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A neutrophil extracellular 
trap‑related risk score predicts 
prognosis and characterizes 
the tumor microenvironment 
in multiple myeloma
Zhijia Zhao 1,5, Yuan Huo 2,5, Yufeng Du 1,3, Yanan Huang 2, Hongchen Liu 2, 
Chengtao Zhang 1,3* & Jinsong Yan 1,2,3,4*

Multiple myeloma (MM) is a distinguished hematologic malignancy, with existing studies elucidating 
its interaction with neutrophil extracellular traps (NETs), which may potentially facilitate tumor 
growth. However, systematic investigations into the role of NETs in MM remain limited. Utilizing 
the single‑cell dataset GSE223060, we discerned active NET cell subgroups, namely neutrophils, 
monocytes, and macrophages. A transcriptional trajectory was subsequently constructed to 
comprehend the progression of MM. Following this, an analysis of cellular communication in MM was 
conducted with a particular emphasis on neutrophils, revealing an augmentation in interactions albeit 
with diminished strength, alongside abnormal communication links between neutrophils and NK cells 
within MM samples. Through the intersection of differentially expressed genes (DEGs) between NET 
active/inactive cells and MM versus healthy samples, a total of 316 genes were identified. This led to 
the development of a 13‑gene risk model for prognostic prediction based on overall survival, utilizing 
transcriptomics dataset GSE136337. The high‑risk group manifested altered immune infiltration and 
heightened sensitivity to chemotherapy. A constructed nomogram for predicting survival probabilities 
demonstrated encouraging AUCs for 1, 3, and 5‑year survival predictions. Collectively, our findings 
unveil a novel NET‑related prognostic signature for MM, thereby providing a potential avenue for 
therapeutic exploration.
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GSVA  Gene set variation analysis
ssGSEA  Single-sample gene set enrichment analysis
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NK  Natural killer
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GDSC  Genomics of Drug Sensitivity in Cancer
DCs  Dendritic cells
pDCs  Plasmacytoid dendritic cells
MIF  Macrophage migration inhibitory factor
LCK  Lymphocyte specific protein tyrosine kinase
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rRNA  Ribosomal RNA
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Multiple myeloma (MM) is the second most prevalent hematologic malignancy derived from plasma cells. 
Constituting 1–2% of all cancers, MM affects an estimated 34,920 individuals in the US and approximately 
588,161 globally each  year1. It is typified by an augmented count of plasma cells in the bone marrow (BM) and 
increased concentrations of monoclonal immunoglobulins (M-protein) in the serum. These changes lead to 
complications such as destructive bone lesions, renal impairment, anemia, and hypercalcemia. Notably, the initial 
symptoms of MM can be ambiguous and resemble other diseases, leading to potential diagnostic and therapeutic 
delays. For instance, many MM patients experience insidious disease progression with only mildly elevated 
M-protein concentrations and minimal bone changes, which is easy to overlook. Data from the Surveillance, 
Epidemiology, and End Results (SEER) program between 2010 and 2016 indicated a 5-year relative survival rate 
for MM of 53.9%2.

To date, there have been different methods for MM staging and grading. The Durie-Salmon staging system, 
serving as one of the pioneering methods for MM staging, can effectively gauge the tumor burden but presents 
a certain limitation in the prognostic  evaluation3. Subsequently, the International Staging System (ISS) was 
introduced for the preliminary risk stratification of MM. However, ISS lacks adequate considerations about 
cytogenetics, which play a crucial role in determining the disease’s aggressiveness and response to  therapy4. 
On the basis of the ISS, the Revised-ISS takes the cytogenetics and lactic dehydrogenase (LDH) levels into 
 consideration5. Nonetheless, it addressed only a limited number of cytogenetic abnormalities with high 
reproducibility, neglecting the prognostic implications of several core genetic abnormalities and their associated 
phenotypes in the MM microenvironment. Hence, investigation into novel potential biomarkers is essential and 
meaningful for the prognostic improvement and therapeutic guidance of MM patients.
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The BM tumor microenvironment (TME) is pivotal in the pathogenesis and progression of MM. The intricate 
interaction between MM cells and the BM microenvironment underpins MM cell survival, proliferation, and 
drug  resistance6. Neutrophils, the predominant cell population within the BM, engage in numerous interactions 
with myeloma cells. Research has suggested that neutrophils secrete an array of growth factors and cytokines, 
such as VEGF, TGF-β, and IL-6 to stimulate the growth and proliferation of myeloma  cells7. Meanwhile, different 
enzymes altering the matrix composition can be released by neutrophils to enhance tumor cell  migration8. 
Additionally, neutrophils foster  angiogenesis9, facilitating nutrient supply for MM. In turn, MM cells cultivate a 
profoundly immunosuppressive BM microenvironment, within which several components including myeloid-
derived suppressor cells (MDSCs) and N2 neutrophils are  amplified10.

Primarily found to neutralize harmful microorganisms, neutrophil extracellular traps (NETs) are extruded 
from dying neutrophils and present as web-like structures consisting of decondensed DNA chromatin scaffolds 
and assembled cytosolic and granule proteins. This decondensation of DNA chromatin occurs via citrullination, 
after which it is expelled from the cell in conjunction with citrullinated histones and neutrophilic cytoplasmic 
contents rich in granular enzymes–a process termed ’NETosis’11. NETs have been reported to present effects of 
a double-sided nature depending on the immune status and interaction with the  TME12. From an antitumor 
immunity standpoint, NETs impede tumor growth by stimulating the immune system: they facilitate neutrophil 
interactions with T cells, thereby lowering the activation threshold and directly activating T cells. In contrast, 
NETs can offer a microenvironment suitable for the delivery of protumorigenic proteins to tumor  cells13. 
Meanwhile, several studies have indicated that NETs promote the growth and development of tumors via the 
enhancement of mitochondrial function and induce the activation of corresponding signaling  pathways12,13.

In hematological neoplasms, there are extremely intricate interactions between tumor cells and the 
immune system, making the formation of NETs a more universal and complex phenomenon. The importance 
of NETs has been described in a number of hematological malignancies, including their impact on various 
aspects of  tumorigenesis14,15,  progression16, susceptibility to and severity of  infection17, and  thrombosis18. The 
immunomodulatory role of NETs in leukemia is also likely to be positive, with significant reductions in NETs 
found during childhood acute lymphoblastic leukemia (ALL) treatment, and increased NETs release as they 
recover from the  disease19. Immature granulocytes usually persist in the blood of patients during treatment for 
hematological malignancies and do not release chromatin for use by NETs after  activation20, which may partially 
responsible for the immunodeficiency. The ability of different hematologic tumors to form NETs appears to 
 vary15,19, as does their impact on disease pathogenesis.

