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Joint diffusional kurtosis magnetic 
resonance imaging analysis 
of white matter and the thalamus 
to identify subcortical ischemic 
vascular disease
Min‑Chien Tu 1,2, Sheng‑Min Huang 3, Yen‑Hsuan Hsu 4,5, Jir‑Jei Yang 6, Chien‑Yuan Lin 7 & 
Li‑Wei Kuo 3,8*

Identifying subcortical ischemic vascular disease (SIVD) in older adults is important but challenging. 
Growing evidence suggests that diffusional kurtosis imaging (DKI) can detect SIVD‑relevant 
microstructural pathology, and a systematic assessment of the discriminant power of DKI metrics in 
various brain tissue microstructures is urgently needed. Therefore, the current study aimed to explore 
the value of DKI and diffusion tensor imaging (DTI) metrics in detecting early‑stage SIVD by combining 
multiple diffusion metrics, analysis strategies, and clinical‑radiological constraints. This prospective 
study compared DKI with diffusivity and macroscopic imaging evaluations across the aging spectrum 
including SIVD, Alzheimer’s disease (AD), and cognitively normal (NC) groups. Using a white matter 
atlas and segregated thalamus analysis with considerations of the pre‑identified macroscopic 
pathology, the most effective diffusion metrics were selected and then examined using multiple 
clinical‑radiological constraints in a two‑group or three‑group paradigm. A total of 122 participants 
(mean age, 74.6 ± 7.38 years, 72 women) including 42 with SIVD, 50 with AD, and 30 NC were 
evaluated. Fractional anisotropy, mean kurtosis, and radial kurtosis were critical metrics in detecting 
early‑stage SIVD. The optimal selection of diffusion metrics showed 84.4–100% correct classification 
of the results in a three‑group paradigm, with an area under the curve of .909–.987 in a two‑group 
paradigm related to SIVD detection (all P < .001). We therefore concluded that greatly resilient to the 
effect of pre‑identified macroscopic pathology, the combination of DKI/DTI metrics showed preferable 
performance in identifying early‑stage SIVD among adults across the aging spectrum.

Subcortical ischemic vascular disease (SIVD) is a common subtype of vascular cognitive impairment (VCI) in 
which cerebral vascular pathologies are spatially and pathologically  stratified1. Identifying SIVD in older adults is 
important but  challenging2. While white matter hyperintensities (WMHs) and lacunes within subcortical regions 
are pathognomonic in  SIVD1, these imaging features are also observed in patients with Alzheimer’s disease 
(AD)3 and cognitively normal (NC) older  adults4. To improve the detectability, exploring the value of advanced 
neuroimaging techniques is needed from both therapeutic and prognostic perspectives. Current diagnostic 
guidelines for dementia mostly describe neuroimaging features for individual dementia subtypes separately. 
Therefore, an optimized tool to assist in decision-making is needed, as clinicians often consider a list of differen-
tial diagnoses simultaneously in real-world practice. Among neuroimaging techniques, structural MRI has been 
shown to potentially be able to identify the presence of VCI among patients with dementia, and especially among 
those with  AD5–7. Compared to VCI, the early detection of SIVD is even more challenging, as the macroscopic 
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plethora of WMHs and/or lacunes generally evolve later. Recently, diffusional kurtosis imaging (DKI) has been 
used to quantify microstructural changes, and it has been shown to improve the diagnostic accuracy of early-
stage  SIVD8–10. To date, most DKI studies have focused on comparing cerebral microstructural changes among 
SIVD  subgroups9 or with  controls10, but few have compared SIVD with other dementia  subtypes8. Moreover, 
it remains unclear which DKI metrics have the best performance in detecting SIVD amongst the aging spec-
trum. Importantly, the statistical power for differential diagnostics that is pivotal for clinical drug trials should 
be optimized by characterizing the underlying neurobiological  heterogeneity11. Given that the efficacy of DKI 
metrics can vary according to the targeted brain regions, macroscopic pathology, and clinical constraints, this 
study aimed to (i) investigate the diagnostic ability of DKI through two kinds of analytic strategies, (ii) validate 
the results either by considering multiple clinical constraints indicative of the very early stage of SIVD, or the 
effect driven by macroscopic pathology, and (iii) determine the optimal diffusion metrics to detect SIVD with 
a two-group or three-group paradigm.

