.86 0.90 0.91 0.85

Death 0.96 (0.95–0.96) 0.89 (0.87–0.90) 0.87 0.90 0.90 0.87

MACE 0.93 (0.92–0.94) 0.85 (0.84–0.86) 0.84 0.86 0.88 0.85

Myocardial infarction 0.88 (0.87–0.89) 0.80 (0.79–0.82) 0.79 0.81 0.82 0.78

Stroke 0.91 (0.90–0.92) 0.83 (0.81–0.84) 0.82 0.84 0.85 0.80

Wound complication 0.90 (0.88–0.92) 0.82 (0.83–0.87) 0.82 0.83 0.86 0.79

Bleeding requiring transfusion or secondary 
procedure 0.92 (0.91–0.93) 0.84 (0.82–0.85) 0.82 0.86 0.87 0.81

Other morbidity 0.91 (0.89–0.92) 0.82 (0.81–0.84) 0.81 0.84 0.85 0.79

Non-home discharge 0.95 (0.95–0.96) 0.89 (0.88–0.90) 0.86 0.92 0.92 0.85

Unplanned readmission 0.87 (0.86–0.89) 0.80 (0.78–0.82) 0.80 0.77 0.77 0.81

Figure 1.   Receiver operating characteristic curve for predicting 30-day major adverse limb event or death 
following lower extremity open revascularization using Extreme Gradient Boosting (XGBoost) model. AUROC 
(area under the receiver operating characteristic curve), CI (confidence interval).
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Subgroup analysis
Our XGBoost model performance for predicting 30-day MALE or death remained excellent on subgroup anal-
ysis of specific demographic and clinical populations with the following AUROC’s (95% CI): age < 70 [0.93 
(0.92–0.94)] and age > 70 [0.94 (0.93–0.95)] (Supplementary Fig. 2), males [0.94 (0.93–0.95)] and females [0.93 
(0.91–0.94)] (Supplementary Fig. 3), White patients [0.93 (0.92–0.94)] and non-White patients [0.93 (0.92–0.94)] 
(Supplementary Fig. 4), Hispanic patients [0.93 (0.92–0.94)] and non-Hispanic patients [0.93 (0.92–0.94)] (Sup-
plementary Fig. 5), CLTI patients [0.93 (0.92–0.94)] and asymptomatic/claudication groups [0.94 (0.93–0.95)] 
(Supplementary Fig.  6), femoropopliteal bypass [0.94 (0.93–0.95)], femoral to tibial/pedal bypass [0.93 
(0.92–0.94)], popliteal to tibial/pedal bypass [0.93 (0.91–0.95)], and femoral endarterectomy/profundoplasty 
[0.93 (0.89–0.96)] (Supplementary Fig. 7), and urgent/emergent surgery [0.94 (0.93–0.95)] and elective surgery 
[0.93 (0.92–0.94)] (Supplementary Fig. 8).

Figure 2.   Calibration plot with Brier score for predicting 30-day major adverse limb event or death following 
lower extremity open revascularization using Extreme Gradient Boosting (XGBoost) model.

Figure 3.   Variable importance scores (gain) for the top 10 predictors of 30-day major adverse limb event or 
death following lower extremity open revascularization in the Extreme Gradient Boosting (XGBoost) model. 
Abbreviations: CLTI (chronic limb threatening ischemia), CHF (congestive heart failure).
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Discussion
Summary of findings
Using data from the ACS NSQIP targeted vascular files between 2011 and 2021 consisting of 24,309 patients who 
underwent lower extremity open revascularization for atherosclerotic disease, we developed ML models that 
accurately predict 30-day MALE or death with an AUROC of 0.93 using pre-operative variables. Furthermore, 
our algorithms predicted 30-day untreated loss of patency, major reintervention, major amputation, death, 
MACE, MI, stroke, wound complication, bleeding, other morbidity, non-home discharge, and readmission with 
AUROC’s between 0.87 and 0.96. There were several other key findings. First, patients who develop 30-day MALE 
or death represent a high-risk population with several predictive features at the pre-operative stage. Specifically, 
they are older with more comorbidities, have poorer functional status, and are more likely to have high-risk physi-
ologic and anatomic factors. In addition, a greater proportion of patients with 30-day MALE or death had CLTI, 
underwent tibial/pedal bypasses, and required concurrent minor amputation or endovascular revascularization. 
Despite these differences, they were less likely to receive optimal medical therapy including antiplatelets. This 
represents an important opportunity to improve medical management of PAD patients. Second, we trained 6 
ML models to predict 30-day MALE or death using pre-operative features and showed that XGBoost achieved 
the best performance. Our model was well-calibrated, achieving a Brier score of 0.08, and remained robust on 
subgroup analysis based on age, sex, race, ethnicity, symptom status, procedure type, and urgency of surgery. 
Finally, we identified the top 10 predictors of 30-day MALE or death in our ML models. These features can be 
used by clinicians to identify factors that contribute to risk predictions, thereby guiding patient selection and 
pre-operative optimization. For example, patients with modifiable high-risk factors could be further evaluated 
and optimized through pre-operative consultations with anesthesiologists or cardiologists to mitigate adverse 
events58,59. Overall, we have developed a robust ML-based surgical risk prediction tool that can help guide clinical 
decision-making to improve outcomes and reduce costs from complications, reinterventions, and readmissions 
associated with lower extremity open revascularization.