The significance of NETs in MM is not fully understood. It is known that myeloma cells can induce 
citrullination of histone H3 and prompt NET formation in neutrophils. Elevated concentrations of NETs or their 
components have been documented in MM patients and may correlate with disease severity and  progression21. 
Citrullination is of great necessity for DNA chromatin decondensation which is one step of NET formation. In the 
process of citrullination, PAD4 is a key enzyme. One study showed that MM mice treated with BMS-P5, a specific 
PAD4 inhibitor, presented a noticeable delay in symptom onset and disease  progression22. This underscores the 
potential significance of NETs in the pathogenesis and development of MM, suggesting that they could serve as 
a viable prognostic marker and therapeutic target for the  disease23.

The advent of single-cell RNA-sequencing (scRNA-seq) technology, coupled with advances in data analysis 
techniques, offers an unparalleled window into the molecular features of diverse immune cell populations 
within the  TME24. Prior research suggests that harnessing gene expression signatures, grounded in the 
molecular attributes of immune cells extracted from scRNA-seq data, may robustly forecast the prognosis and 
immunotherapeutic responses of cancer  patients25,26. In the process of literature retrieval, there is not only 
no score model based on NET-related genes for MM prognostic evaluation but also no TME assessment and 
therapeutic guidance on the basis of these genes. Our study examined both single-cell and bulk RNA sequencing 
data from myeloma samples to pinpoint NET activity associated genes in MM. Leveraging a systematic analysis of 
these genes, we formulated a risk score model aimed at prognostic prediction for MM patients. Meanwhile, our 
findings further affirmed the model’s stability and its effectiveness in predicting patient prognosis and provided 
a possible potential direction for MM therapy.

Results
The study’s flow chart is illustrated in Fig. 1.

Single‑cell sequencing analysis
To identify the origins of highly expressed genes, we scrutinized the cell population of MM using the single-
cell sequencing dataset GSE223060. After quality control and removal of doublets, we derived single-cell 
transcriptomes from 166,757 cells. Figure 2A demonstrates that among the 60 samples included, the cell 
distribution was consistent, suggesting an absence of marked batch effects. This uniformity validates the data 
for subsequent analyses. Cells were then categorized into 22 distinct clusters, as depicted in Fig. 2B. Each 
cluster’s genetic characteristics enabled us to annotate different cell types using cell type-specific biomarkers. 
Figure 2C reveals 11 distinct cell types, including T cells, plasma cells, monocytes, NK cells, B cells, neutrophils, 
macrophages, dendritic cells (DCs), MAST cells, platelets, and plasmacytoid dendritic cells (pDCs). The dot 
plots in Fig. 2E illustrate specific genes for each cell type, while Fig. 2D displays the proportions of these cell 
types across samples.

Identification of neutrophil extracellular trap active cells
We examined the expression patterns of NET-related genes at the single-cell level within active cell subgroups. 
Utilizing the optimal threshold to ascertain cell activity, we identified 11,259 cells exhibiting NET activity. Cell 
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clusters with AUC values exceeding 0.17 displayed high NET activity, whereas those with AUC values below 0.17 
exhibited low NET activity, as depicted in Fig. 3A. Figure 3B presents the UMAP diagram of these active cells, 
indicating that neutrophils, monocytes, and macrophages were predominantly active.

Pseudo‑time trajectories analysis
Utilizing the definitive NET-activated subgroups, we constructed a transcriptional trajectory to identify key 
gene expression programs governing MM progression. The trajectory’s transcriptional states highlighted distinct 
paths, as depicted in Fig. 4A and B.

To decipher the molecular underpinnings of this transformation, we investigated the genes influencing 
MM cell fate. Genes predominantly expressed in the pre-branch were chiefly associated with ’cell killing’ and 
’leukocyte activation involved in immune response’ GO BP pathways. Meanwhile, genes related to ’regulation 
of hemopoiesis’, ’response to virus’, and ’regulation of leukocyte cell–cell adhesion’ were predominant in cell fate 
2. Conversely, cell fate 1 exhibited high expression of genes linked to ’cytoplasmic translation’, ’energy-coupled 
proton transport’, and ’ATP synthesis coupled proton transport’, as illustrated in Fig. 4C and Table S1.

Cellular communication patterns in the MM microenvironment
To delve deeper into the cellular interaction network within the MM microenvironment, we employed the 
’CellChat’ R package to discern variations in cell-to-cell communication between the MM and control groups. 
Comparison to normal tissues revealed an increase in the quantity of interactions among MM samples, 
accompanied by a decrease in the intensity of these interactions, as illustrated in Fig. 5A. Furthermore, Fig. 5B 
illustrates that, in the case of the majority of cell interactions, both the quantity and strength of these interactions 
exhibited an augmentation when contrasted with normal tissues. These findings underscore the intricate nature 

Figure 1.  The workflow of the study.
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of the microenvironment. The outgoing and incoming signaling patterns for both normal and MM tissues are 
distinctly illustrated in Fig. 5. For instance, the macrophage migration inhibitory factor (MIF) signal targeting 
DCs was diminished in MM (Fig. 5C), and the lymphocyte specific protein tyrosine kinase (LCK) signal 
originating from T cells was reduced in MM (Fig. 5D).

Additionally, we examined receptor ligands potentially mediating communication between neutrophils and 
other immune cells. Notably, neutrophils communicated with NK cells through the HLA-E-KLRC1 and HLA-E-
CD94:NKG2A pathways, which were absent in normal tissues. This implies a role for neutrophil-derived HLA-E 
in MM progression, as depicted in Fig. 6A and B.

Subsequently, we delved into the expression of MIF and MHC-I pathway genes across different cells in both 
normal and MM tissues. In comparison to control tissues, the expression of the MIF ligand in neutrophils 
was notably reduced in MM, and the expression of its receptors in NK cells was also decreased (Fig. 7A and 
B). In contrast, the expression of the MHC-I ligand in neutrophils remained unchanged in MM, and a similar 
stability was observed in the expression of its receptors in NK cells (Fig. 7C and D). This provides insight into 
the diminished communication intensity of the MIF pathway between neutrophils and NK cells in MM tissues.

Enrichment analysis of differentially expressed genes related to neutrophil extracellular traps 
in MM
A total of 1,806 DEGs were discerned between NET active and inactive cells (Table S2), exhibiting significant 
differences (adjusted p value < 0.05; | Log2-fold change |> 0.25). The heatmap in Fig. 8A displays the top 10 

Figure 2.  Identification of cell subgroups and expression of marker genes from scRNA-sequencing database. 
(A) UMAP map shows the distribution of MM and control group. (B) UMAP map shows the distribution of 
MM cell subgroups. (C) UMAP map shows annotation results of MM cell subgroups. (D) Cumulative histogram 
shows the distribution of cell types in patients with MM and control group. (E) Expression profiles of the marker 
genes in each cell type.
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upregulated (CTSS, S100A9, S100A12, S100A8, MNDA, VCAN, FCN1, LYZ, RP11-1143G9.4, CST3) and 
downregulated genes (IGHG3, IGKC, IGHG1, JCHAIN, IGHA1, IGLC3, IGLC2, IGHG4, IL32, CCL5).