Results
Demographics
Table 1 shows the basic information of the participants. There were group effects in demographics including 
age, education, and symptom duration (all P < 0.001), but not gender (P = 0.224). Other significant post-hoc 
differences were noted in WMHs (i.e., Scheltens scale and WMH volume; both P < 0.001; SIVD > AD > NC), 
the number of lacunes and Hachinski Ischemic Score (both P < 0.001; SIVD > NC and SIVD > AD), and global 
cognition (i.e., Mini-Mental State Examination (MMSE) and Cognitive Abilities Screening Instrument (CASI); 
both P < 0.001; SIVD < NC and AD < NC).

Diffusion metrics in the thalamus and white matter (WM)
Table 2 shows comparisons of diffusion metrics in the thalamus and WM after controlling for potential covari-
ates including age, education, symptom duration, WMH volumes, and number of lacunes. Significant post-hoc 
results included: (i) in the thalamus, the SIVD group showed significantly lower fractional anisotropy (FA) and 
axial kurtosis  (Kaxial) than the AD group (P = 0.011–0.041), and significantly lower mean kurtosis (MK) and radial 
kurtosis  (Kradial) than the NC group (P = 0.043–0.044); the AD group showed significantly higher mean diffusiv-
ity (MD), axial diffusivity  (Daxial), and radial diffusivity  (Dradial) than the NC group (P = 0.003–0.019), and (ii) in 
WM, the SIVD group showed significantly lower bilateral MK and  Kradial (P = 0.004–0.019) than the NC group.

Diffusion metrics quantified in the white matter atlas (WMA) and segregated thalamus analy-
sis (THA)
Table 3 shows the correct classification through discriminant analysis among the participants across the aging 
spectrum by diffusion metrics and macroscopic imaging evaluation in WMA and THA. At first glance, THA 
generally had a lower correct classification rate than WMA, but the trend among the performance of various 
diffusional kurtosis metrics was similar to that in WMA. Compared to correct classification by Scheltens scale 
(72.1%) and segregated WMH volume (63.9%), the use of mean kurtosis metrics in overall WMA achieved the 
highest correct classification rate (77.9%). Generally, FA showed higher correct classification rates than kurtosis 
fractional anisotropy (KFA) in all constraints except CDR. MK showed incrementally higher classification rates 
over MD in all cases (overall and three constraints) for both WMA and THA analyses. For both diffusivity 
and kurtosis, the mean and radial metrics generally showed higher correct classification rates than the axial 
metrics. Since KFA,  Daxial, and  Kaxial showed relatively low correct classification rates, they were excluded from 

Table 1.  Demographic of the participants. Data is represented as mean ± SD unless otherwise indicated. 
SIVD = Subcortical ischemic vascular disease. AD = Alzheimer’s disease. NC = normal cognition. § The 
Analysis of Variance (ANOVA) and Chi-square test are used wherever appropriate. Significant between-
group differences are remarked as aSIVD vs. AD; bSIVD vs. NC; cAD vs. NC. Median of white matter 
hyperintensities (SIVD/AD/NC/overall) = (37.4/10.2/2.2/14.2) ml. Median of the lacune number (SIVD/AD/
NC/overall) = (17/7/4/8).

SIVD AD NC

F/χ2§ P(N = 42) (N = 50) (N = 30)

Age (year) 73.5 ± 8.71 77.9 ± 5.05 70.5 ± 6.25 11.969 ac  < .001

Education (year) 5.5 ± 4.47 4.9 ± 4.62 9.4 ± 4.14 10.101 bc  < .001

Symptom duration (year) 1.5 ± 1.56 2.5 ± 2.22 0 ± 0.00 15.996 abc  < .001

Scheltens scale 24.7 ± .7.52 12.0 ± 6.59 7.3 ± 6.68 63.791 abc  < .001

White matter hyperintensities (ml) 38.8 ± 17.85 15.2 ± 14.64 6.3 ± 9.28 49.072 abc  < .001