Comparison to existing literature
Bertges et al. developed the VSGNE CRI to predict in-hospital major adverse cardiac events in patients undergo-
ing major vascular procedures including lower extremity bypass, carotid endarterectomy, and aortic aneurysm 
repair14. Using logistic regression, their model achieved an AUROC of 0.7114. Applying ML techniques to a 
more up-to-date cohort specifically consisting of patients undergoing lower extremity open revascularization, 
we achieved better performance with an AUROC of 0.93.

Bonde et al. trained ML algorithms on a cohort of NSQIP patients undergoing > 2900 unique procedures 
to predict peri-operative complications, achieving AUROC’s of 0.85–0.8818. Given that patients undergoing 
lower extremity open revascularization for atherosclerotic disease represent a unique population with a high 
number of vascular comorbidities, the applicability of general surgical risk prediction tools may be limited. By 
developing ML algorithms specific to patients undergoing lower extremity open revascularization, we achieved 
AUROC’s > 0.90. Additionally, we included limb- and graft-related outcomes such as major amputation, major 
reintervention, and untreated loss of patency, which are of clinical importance to vascular surgeons. Therefore, 
there is value in building procedure-specific ML models, which can increase accuracy and clinical applicability.

Prediction models specific to patients undergoing lower extremity revascularization remain limited. Miyata 
et al. (2021) applied logistic regression to predict 30-day major amputation or death in a cohort of 2906 patients 
identified through the Japan Critical Limb Ischemia Database, achieving an AUROC of 0.8210. Using a cohort of 
24,309 patients in the multi-national NSQIP database, we achieved an AUROC > 0.90 for predicting MALE or 
death with ML techniques. This demonstrates the benefits of applying advanced analytical techniques to larger 
and more diverse datasets.

Explanation of findings
There are several explanations for our findings. First, patients who develop MALE or death following lower 
extremity revascularization represent a high-risk group with multiple vascular risk factors, as corroborated by 
previous literature60. The use of antiplatelet therapy is a Grade 1A recommendation by multiple societal guide-
lines for all patients regardless of symptom status (asymptomatic, claudication, or CLTI)8,61–63, yet patients who 
developed MALE or death in our cohort were less likely to receive antiplatelets. The suboptimal rates of best 
medical therapy for PAD patients are further demonstrated in the recently published BEST-CLI trial6. Therefore, 
there are important opportunities to improve care for patients by understanding their perioperative risk and 
medically optimizing them prior to revascularization. Second, our ML models performed better than existing 
tools for several reasons. Compared to traditional logistic regression, advanced ML techniques can better model 
non-linear, complex relationships between inputs and outputs64,65. This is especially important in health care 
data, as patient outcomes can be influenced by many demographic and clinical factors66. Our best performing 
algorithm was XGBoost, which has unique advantages including avoiding overfitting and faster computing while 
maintaining precision67–69. Furthermore, XGBoost works well with structured data, which may explain why it 
performed better than more complex algorithms such as neural networks on our dataset70. Third, our model 
performance remained robust on subgroup analysis of specific demographic and clinical populations. This is an 
important finding given that algorithm bias against underrepresented populations is a significant issue in ML 
studies71. We were likely able to avoid these biases due to the excellent capture of sociodemographic data by ACS 
NSQIP, a multi-national database that includes diverse patient populations72,73. Fourth, a small proportion of 
patients in our cohort underwent lower extremity open revascularization for asymptomatic disease (< 2%). The 
reasons for these interventions are unclear from our dataset but may be related to revisions for hemodynamically 
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significant stenoses of previous revascularization procedures, patient preference, poor adherence to guideline-
directed revascularization, or coding errors74.