Differential expression analysis between MM samples and healthy controls was conducted separately for 
single-cell and bulk transcriptome datasets. From the single-cell dataset, 471 significant DEGs were identified 
(adjusted p value < 0.05; | Log2-fold change |> 0.25), as depicted in Table S3. Figure 8B’s heatmap showcases the 
top 10 upregulated (IGKC, IGHG3, IGLC3, IGHG1, IGHA1, JCHAIN, IGLC2, IGHG4, IGHG2, IGHGP) and 
downregulated genes (CD69, IGHM, TCL1A, CXCR4, IGHD, IGHD, LEPROTL1, RPS3A, CD79A, RPS12).

An overlap between the two DEG sets revealed 316 intersection DEGs, as visualized in Fig. 8C and detailed 
in Table S4.

To elucidate the biological functions of these intersection DEGs, we undertook enrichment analysis for GO 
terms and KEGG pathways. GO analysis, detailed in Table S5, indicated enrichment in biological processes such 
as cytoplasmic translation, ribosome assembly, and ribosome biogenesis. CC were dominated by features such 
as cytosolic ribosome and ribosomal subunit, while MF featured rRNA binding and antigen binding (Fig. 8D). 
Prominent KEGG pathways (Table S6) included Coronavirus disease–COVID-19, Ribosome, and Protein 
processing in the endoplasmic reticulum (Fig. 8D).

Construction and verification of prognostic risk model
Through univariate Cox analysis of the 316 intersection DEGs (between 1806 DEGs form NET active vs. inactive 
cells and 471 DEGs from MM samples vs. healthy controls), 28 NET-related prognostic genes significantly 
associated with MM prognosis were identified (p < 0.05) (Table S7). Using random sampling, 70% (n = 291) of the 
MM samples (n = 420) were allocated to the training set, and the remaining 30% (n = 129) formed the validation 

Figure 3.  Identification of active cell subgroups. (A) AUC score of the NET-related marker genes, the threshold 
value was 0.17. (B) UMAP colorogram shows the score of cell activity. The brighter the color, the higher the 
activity.

Figure 4.  Transcriptional trajectory analysis revealed transcriptional patterns in NET activated subgroups. (A) 
The pseudo-time color gradient transitions from dark to light blue. (B) The pseudo-time trajectory is divided 
into three different states by Monocle 2. (C) The DEGs of different branches (different cell fates) shown in 
heatmap. The top GO BP pathways of different clusters in heatmap were listed nearby.
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set. Genes that have no or little effect on the effectiveness of the predictive model are defined as redundant genes. 
Redundant genes within the training set were pruned via LASSO regression analysis, with the seed parameter set 
at 44. This yielded 13 NET-related hub genes significantly tied to MM patient prognosis (Table S8), as illustrated 
in Fig. 9A and B, which were utilized to construct prognostic models. The other 15 genes out of the 28 genes 
were used as redundant genes and excluded from the model.

To validate the models crafted from these 13 gene signatures, samples were categorized into low- and high-
risk cohorts, using the median risk value as a delimiter. Kaplan–Meier survival curves were plotted for both the 
training (Fig. 9C) and validation cohorts (Fig. 9D). Evidently, patients in the high-risk cohort exhibited notably 
poorer prognoses than their low-risk counterparts across both datasets. To gauge the predictive capacity of the 
model, ROC curves were generated (Fig. 9E and F). In the training set, the 1-, 3-, and 5-year survival AUC values 
were 0.762, 0.771, and 0.754, respectively (Fig. 9E). Correspondingly, in the validation set, these AUC values 
were 0.570, 0.639, and 0.727 (Fig. 9F).

GSEA and GSVA
To elucidate the potential mechanisms of the DEGs, we employed GSEA. Utilizing the MSigDB Collection, we 
identified the most significantly enriched signaling pathways according to their normalized enrichment score 
(NES) (Table S9). Significantly enriched pathways in MM included DNA REPLICATION (NES = 2.1177, adjusted 
p = 0.0124, FDR = 0.0095, Fig. 10A), PARKINSON’S DISEASE (NES = 2.0419, adjusted p = 0.0124, FDR = 0.0095, 

Figure 5.  Overall pattern of intercellular communication analysis. (A) Bar plot shows the interaction 
number and strength between MM and normal. (B) The network diagram displays the number and strength 
of interactions between cell types in the MM and control groups. The red bands represent an increase or 
enhancement in the number and strength of interactions, while the blue bands represent a decrease or 
weakening in the number and strength of interactions. (C) Heatmap depicting signals contributing the most to 
the outgoing signaling pathways in MM and normal. (D) Heatmap depicting signals contributing the most to 
the incoming signaling pathways in MM and normal.
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Fig. 10B), SPLICEOSOME (NES = 2.0237, adjusted p = 0.0124, FDR = 0.0095, Fig. 10C), P53 SIGNALING 
PATHWAY (NES = 1.5615, adjusted p = 0.0291, FDR = 0.0223, Fig. 10D), RIBOSOME (NES = 1.5339, adjusted 
p = 0.0441, FDR = 0.0337, Fig. 10E), and ASTHMA (NES = -2.1028, adjusted p = 0.0396, FDR = 0.0303, Fig. 10F). 
Additionally, using the MSigDB Collection for GSVA, we highlighted the top 5 pathways with the most significant 
differential expression between low- and high-risk groups. These findings are visualized in the pathway activity 
heatmap (Fig. 10G and Table S10).

Immune infiltration analysis
We examined the infiltration levels of 28 immune cell types between the low- and high-risk groups using the 
ssGSEA method. The infiltration levels of different immune cells, including activated  CD4+ T cells, activated 
 CD8+ T cells, effector memory  CD4+ T cells, gamma delta T cells, macrophages, memory B cells, NK cells, 
NK T cells, regulatory T cells, and type 2 T helper cells, exhibited significant differences between the two 
groups (p < 0.05, Fig. 11A). While most immune cells exhibited positive correlations with each other, a subset 
demonstrated negative correlations. Specifically, MDSCs, effector memory  CD4+ T cells, type 1 T helper cells, 
memory B cells, CD56bright NK cells, pDCs, and NK cells infiltration levels were negatively correlated (Fig. 11B).