Lacunes (number) 20.4 ± 13.75 8.6 ± 8.94 7.7 ± 8.48 17.616 ab  < .001

Hachinski Ischemic Score 10.0 ± 2.46 1.8 ± 1.45 1.9 ± 1.39 268.502 ab  < .001

Cognitive Abilities Screening Instrument 63.3 ± 14.55 59.1 ± 18.25 89.9 ± 4.58 44.572 bc  < .001

Mini-Mental State Examination 19.9 ± 5.03 19.1 ± 5.40 28.5 ± 1.07 43.875 bc  < .001

Gender (male/female) (N) 19/23 16/34 15/15 2.991 .224

Clinical Dementia Rating stage 0.5/1/2 (N) 25/12/5 22/24/4 – 3.634 .162
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comparisons of discrimination analyses using multiple metrics. Given a generally better performance in the 
measure of saving area of WMHs than the current measure aimed at region free from WMH, the statistical dif-
ferences are not benefited by the process of WMH regional exclusion (Supplementary Table S1).

Optimized selection of multiple diffusion metrics
Figure 1 compares the performance of single diffusion metric and multiple diffusion metrics in discriminating the 
three groups. The correction classification rates of utilizing single/double/triple metrics from both hemispheres 
were 73.5/83.2/87.7% in WMA (Fig. 3A), and 66.1/75.0/77.9% in THA (Fig. 3B). In analysis of two hemispheres 
separately, the use of triple metrics showed correct classification rates of 80.7 and 72.3% in WMA and THA, 
respectively (Fig. 3A, B). Of note, the triple-metric usage of MK,  Kradial, and FA achieved the best discriminant 

Table 2.  Diffusional kurtosis and diffusion tensor metrics from the average thalamus and the white matter 
measures by groups. Data is represented as mean ± SD unless otherwise indicated. Mean/axial/radial diffusivity 
is presented in units of  10−3mm2s−1. P value from the analysis of covariance (ANCOVA) with covariates 
including age, education, symptom duration, the volume of white matter hyperintensities, and the number 
of lacunes are reported. The Tukey post-hoc comparisons are remarked as a: SIVD vs. AD; b: SIVD vs. NC; 
c: AD vs. NC. FA = Fractional Anisotropy. KFA = Kurtosis Fractional Anisotropy. MD = Mean Diffusivity. 
 Dradial = Radial Diffusivity.  Daxial = Axial Diffusivity. MK = Mean Kurtosis.  Kradial = Radial Kurtosis.  Kaxial = Axial 
Kurtosis. SIVD = Subcortical ischemic vascular disease. AD = Alzheimer’s disease. NC = normal cognition. 
Significant values are in bolditalics.

Metrics

Average white matter atlas Average thalamus

SIVD AD NC ANCOVA SIVD AD NC ANCOVA

(N = 42) (N = 50) (N = 30) P (N = 42) (N = 50) (N = 30) P

MK .88 ± .071 .99 ± .606 1.05 ± .083 .004b .81 ± .063 .89 ± .074 .92 ± .048 .031b

Kaxial .44 ± .030 .45 ± .025 .46 ± .021 .112 .45 ± .044 .44 ± .043 .45 ± .023 .014a

Kradial 1.16 ± .123 1.33 ± .098 1.41 ± .127 .019b .97 ± .087 1.0 ± .088 1.1 ± .068 .037b

KFA .35 ± .063 .38 ± .046 .39 ± .034 .866 .28 ± .087 .32 ± .069 .32 ± .038 .796

MD 1.20 ± .110 1.10 ± .068 1.03 ± .069 .102 1.32 ± .256 1.18 ± .207 .98 ± .093 .010c

Daxial 1.60 ± .093 1.52 ± .066 1.46 ± .061 .117 1.65 ± .281 1.53 ± .233 1.29 ± .100 .003c

Dradial 1.00 ± .123 .90 ± .072 .82 ± .075 .123 1.15 ± .245 1.01 ± .198 .823 ± .092 .019c