Implications
Our ML models can be used to guide clinical decision-making in several ways. Pre-operatively, a patient predicted 
to be at high risk of an adverse outcome should be further assessed in terms of modifiable and non-modifiable 
factors75. Patients with significant non-modifiable risk of adverse outcomes following open surgical revascu-
larization may benefit from careful considerations of alternative options including medical management alone 
or less invasive endovascular therapy76,77. Those with modifiable risks should be referred to anesthesiologists, 
cardiologists, and/or internal medicine specialists for further evaluation58,59. Intra-operatively, risk predictions 
may inform decisions regarding anesthetic techniques such as neuraxial vs. general anesthesia78. At the post-
operative stage, patients at high risk of adverse events may benefit from close monitoring in the intensive care 
unit79. Additionally, patients at high risk of non-home discharge or readmission should receive early support 
from allied health professionals to optimize safe discharge planning80. These peri-operative decisions guided by 
our ML models have the potential to improve outcomes and reduce costs by mitigating adverse events.

The programming code used to develop our ML models is publicly available through GitHub, a web-based 
platform that offers a free and integrated environment for hosting source code, documentation, and project-
related web content for open-source projects81. These tools can be used by any clinician involved in the peri-
operative management of patients being considered for lower extremity open revascularization. On a systems-
level, our models can be readily implemented by the > 700 centres that currently participate in ACS NSQIP 
worldwide. They also have potential for use at non-NSQIP sites, as the input features are commonly captured 
variables for the routine care of vascular surgery patients82. Given the challenges of deploying prediction models 
into clinical practice, consideration of principles of implementation science is critical83. Our ML models have the 
advantage of providing automated risk predictions using many input variables, thereby improving practicality in 
busy clinical settings compared to traditional risk predictors that generally require manual input of variables13. 
Specifically, our algorithms were built to autonomously extract a patient’s prospectively collected NSQIP data 
to make risk predictions. Ongoing efforts to link NSQIP data to electronic health records has the potential to 
increase the clinical utility of our model and further support fully automated risk predictions84,85. We advocate 
for dedicated health care data analytics teams at the institution level, as their significant benefits have been pre-
viously demonstrated and model implementation can be facilitated by these experts86,87. Through this study, we 
have also provided a framework for the development of robust ML models that predict lower extremity open 
revascularization outcomes, which can be applied by individual centers for their specific patient populations.

Limitations
Our study has several limitations. First, our models were developed using ACS NSQIP data. Future studies should 
assess whether performance can be generalized to institutions that do not participate in ACS NSQIP. Second, the 
ACS NSQIP database captures 30-day outcomes. Evaluation of ML models on data sources with longer follow-
up would augment our understanding of long-term surgical risk. Third, our dataset did not capture low-dose 
rivaroxaban use. Given that the VOYAGER60 and COMPASS88 trials demonstrated the cardiovascular and limb 
benefits of low-dose rivaroxaban, future prediction models on datasets that capture this variable may improve 
performance. Fourth, our models are limited to patients undergoing open revascularization. Future prediction 
tools for outcomes following endovascular therapy would be helpful to further guide clinical decision-making.

Conclusions
In this study, we used the ACS NSQIP database to develop robust ML models that pre-operatively predict 30-day 
MALE or death following lower extremity open revascularization for atherosclerotic disease with excellent 
performance (AUROC 0.93). Our models also predicted untreated loss of patency, major reintervention, major 
amputation, death, MACE, MI, stroke, wound complication, bleeding, other morbidity, non-home discharge, 
and readmission with AUROC’s between 0.87 and 0.96. Given that our ML algorithms perform better than exist-
ing tools and logistic regression, they have potential for important utility in the peri-operative management of 
patients being considered for lower extremity open revascularization to mitigate adverse outcomes and reduce 
health care costs.

Data availability
The data used for this study comes from ACS NSQIP. Access to and use of the data requires approval through 
an application process available at https://​www.​facs.​org/​quali​ty-​progr​ams/​data-​and-​regis​tries/​acs-​nsqip/​parti​
cipant-​use-​data-​file/.

Code availability
The complete code used for model development and evaluation in this project is publicly available on GitHub: 
https://​github.​com/​benli​12345/​LEO-​ML-​NSQIP.
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