Additionally, we observed significant correlations between each hub gene and its corresponding immune 
cells (Fig. 12A–I). Notably, the genes ATF7IP2 (R = 0.2057, p < 0.001), MGAT4A (R = -0.1837, p < 0.001), and 
MEl1 (R = -0.1739, p < 0.001) were significantly associated with memory B cells (Fig. 12A–C). Genes ATF7IP2 
(R = 0.2532, p < 0.001), RNF125 (R = 0.3258, p < 0.001), and C1orf56 (R = 0.217, p < 0.001) had a significant 
association with type 2 T helper cells (Fig. 12D–F), whereas ATF7IP2 (R = 0.2191, p < 0.001), C1orf56 (R = 0.1989, 
p < 0.001), and CPIP1 (R = 0.1739, p < 0.001) were significantly related to activated  CD4+ T cells (Fig. 12G–I).

Construction and verification of the nomogram
To ascertain the role of the risk score as an independent prognostic factor, we conducted both univariate and 
multivariate Cox regression analyses considering clinical characteristics such as age, sex, and risk. Our findings 
affirm that the risk score stands as an independent prognostic risk factor for patients, irrespective of the Cox 
regression analysis employed (Fig. 13A and B). Utilizing multivariate Cox regression analysis, we constructed 
a nomogram, demonstrating that the risk score can significantly forecast clinical outcomes (Fig. 13C). We 
employed the ROC curve to evaluate the predictive efficacy of the nomogram concerning patient prognosis. 
The AUC values for 1-, 3-, and 5-year survival were 0.735, 0.756, and 0.770, respectively (Fig. 13D).

Figure 6.  Comparison significant ligand-receptor pairs between neutrophil and other cells. (A) Significantly 
increased ligand receptor pairs in the MM group. (B) Significantly reduced ligand receptor pairs in the MM 
group.
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Drug susceptibility analysis
We investigated the ability of the risk score to predict chemotherapeutic sensitivity in MM patients. We 
assessed several agents, namely cyclophosphamide_1512, bortezomib_1191, cisplatin_1005, epirubicin_1511, 
AZD7762_1022, venetoclax_1909, doramapimod_1042, vincristine_1818, and KU-55933_1030, for 
their therapeutic effectiveness in MM treatments (Fig. 14, Table S11). Our findings indicate that patients 
with a high-risk score might have increased sensitivity to conventional chemotherapy drugs, specifically 
cyclophosphamide_1512, cisplatin_1005, epirubicin_1511, vincristine_1818, and the proteasome inhibitor (PI) 
bortezomib_1191. This suggests that a combination of PI and multidrug chemotherapy may be optimal for this 
patient cohort.

Figure 7.  The expression of MIF and MHC-I signaling pathways as ligand receptors in tissues. (A) The 
expression distribution of MIF signaling ligand receptors in the control group. (B) The expression distribution 
of MIF signaling ligand receptors in the MM group. (C) The expression distribution of MHC-I signaling ligand 
receptors in the control group. (D) The expression distribution of MHC-I signaling ligand receptors in the MM 
group.
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Discussion
With immunotherapy advancing and gaining more attention, an increasing number of biomarkers have been 
explored for immunotherapy response  prediction27. Due to the nonnegligible and vital effects of the TME on 
tumor occurrence and development, influence of the TME on cancer immunotherapeutic efficacy has been 
extensively examined, and TME-related biomarkers have attracted heightened  attention28. However, there 
remains a paucity of reliable biomarkers and risk score models reflecting the roles of the tumorigenic TME 
in immunotherapeutic responses and prognosis in MM. The evolution of scRNA-seq technology offers a 
comprehensive lens into the molecular profiles of tumor-infiltrating immune cells within the  TME29. In this 
study, 41 MM samples were analyzed via single-cell sequencing, and 11 distinct cell types were identified. We 
observed a higher proportion of neutrophils in myeloma samples than in normal controls, unlike lymphocytes 
which were suppressed by elevated tumorigenic plasma cells (Fig. 1D). The ability of neutrophils in MM to form 
NETs also appears to be like other hematological tumors and does not directly correlate with their  count19, which 
needs to be further determined. We utilized NET-related genes sourced from the work of Zhang et al.30, for the 
subsequent evaluation of NET activity via the AUCell algorithm. Cell populations with AUC values exceeding 
0.17 were characterized by high NET activity, suggesting that NETs might modulate these cells, influencing 
tumorigenesis and progression. Subsequently, the pivotal genes governing NET activity were further pinpointed 
by combining the results of the difference and enrichment analyses.

The 13-gene signature effectively differentiates patients into low- and high-risk subpopulations. Across all 
training and validation sets, our signature demonstrated great consistency and stability. Specifically: (1) patients 
from distinct risk subpopulations were clearly distinguishable; (2) high-risk subpopulation patients exhibited a 
poor prognosis; (3) tumor immune microenvironments between low- and high-risk subpopulations exhibited 
significant differences; and (4) the signature’s diagnostic values for 1-year, 3-year, and 5-year survival rates 
were commendable. We found that the 1, 3, and 5-year AUC values of our NET-related prognostic model were 
higher than of the UAMs  GEP7031 model in the same dataset (GSE136337), which suggested its good prognostic 
predictive accuracy (Supplementary Fig. 1A, B). Interestingly, we chose to externally validate the NET-related 

Figure 8.  Enrichment analysis of DEGs related to NET activity in MM. (A) The heatmap shows the 
significantly DEGs in NET active cells of MM. (B) The heatmap shows the significantly DEGs between MM and 
controls in single-cell dataset. (C) The Venn diagram highlights the key genes. (D) The circle diagram shows GO 
and KEGG enrichment results of intersection genes.
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prognostic model with a dataset of screened myeloma cells (GSE4581), which still resulted in a significant 
difference in prognosis between the differentiated low and high-risk groups (Supplementary Fig. 2A, B).

Among the 13 signature-associated genes (RNF125, NPM1, CRIP1, HIST1H1C, C1orf56, S100A6, GAPDH, 
CCND1, RHOH, ANKRD28, MEI1, MGAT4A and ATF7IP2), RNF125, NPM1, CRIP1, HIST1H1C, C1orf56, 
S100A6 and GAPDH were risk genes, while CCND1, RHOH, ANKRD28, MEI1, MGAT4A and ATF7IP2 served 
as protective genes. Among those risk genes, RNF125 was significantly linked to a high score and poor prognosis. 
RNF125, an E3 ubiquitin ligase, is involved in tagging specific proteins, leading to their ubiquitination and 
subsequent degradation. In immune processes, RNF125 ubiquitinates key signaling molecules, influencing 
their stability and function. This mechanism is essential in MM and is regarded as the target of PIs such as 
 bortezomib32. Additionally, RNF125 may function as a positive regulator in the T-cell receptor signaling pathway, 
potentially affecting T-cell  infiltration33. Consistent with this conclusion, our study found that the high-risk cohort 