FA .31 ± .039 .35 ± .024 .37 ± .030 .182 .27 ± .035 .30 ± .035 .30 ± .024 .047a

Table 3.  Discriminant analysis by diffusional kurtosis metrics, diffusion tensor metrics, and macroscopic 
imaging evaluation. Data are reported by the value of correct classification (%). CDR = Clinical Dementia 
Rating. WMH = white matter hyperintensities. FA = fractional anisotropy. MD = mean diffusivity. MK = mean 
kurtosis. KFA = kurtosis fractional anisotropy.  Daxial = axial diffusivity.  Dradial = radial diffusivity.  Kaxial = axial 
kurtosis.  Kradial = radial kurtosis. SIVD = Subcortical ischemic vascular disease. AD = Alzheimer’s disease. 
NC = normal cognition. Macroscopic imaging evaluation included the Scheltens scale and segregated WMH 
volume. † A total of 12 subregions averaged from bi-hemispheric ratings are used. *A total of 16 tracts including 
the corpus callosum (genu and body parts), and the anterior limb of internal capsule, anterior corona radiata, 
superior corona radiata, external capsule, cingulum (cingulate gyrus part), and superior longitudinal fasciculus 
of bi-hemispheres are used. § A total of 14 sub-regions ofthe thalamus including the pulvinar, anterior, 
mediodorsal, ventral–lateral–dorsal, central, ventral-anterior, and ventral–lateral–ventral nuclei are used. 
Cases number (SIVD/AD/NC): Overall = 42/50/30; CDR ≤ 0.5 = 25/22/30; WMH Volume ≤ 15 ml = 3/32/26; 
Lacunes ≤ 8 = 8/34/20.

Metrics

White matter atlas* Segregated thalamus  analysis§

Overall CDR ≤ .0.5 WMH ≤ 15 ml Lacune ≤ 8 Overall CDR ≤ .0.5 WMH ≤ 15 ml Lacune ≤ 8

Scheltens scale† 72.1 72.7 67.2 72.6 – – – –

Segregated WMH 
volume* 63.9 75.3 85.2 72.6 – – – –

MK 77.9 81.8 81.0 77.4 68.9 76.6 80.3 79.0

Kaxial 68.9 76.6 73.8 72.6 56.6 64.9 59.0 56.5

Kradial 74.6 80.5 78.7 83.9 66.4 64.9 70.5 69.4

KFA 66.4 75.3 78.7 75.8 58.2 63.6 70.5 66.1

MD 76.2 80.5 80.3 77.4 63.1 68.8 75.4 71.0

Daxial 76.2 76.6 78.7 74.2 55.7 67.5 73.8 74.2

Dradial 71.3 77.9 88.5 79.0 65.6 76.6 73.8 74.2

FA 72.1 75.3 88.5 79.0 66.4 72.7 77.0 69.4
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power across the aging spectrum (89.3/84.4% correct classification in WMA/THA) (Fig. 3C, D). Importantly, 
the use of both analysis strategies (i.e., WMA + THA) yielded a 100.0% correct classification rate (Fig. 3E).

ROC values from the optimal selection of triple diffusion metrics
Figure 2 shows the ROC curves for the sensitivity and specificity of optimal diffusion metrics to discriminate 
SIVD, AD and NC. To differentiate SIVD from AD, the highest AUC was for WMA (AUC = 0.964), followed by 
WMA + THA (AUC = 0.958) and THA (AUC = 0.909) (Fig. 4). To differentiate SIVD from NC (Fig. 4B), a similar 
trend was found (WMA > WMA + THA > THA; AUC = 0.987–0.965). Of note, all trials of the optimal DKI metrics 
aiming to detect SIVD yielded AUC values > 0.9. To differentiate AD from NC (Fig. 4C), WMA + THA achieved 
the best AUC of 0.953, followed by WMA (AUC = 0.937) and THA (AUC = 0.885) (all P < 0.001). Regarding 
individual regions, the tracts and nuclei showing the best statistical power were identified as (i) the left superior 
corona radiata and left ventral–lateral–ventral nuclei for SIVD vs. AD, (ii) the right anterior corona radiate and 
left ventral–lateral–ventral nuclei for for SIVD vs. NC, and (iii) the right cingulum (cingulate gyrus part) and 
left central nuclei for AD vs. NC. Note that all belong to MK metrics (Supplementary Table S2).