Figure 9.  Cox and LASSO regression analysis of the MM dataset. (A) Change trajectory of LASSO regression 
independent variable, the abscissa represents the logarithm of the independent variable λ, and the ordinate 
represents the coefficient of the independent variable. (B) Confidence interval under each lambda in LASSO 
regression. (C) The survival curve of patients in high- and low-risk groups from training cohort, respectively. 
(D) The survival curve of patients in low- and high-risk groups from validation cohort, respectively. Red 
represents the high-risk group, and blue represents the low-risk group. (E) 1-, 3-, and 5-year time-dependent 
ROC curves of models for training cohorts. (F) 1-, 3-, and 5-year time-dependent ROC curves of models for 
validation cohorts.
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presented an increased infiltration of activated  CD4+/CD8+ T cell. Nonetheless, the prognosis was unfavorable 
in this group, potentially due to T-cell anergy via mechanisms involving  GRAIL34. NPM1, implicated in various 
cellular activities, shows significant overexpression in hyperdiploid MM due to chromosome 5 gains, suggesting 
its key role in the pathogenesis of hyperdiploid  MM35. Additionally, CRIP might be linked to intestinal zinc 
transport and myeloma bone disease  severity36. Our findings reflected that C1orf56 served as a risk gene in MM, 
which is supported by the fact that C1orf56 is a proto-oncogene repressed by DNMT3B methylation. S100A6 
expression was notably higher in primary MM patients than in controls, associating it with MM progression and 

Figure 10.  GSEA and GSVA of significantly enriched pathways. DNA REPLICATION (A), PARKINSONS 
DISEASE (B), SPLICEOSOME (C), P53 SIGNALING PATHWAY (D), RIBOSOME (E), ASTHMA (F). (G) 
GSVA of significantly enriched pathways.
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intramedullary  metastasis37. MEI1, presumed to be involved in meiosis I, is linked to gestational trophoblastic 
neoplasms. In our framework, elevated MEI1 expression contributes favorably to MM prognosis, but the exact 
mechanism requires further study. MGAT4A, encoding a pivotal glycosyltransferase, was observed to function 
as a protective gene in MM and positively impact prognosis in our study. The protective effect of MGAT4A has 
been observed in breast cancer, in which diminished expression is related to drug  resistance38. In a preliminary 
search of the literature, we found no overlap between the 13 genes in this model and those in existing MM 
prognostic models. This may be related to the fact that there are currently no prognostic models for MM based 
on the genes of NETs, as well as our focus on the potentially possible significant prognostic contribution of the 
microenvironment. However, the mechanism through which the different myeloma cells stimulate the activation 
of NET-related genes in microenvironmental cells and the occurrence of adverse prognostic expression profiles 
needs to be further explored.

Figure 11.  Distinction of immune infiltrations between the high and low risk groups. (A) Boxplot shows the 
estimated proportion of immune cells between low- and high-risk groups. (B) Correlation among immune cells. 
Asterisks represented p value (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05).
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We noted that among the transcriptomic features of different cell types (malignant plasma cells vs. 
microenvironmental cells), six of the risk genes, C1orf56, CRIP1, GAPDH, HIST1H1C, RNF125, and S100A6, 
had a consistent trend of expression in the low- and high-risk groups differentiated by the NET-related prognostic 
model (Supplementary Fig. 3A, B). In order to clarify the difference in the contribution of these genes to prognosis 
in different cell types, we performed Quantitative Real-time PCR to detect the expression of the five genes 
(GAPDH as an internal reference gene) in myeloma and bone marrow stromal cells. The results (Supplementary 
Fig. 4A–E) suggest that three genes, CRIP1, HIST1H1C and RNF125, are significantly overexpressed in myeloma 
cell lines and may contribute to the poor prognosis in malignant plasma cell samples, whereas C1orf56 and 
S100A6 may contribute to the poor prognosis in microenvironmental cell samples.

The GO and KEGG annotation results revealed primary enrichments in cytoplasmic translation, ribosome 
assembly, and ribosome biogenesis (BP). Furthermore, significant annotations were noted in the CC of the 
cytosolic ribosome, ribosomal subunit, and ribosome. MF predominantly involved the structural constituent of 
ribosome, rRNA binding, and antigen binding. Other enrichments were identified in pathways such as COVID-
19, ribosome, and protein processing in the endoplasmic reticulum. Many of these factors have been previously 
linked to the pathogenesis of ribosome biogenesis. Notably, the expression of genes related to ribosome biogenesis 
correlates with disease progression and prognosis in MM patients, suggesting potential therapeutic targets, 
including  BRD939.

GSEA facilitates the extraction of valuable insights from large-scale gene datasets, even with minimal fold 
changes. Utilizing GSEA of our gene datasets, we identified numerous gene sets significantly enriched within 
the MM group. Specifically, DNA replication gene overexpression in differentiated tissues could suggest a 

Figure 12.  Correlation between immune cells and genes. Correlation of gene ATF7IP2 (A), MGAT4A (B) and 
MEl1 (C) with Memory B cell; Correlation of gene ATF7IP2 (D), RNF125 (E) and C1orf56 (F) with Type2 T 
helper cell; Correlation of gene ATF7IP2 (G), C1orf56 (H) and CPIP1 (I) with Activated  CD4+ T cell.
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pathological state. In the MM dataset, this might imply an accelerated division of myeloma cells, a characteristic 
often observed in malignant tumors. The spliceosome, a complex molecular entity predominantly found in 
eukaryotic cell nuclei, primarily functions in excising introns and ligating exons during pre-mRNA processing, 
a critical step known as RNA splicing. This is essential for the optimal maturation of mRNA prior to its export 
for protein translation. Disruptions in spliceosome function can induce aberrant mRNA splicing, potentially 
producing dysfunctional proteins. Research by Hector H. Huang identified splicing interference as a novel aspect 
of the PI mechanism, unveiled further spliceosome modulation methods, and posited spliceosome targeting as 
a promising therapeutic approach for  MM40. Given the likelihood that the DEGs we extracted came from cells 
from the BM microenvironment, common comorbidities of elderly such as Parkinson’s disease and asthma may 
be confounding.

We chose the MM dataset with screened myeloma cells (GSE4581) for GSEA and GSVA analyses and obtained 
different results. Pathway co-enriched by malignant plasma cells and microenvironmental cells was DNA 
REPLICATION. Also, the difference was that malignant plasma cells were enriched to pathway properties of the 
tumor cell itself, such as the CELL CYCLE and PROTEASOME, whereas microenvironmental cells were enriched 
to the pathway of transcription and translation, such as SPLICEOSOME and RIBOSOME (Supplementary 
Fig. 5A–F). GSVA analyses were also suggestive of showing that myeloma cells and microenvironmental cells 
differ significantly in the pathways with the most significant differential expression in the low- and high-risk 
groups distinguished by our NET-related gene prognostic model (Supplementary Fig. 5G).

The dynamic interaction between myeloma cells and the BM microenvironment plays a pivotal role in 
malignant transformation, treatment response, and disease progression. Our comprehensive investigation of 
the prognostic-signature-based immune distinctions revealed that the high-risk group exhibited augmented 

Figure 13.  Risk score is an independent prognostic factor for clinical characteristics. (A) Forest map shows 
the results of univariate Cox regression analysis performed on clinical characteristics. (B) Forest map shows the 
results of multivariate Cox regression analysis performed on clinical characteristics. (C) The nomogram of the 
prediction model. The line segment represents the contribution of the clinical factor to the outcome events, total 
points represent the total score of the sum of the corresponding individual scores of the value of all variables, 
and the bottom three lines represent the prognosis of 1-, 3-, and 5-year survival corresponding to each value 
point. (D) 1-, 3-, and 5-year time-dependent ROC curves of nomogram.
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infiltration of cells linked to adaptive immunity. Conversely, the low-risk group had a pronounced infiltration 
of cells associated with the innate immune system. These variations in cellular infiltration suggest a heightened 
propensity in the high-risk group to develop immune evasion through mechanisms such as immune resistance, 
exhaustion, and  suppression41. The high-risk cohort showed increased infiltration of type 2 T helper cells 
(HR = 5.7, p = 0.013) and decreased infiltration of NK cells (HR = 0.089, p = 0.046). Both have been previously 
identified as significant adverse prognostic factors in  MM42. Type 1 T helper cells generate IFN-γ, bolstering the 
cell-mediated immune response, while type 2 T helper cells, which produce IL-4, counteract this type 1 T helper 
cells response. Research by Faqing Tian et al. uncovered that myeloma cells could serve as antigen presenting cells 
(APCs), showcasing microbial antigens to type 2 T helper cells, which spurs their proliferation and thereby aids 
tumor progression via intimate Th2-myeloma cell  interactions43. NK cells possess a spectrum of antitumor and 
immunomodulatory functions. A direct correlation exists between NK cell activity and disease-free survival in 
MM patients. Reduced NK cell activity aligns with advanced clinical stages, elevated LDH, heightened BM plasma 
cell infiltration, and increased β2 microglobulin  levels44. Those MM patients exhibiting long-term disease stability 
displayed an expansion of NK  cells45. In our study, this finding is consistent with those previous conclusions made 
by others. Additionally, our findings suggest that neutrophils in myeloma patients engage in aberrant interactions 

Figure 14.  Drug susceptibility between the low- and high-risk groups. (A) Difference in sensitivity 
to Cyclophosphamide_1512 between low- and high-risk groups. (B) Difference in drug sensitivity of 
Bortezomib_1191 between low- and high-risk groups. (C) Differences in drug susceptibility to Cisplatin_1005 
between low- and high-risk groups. (D) Difference in Podophyllotoxin Epirubicin_1511 drug sensitivity 
between low- and high-risk groups. (E) Differences in AZD7762_1022 susceptibility between low- and high-
risk groups. (F) Differences in drug sensitivity of Venetoclax_1909 between the low- and high-risk groups. 
(G) Differences in susceptibility to Doramapimod_1042 between low- and high-risk groups. (H) Difference 
in Vincristine_1818 susceptibility between low- and high-risk groups. (I) Difference in drug sensitivity to 
KU-55933_1030 between low- and high-risk groups.



17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2264  | https://doi.org/10.1038/s41598-024-52922-7

www.nature.com/scientificreports/

with NK cells via receptors such as HLA-E, which could account for the diminished NK cell presence in the 
high-risk cohort, consequently affecting prognosis. Therefore, devising immune therapies targeting NK cells, 
such as BCMA CAR-NK46, seems promising for the high-risk group. Evidently, these immune cellular infiltration 
disparities could be the underlying factors for the adverse prognosis observed in the high-risk group, with this 
group exhibiting markedly lower survival rates than their low-risk counterparts.

To elucidate the impact of immune cell infiltration in MM more profoundly, we employed ssGSEA for a 
thorough assessment of immune infiltration within MM contexts. Our analysis revealed that heightened 
infiltration of memory B cells, type 2 T helper cells, and activated  CD4+ T cells might be intrinsically linked to 
the onset and progression of MM. Notably, ATF7IP2 demonstrated a significant association with memory B cells, 
while ATF7IP2, RNF125, and C1orf56 showed substantial correlations with type 2 T helper cells. Furthermore, 
ATF7IP2, C1orf56, and CPIP1 exhibited strong associations with activated  CD4+ T cells. Conversely, MGAT4A 
and MEI1 displayed negative correlations with memory B cells. Within our model, ATF7IP2 emerges as the 
predominant gene contributing to a low-risk profile. This observation aligns with prior findings in studies on 
lung  cancer47. Interestingly, ATF7IP2 bears positive correlations with diverse immune cell infiltrations, typically 
linked to unfavorable prognoses. This implies that ATF7IP2 might positively influence prognosis via alternative 
pathways. Such hypotheses necessitate further exploration to elucidate the intricate interplay between genes and 
immune cells, providing a direction for the in-depth exploration and supplementation of the potential molecular 
mechanism in MM.

Drug sensitivity prediction analysis suggests that high-risk patients might have heightened sensitivity 
to bortezomib treatment. This raises the possibility that primary induction therapy, which includes the PI 
bortezomib such as the VCD (bortezomib, cyclophosphamide, dexamethasone) regimen, may not fully explain 
the observed prognostic disparities between groups. Moreover, venetoclax appears to be more effective in the 
high-risk cohort. Its use has been chiefly confined to patients with cytogenetic abnormalities characterized 
by the t(11:14) translocation, which results in the IgH/CCND1 fusion  gene48. Notably, our prognostic model 
includes the CCND1 gene, which is believed to act as a protective factor. This is consistent with the favorable 
prognosis in the myeloma subgroup with the IGH/CCND1 fusion gene, implying the venetoclax might be 
beneficial for high-risk patients with elevated CCND1 expression. Additionally, Selinexor, a selective nuclear 
export inhibitor, has shown significant efficacy against relapsed and refractory  MM49. Given its capacity to 
inhibit human NET formation in vitro50, selinexor may offer potential as a salvage therapy for high-risk patients. 
Furthermore, AZD7762, an ATP-competitive checkpoint kinase inhibitor, augments checkpoint termination and 
bolsters DNA-focused treatments. For refractory high-risk patients, its combined administration with cytotoxic 
agents or immune checkpoint  inhibitors51 could be advantageous. In contrast, for low-risk patients, conventional 
treatments yield moderate drug sensitivity. For those unresponsive to standard treatments, small molecule drugs 
such as the MAPK inhibitor Doramapimod and the ATM inhibitor KU-55933 might be viable options. The results 
of drug sensitivity prediction analysis provide a possible direction for MM therapy, but all of speculations need 
in-depth experiments to verify.