Figure 1.  Discriminant analysis determined by kurtosis and diffusion metric selection. (A, B) Comparisons 
of variable metrics (e.g., MK, MD, and FA) by two measures (i.e., WMA and THA) shows that integration of 
triple metrics (MK +  Kradial + FA) achieves the best discriminant analysis of aging spectrum including SIVD, 
AD, and NC (89.3% and 84.4% correct classification in the WMA and THA, respectively. In the WMA, the 
correct classification rate by single/double/triple metrics is 66.4–77.9/82.0–84.4/86.1–89.3%, with the averaged 
correct classification rate of 73.5/83.2/87.7%, respectively. In the THA, the correct classification rate by single/
double/triple metrics is 63.1–68.9/71.3–77.9/71.3–84.4%, with the averaged correct classification rate of 
66.1/75.0/77.9%, respectively. The correct classification rates of utilizing single/double/triple metrics were 
derived by entering the selected diffusion metrics (e.g. MK, MD, FA, …etc.) from white matter atlas or thalamic 
atlas in to discriminant analysis. Data from different hemispheres were regarded as different inputs. Taking a 
triple-metric (MK + MD + FA) as an example, such triple-metric in bilateral WMA (total 16 regions) will give 
48 values in each individual, and these 48 values are entered into discriminant analysis. The optimized kurtosis 
metrics (i.e., MK + Kradial + FA) is further examined by deciphering primary regions of interest by hemispheres, 
showing 80.7 and 72.3% average correct classification in the WMA and THA, respectively. (C–E) Discriminant 
analysis results from the optimized kurtosis metrics are plotted, showing that 89.3% correct classification in the 
WMA, 84.4% correct classification in the THA, and 100.0% correct classification in WMA + THA. R/L = Right/
Left hemisphere. FA = fractional anisotropy; MD = mean diffusivity; MK = mean kurtosis;  Dradial = radial 
diffusivity;  Kradial = radial kurtosis. WMA = White matter atlas. THA = Segregated thalamus analysis. 
SIVD = Subcortical ischemic vascular disease. AD = Alzheimer’s disease. NC = normal cognition.
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Correlates for global cognition
Table 4 shows the estimated effects of diffusion metrics on global cognition measured using the CASI. In the 
WMA, the right cingulum, right genu of the corpus callosum, and bilateral superior corona radiata were the best 
predictors (P =  < 0.001–0.035). In THA, the nucleus including the left central, right ventral lateral-dorsal, right 
anterior, right mediodorsal, left pulvinar, and left ventral-anterior portions were significant (P =  < 0.001–0.023).

Correlates for the Hachinski Ischemic Scale (HIS)
We also explored the associations between all diffusion metrics and the HIS. In the WMA, the bilateral ante-
rior limbs of the internal capsule were the best predictors (P =  < 0.001–0.005). In THA, the nucleus including 

Figure 2.  Optimized diffusional kurtosis metrics performance by receiver operating characteristic (ROC) 
curves. ROC curves were used to differentiating targeted diseased group. Ranked by AUC values, performance 
of optimized kurtosis metrics was displayed in (A) differentiating SIVD from AD by WMA [AUC = .964 
(95% CI 0.932–0.997)], WMA + THA [AUC = .958 (95% CI 0.918–0.998)], and THA [AUC = .909 (95% CI 
0.847–0.971)], (B) differentiating SIVD from NC by WMA [AUC = .987 (95% CI 0.969–1.000)], WMA + THA 
[AUC = .971 (95% CI 0.942–1.000)], and THA [AUC = .965 (95% CI 0.930–1.000)], and (C) differentiating AD 
from NC by WMA + THA [AUC = .953 (95% CI 0.908–0.997)], WMA [AUC = .937 (95% CI 0.886–0.988)], and 
THA [AUC = .885 (95% CI 0.881–0.958)]. WMA = White matter atlas. THA = Segregated thalamus analysis. 
SIVD = Subcortical ischemic vascular disease. AD = Alzheimer’s disease. NC = normal cognition. WMA = White 
Matter Atlas. T = Segregated thalamus. ROC = Receiver operating characteristic curves. AUC = Area under curve. 
CI = Confidence interval.

Table 4.  Estimated effect (β coefficients) of diffusional kurtosis and diffusion tensor metrics on global 
cognition (N = 122). Significant regions are reported by stepwise linear regression analysis, with independent 
variables including targeted imaging metrics showing significant correlation with the total scores of the 
Cognitive Abilities Screening Instrument. Metrics with a Variance inflation factor (VIF) ≥ 5 are removed. 
Estimated effect of all metrics is reported after controlling for age, education, symptom duration, the volume 
of white matter hyperintensities, and the number of lacunes. CIN = Cingulum. SCR = superior corona radiata. 
GCC = genu of the corpus callosum. A = anterior nuclei. C = central nuclei. P = pulvinar. VLD = ventral latero-
dorsal. Medio = medio-dorsal. VA = ventral-anterior. R/L = Right/Left hemisphere. FA = fractional anisotropy. 
MD = mean diffusivity. MK = mean kurtosis. KFA = kurtosis fractional anisotropy.  Daxial = axial diffusivity. 
 Dradial = radial diffusivity.  Kaxial = axial kurtosis.  Kradial = radial kurtosis. Mean/axial/radial diffusivity variables are 
entered in units of  10−3mm2s−1.

Metrics

White matter atlas Segregated thalamus analysis

Regions β P 95% CI Regions β P 95% CI

MK CIN_R .199 .024 (6.880,94.025) C_L .287  < .001 (36.722, 110.999)

Kaxial SCR_L .222 .002 (24.535, 107.512) VLD_R .212 .002 (21.522, 96.746)

Kradial SCR_R −.265 .001 (−39.707, −9.655) C_L .311  < .001 (37.771, 100.090)

CIN_R .232 .004 (9.148, 47.426)

KFA SCR_R −.195 .006 (−129.004, −21.908) A_R −.159 .023 (−77.130, −5.943)

MD GCC_R −.232 .002 (−26.495, −6.319) Medio_R −.296  < .001 (−21.756, −7.146)

Daxial GCC_R −.241 .001 (−29.636, −7.515) P_L −.375  < .001 (−46.005, −17.181)

Dradial CIN_R −.190 .034 (−46.284, −1.853) Medio_R −.287  < .001 (−22.153, −6.917)

GCC_R −.161 .035 (−20.748, −0.755)

FA SCR_R −.279  < .001 (−181.874, −59.624) VA_L −.210 .004 (−159.212, −31.029)

CIN_R .252 .002 (32.160,142.450)
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Figure 3.  Flow Chart of Participants Selection. SIVD = Subcortical ischemic vascular disease; AD = Alzheimer’s 
disease; NC = normal cognition. Cog = Cognitive symptom. MMSE = Mini-Mental State Examination; 
MRI = magnetic resonance imaging.

Figure 4.  Illustration of the processing steps for MR images and the process for regional analysis. The diffusion 
metrics and the WMH probability maps were first estimated in native space, and consequently aligned 
on to standard MNI space according to the warp matrices from the co-registration process for T1WI (see 
Supplementary Materials for alignment details). The WMH maps were used to generated WMH lesion masks 
to calculate the WM ROIs free from WMH, and the WM ROIs free from WMH as well as the thalamic atlas 
were then utilized for the calculation of regional diffusion metrics. Group WMH lesion probability maps were 
also calculated as depicted in Supplementary Materials. T1WI = T1-weighted image. LST = Lesion Segmentation 
Tool. LPA = Lesion prediction algorithm. FDR = false discovery rate. WMHs = white matter hyperintensities. 
WM = white matter. FA = fractional anisotropy. MD = mean diffusivity. MK = mean kurtosis. KFA = kurtosis 
fractional anisotropy. Daxial = axial diffusivity. Dradial = radial diffusivity. Kaxial = axial kurtosis. Kradial = radial 
kurtosis.
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the bilateral ventral latero-ventral, right ventral latero-dorsal, and right ventral-anterior were the significant 
(P = 0.001–0.049) (Supplementary Table S3).