This study presents several limitations warranting acknowledgment. First, the NET-dependent risk signature 
was developed based on a limited sample of MM patients sourced from the GEO databases. To validate 
the predictive relevance of this prognostic signature, expansive prospective clinical studies are necessary. 
Furthermore, the NET-dependent risk signature was derived exclusively from bioinformatics analysis, 
necessitating further empirical research to substantiate the findings. It is also important to note that our 
prognostic model focuses mainly on the bone marrow microenvironment of MM, and has not yet taken into 
consideration the cytogenetic characteristics of the myeloma cells themselves which are the most important 
prognostic indicator of MM. The relationship between cytogenetics and this NET-related gene prognostic model 
needs to be further explored. NETs are likely to be associated with tumor growth, extramedullary metastasis and 
 thrombosis12 in MM, and endothelial  autophagy52 may be involved and play important roles. This is well worth 
exploring in depth. Unfortunately, we could not annotate endothelial cells in the analyzed dataset (GSE223060), 
which further may be resolved by retaining bone marrow biopsies instead of bone marrow fluid for single-cell 
sequencing.

Our study demonstrates that neutrophils, monocytes, and macrophages exhibit NET activity in MM. 
Subsequently, we identify an anomalous communication pathway between neutrophils and NK cells in MM. 
Ultimately, we present an innovative prognostic signature derived from NET-related genes for MM patients. 
This signature proficiently forecasts prognosis and has the potential to pave the way for further therapeutic 
exploration.

Methods
Bulk transcriptome data acquisition and preprocessing
All data utilized in this study are publicly available and primarily sourced from the Gene Expression Omnibus 
(GEO, https:// www. ncbi. nlm. nih. gov/ geo/). The MM genome-wide expression profiles were retrieved using the 
R package ’GEOquery’ from the GEO database. We focused on the characterization of NET-active cells in the 
bone marrow microenvironment and therefore chose a MM transcriptome dataset that was subtracted from 
malignant plasma cell signaling (GSE136337). This research incorporated GSE136337, which comprises 424 
tumor samples, and adhered to the data access policies of the respective database.

Single‑cell sequencing data download and processing
The GEO database houses a vast array of single-cell sequencing data. For this research, we accessed an MM 
single-cell sequencing dataset, GSE223060, from the GEO database, encompassing 41 disease samples and 19 
normal samples. We imported the raw data from GSE223060 using the Seurat package for R (version 4.2.0)53. 

https://www.ncbi.nlm.nih.gov/geo/
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The dataset underwent preliminary filtering based on several criteria to ensure that only high-quality cells were 
used for the subsequent analyses: (1) Exclusion of genes found in fewer than 1 cell. (2) Retention of cells with 
gene expression ranging from 200 to 5000 for the reason that too few genes expressed reflect possible debris or 
low-activity cells, while too many genes expressed reflect the presence of cell doublet or multiplet. (3) Retention 
of cells with mitochondrial gene percentages below 20% for the elimination of low-activity or dying cells. (4) 
Retention of cells with unique molecular identifier (UMI) counts between 1000 and 10,000 for the reason same as 
criteria 2). The condition of cells before and after filtration was shown by violin plots (Supplementary Fig. 6A, B). 
The data were normalized with the ’normalizedata’ function in Seurat. Following normalization, we pinpointed 
the highly variable genes in single cells, taking into account the correlation between average expression and 
dispersion. We conducted a principal component analysis (PCA) using significant principal components (PCs) 
for graph-based clustering. Batch correction for the different samples was performed by the ‘RunHarmony’ 
function in the R package harmony (version 0.1.0), and the batch effect was well removed. During clustering, 
the FindClusters function was utilized, which implements the shared nearest neighbor (SNN) modularity 
optimization-based clustering algorithm on 30 PC components at a resolution of 0.3 where the clustering was 
most stable (Supplementary Fig. 7), resulting in 22 clusters. We executed uniform manifold approximation 
and projection (UMAP) using the ’Runumap’ function, visualizing cell clusters via UMAP-1 and UMAP-2 
coordinates. To discern differentially expressed genes (DEGs) within each cluster, we engaged the FindAllMarkers 
function from Seurat on the normalized gene expression data. Following this, we identified the cell clusters using 
cell type-specific biomarkers and assessed the proportions of the various cell types.

Neutrophil extracellular trap‑related gene score
Using the AUCell R  package54, pathways for each cell were scored based on gene set enrichment analysis (GSEA). 
The gene set of neutrophils was derived from Şenbabaoğlu et al.55. NETosis-related genes were largely informed 
by a review article outlining advances in the study of NETs in immunity and various  diseases11. In summary, 
we adopted the 69 genes identified by Zhang and colleagues as initial biomarkers for NETs characterization 
 training30 (Table S12). Scores were derived from the area under the curve (AUC) values of the selected 69 NET-
related genes. By ranking the gene expression of each cell, we estimated the proportion of highly expressed 
genes in each cell. Cells with more genes from the set exhibited higher AUC values. We employed the ‘AUCell_
exploreThresholds’ function to determine the threshold for recognizing cells with active gene sets. Subsequently, 
the AUC scores of individual cells were visualized on the UMAP embedding using the ‘ggplot2’ R package 
(Version 3.3.5), highlighting the active clusters.

Constructing single‑cell trajectory in pseudo‑time
We performed pseudo-time analysis using Monocle  256, leveraging reverse graph embedding based on a 
user-specified gene list to produce a pseudo-time plot that captures both branched and linear differentiation 
trajectories. For this analysis targeting the neutrophil active cells, raw count data underwent normalization by 
calculating the size factors essential for trajectory inference. Only genes exhibiting high dispersion (empirical 
dispersion/dispersion fit ≥ 1) and significant expression (mean expression ≥ 0.1) were selected to construct the 
pseudo-time  trajectory57. We employed the default parameters of the DDRTree algorithm for this purpose. The 
branching events in the trajectories were further examined using branched expression analysis modeling (BEAM) 
within Monocle 2. This approach aids in pinpointing genes demonstrating noteworthy branch-dependent 
 expression56. Monocle 2 was also used to visually represent these branch-dependent expression patterns in a 
heatmap format.

Cell communication analysis and ligand‑receptor expression
Cell–cell communication analysis evaluates the expression of ligand-receptor pairs across various cell types, 
highlighting specific signaling  pathways58. CellChat discerns both the afferent and efferent communication 
patterns of each cell type, quantifies the cellular communication pathway, and computes the information flow for 
each signaling pathway or the intercellular communication  probability59. In our research, we employed CellChat 
to investigate single-cell samples. Utilizing CellChat (version 1.1.3), we assessed the intercellular communication 
across cell types within each MM sample by incorporating the standardized scRNA-seq data after Seurat package 
processing. We carried out a detailed analysis of the cellular communication signals in MM, focusing specifically 
on neutrophils to ascertain the intensity of each signaling pathway and further selecting distinct communication 
pathways for visualization. Our CellChat analyses maintained the default software parameters, setting p ≤ 0.05 as 
the significance threshold, with the adjusted p value corrected via the Benjamini and Hochberg (BH) method.

GO and KEGG pathway enrichment analysis
Gene Ontology (GO)60 enrichment analysis encompasses biological process (BP), molecular function (MF), 
and cellular component (CC) categories. The Kyoto Encyclopedia of Genes and Genomes (KEGG)61 serves as 
a bioinformatics tool to identify notably altered metabolic pathways enriched within the gene list. Using the 
’clusterProfiler’ R package (version 4.2.2)62, we conducted both GO and KEGG enrichment analyses on NET-
related DEGs in MM, setting a significance threshold at p < 0.05.

Development and validation of the prognostic system
For difference analysis of the transcriptome data (GSE136337) of the MM samples and normal controls, we 
used the ’limma’ R package (version 3.50.0) for difference analysis and the BH method for multiple calibration. 
To determine the prognostic significance of the NET-related DEGs, we conducted a univariate Cox hazard 
analysis, assessing the associations between each gene and overall survival (OS) within the tumor cohorts. Genes 
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correlated with survival, using a cutoff p value of 0.05, were selected for subsequent analysis. Tumor samples 
with accompanying clinical data were stratified into a training set (n = 291) and a verification set (n = 129) at a 
7:3 ratio. We employed the LASSO Cox regression model (R package ’glmnet’63) with 10-fold cross-validation to 
refine the list of candidate genes and formulate the prognostic model. The penalty parameter (λ) was determined 
based on minimum criteria. The risk score was computed using the following formula:

(Coef  (genei): coefficients, Expression  (genei): gene expression level).
Patients in the training group were categorized into low- and high-risk subgroups based on the median risk 

score. The Kaplan–Meier method was used to generate survival curves for prognostic evaluation, while the 
statistical significance between the groups was determined using log-rank tests. The efficacy of the prediction 
model was assessed through receiver operating characteristic (ROC) curves. AUC values, which typically vary 
between 0.5 and 1, serve as indicators of the model’s performance, with values closer to 1 denoting optimal 
efficacy. For validation, the verification groups were similarly divided into risk subgroups, and these categories 
were subsequently compared to authenticate the gene model.

Quantitative real‑time polymerase chain reaction (RT‑qPCR)
We performed RT-qPCR to verify the differential expression of risk genes in myeloma and bone marrow stromal 
cell lines, and the raw data was shown in Table S13. The main experimental procedures and methods were 
presented in Supplementary File 15.

Construction and verification of the nomogram
Clinical data, encompassing survival status, survival duration, age, and sex, were sourced from the GEO cohort. 
These variables were integrated into our regression model with the risk score. Both univariate and multivariable 
Cox regression models facilitated the analysis. A nomogram was constructed to forecast the 1-, 3-, and 5-year 
survival probabilities, incorporating the risk score as a prognostic factor. By amalgamating prognostic indicators 
with clinical data, the nomogram was executed using the ‘RMS’ R package. The efficacy of the risk score model 
and the nomogram were assessed using time-dependent ROC curves.

Gene set enrichment analysis
GSEA64 is a computational technique that ascertains whether an a priori defined gene set exhibits statistically 
significant, concordant variations between two biological conditions. In this study, the differential expression 
between low- and high-risk groups was analyzed using the ’limma’ R  package65. The fold change (FC) in gene 
expression between these groups was determined. Subsequently, GSEA was conducted with the ’clusterProfiler’ 
R package (version 4.2.2), utilizing an ordered list of genes based on their log2FC values. The analysis underwent 
1,000 gene set permutations. The reference gene collection was selected as c2.cp.kegg.v7.5.1.symbols from 
the Molecular Signatures Database (MSigDB)64,66,67 Collections. A gene set was deemed to have significant 
enrichment if it had an adjusted p value of less than 0.05.

Gene set variation analysis
To explore the differences in biological function between control and MM samples, we employed gene set 
variation analysis (GSVA) using "c2.cp.kegg.v7.5.1.symbols" through the R package ’GSVA (version 1.42.0)’. 
Visualization of the results was achieved using the ’pheatmap’ R package (version 1.0.12).

Immune infiltration analysis
Single-sample gene set enrichment analysis (ssGSEA)68, a derivative of GSEA, computes enrichment scores 
for each combination of sample and gene set. Each ssGSEA enrichment score indicates the coordinated up- or 
downregulation of genes within a specific gene set for an individual sample. Unlike traditional GSEA, which 
calculates enrichment scores for groups of samples (e.g., control vs. disease) and gene sets (e.g., pathways), 
ssGSEA provides a score for each sample-gene set pairing.

Using the 28 types of immune cells sourced from the TISIDB (Tumor and Immune System Interactions 
Database) (http:// cis. hku. hk/ TISIDB/ index. php)68 (Table S14), such as activated  CD8+ T cells and natural killer 
(NK) cells, the relative enrichment score for each immunocyte was derived from the gene expression profiles of 
MM samples. Differences in the infiltration levels of these immune cells between the low- and high-risk groups 
were visualized using the ’ggplot2’ R package (version 3.3.6)69.

Assessment of drug susceptibility
Using the half-maximal inhibitory concentration (IC50) from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database (https:// www. cance rrxge ne. org/)70 and clinical gene expression data, we employed the 
’oncoPredict (version 0.2)’ R  package71 to predict the potential therapeutic drug sensitivity for MM patients in 
both risk subgroups.

Statistical analysis
The Wilcoxon rank-sum test was employed to assess the relationship between continuous variables in the low- 
and high-risk groups. Proportional differences were assessed using the chi-square test or Fisher’s exact test. 
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Kaplan–Meier survival curves were generated using the ‘ggsurvplot’ function from the ’survminer’ package in 
R, and significant differences were evaluated with the log-rank test. We used LASSO-Cox regression analyses to 
develop signature genes and produced ROC and time-ROC curves to evaluate predictive performance. Statistical 
significance was set at a two-sided p value < 0.05. All analytical procedures were performed using R software 
(version 4.1.2).

Data availability
The datasets generated and/or analyzed during the current study are available in the GEO dataset (https:// www. 
ncbi. nlm. nih. gov/ geo/). The single-cell dataset GSE223060: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? 
acc= GSE22 3060. The transcriptomics dataset GSE136337: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? 
acc= GSE13 6337. The transcriptomics dataset GSE4581: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE45 81. This article and supplemental material included all the data generated during this study. For further 
inquiries, please contact the corresponding author.
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