Discussion
The current study shows the complementary value of using both diffusivity and kurtosis metrics. FA and DKI 
metrics in average THA could differentiate SIVD from AD and NC, and so could DKI metrics in average WMA. 
The selection of metrics was evaluated based on two analysis strategies (WMA and THA) and clinical-radiolog-
ical constraints indicative of the very early stage of SIVD (e.g., WMH volume and number of lacunes). In the 
three-group discriminant analysis, we showed the power of DKI/DTI metrics in identifying SIVD. The optimal 
combination of metrics, i.e., MK,  Kradial, and FA, yielded the highest correct classification rate. This combination 
was then validated using two-group comparisons via ROC analysis, which showed promising results overall. 
In addition, several WMA and THA hubs with significant effects in predicting global cognition anatomically 
overlapped with Papez and frontal-subcortical circuits, supporting the robustness of the diffusion metrics in 
exploring cognitive and neuronal substrates.

Our findings demonstrated that both DKI and DTI metrics provided better classification accuracy than 
Scheltens scale and segmented WMH volume. In average ROI analysis, MK performed incrementally better 
than MD across various clinical constraints. This corroborates the sensitivity inherited by the non-Gaussian 
premise assumption in DKI. It was also noticeable that the radial components of both kurtosis and diffusivity 
generally outperformed their axial components in terms of classification accuracy. Previous studies have shown 
that MK and  Kradial exhibited a greater extent and degree of SIVD–AD differences than  Kaxial within the  WM12 
and  thalamus8. Another report has shown that radial metrics could possess higher sensitivity in detecting AD, 
mild cognitive impairment, and cognitively normal  individuals13. As consistent with previous reports, the radial 
metrics could provide higher sensitivity in detecting the microstructural alterations especially in SIVD and 
AD. Hypothetically, liquefaction within the halo of lacunar/micro-infarcts and myelin pallor within  WMHs14 
could contribute to the geometrical variability of cerebral microstructures. We speculate that the attenuated 
discriminant power of  Kaxial may be due to diverse diffusing axis determination in the presence of neuronal and/
or interstitial dispersion from vascular insults. This does not negate the importance of the axial components of 
kurtosis and diffusivity, and both  Kaxial and  Daxial in our results could still differentiate SIVD or AD from NC. The 
importance of axial components was also suggested in a previously published AD  cohort15. It is also worth men-
tioning that the classification rates of MK and MD improved remarkably with WMHs and lacunes as constraints 
in the thalamus rather than in WM. This effect of WMHs and lacunes could be associated with differences in 
regional vulnerability to vascular burden between WM and the thalamus, or the better inherited power of WMA 
than THA due to higher structural coherence within WM than the thalamus. Of note, independent evidence 
supports a viewpoint that the degree of DKI changes in response to ischemia differs according to the gray-white 
matter proportion of the affected  regions16.

After controlling for demographics and macroscopic pathology including WMHs and lacunes, FA and DKI 
metrics enhanced SIVD-AD and SIVD-NC contrasts in the average THA, and DKI metrics solely enhanced 
SIVD-NC contrast in the average WMA. Aside from the reported role of FA in detecting vascular  dementia6, 
our results further indicate that DKI is potentially resilient to the overall effect from WMHs and lacunes. It is 
also worth mentioning that DTI metrics enhanced AD-NC contrast in the average THA, demonstrating the 
complementary value of DKI and DTI metrics. KFA and FA had similar tendencies in most comparisons, but 
KFA showed a lower correct classification rate than FA. As the DKI metrics were derived from a WMA driven 
by FA, the possibility of pseudo-normalization of KFA values when the quantification process involves crossing 
fibers as documented issues in FA calculations should be  considered17. The numeric accuracy of KFA may also 
have been overwhelmed since WM and microstructure coherence was already compromised by vascular burden, 
and hence it may be a less promising metric in terms of test–retest  reliability10 and statistical  power9.

In this study, we used a WMA free from WMHs while considering WMHs and lacunes as statistical covariates, 
which is a two-tier concept. First, measurements focusing on normal-appearing WM could provide information 
presumably corresponding to pathological alterations at the very early stage of SIVD. Second, the additional 
statistical considerations reduced the effect driven by vascular pathology, which had already been identified 
macroscopically and may have had an indirect effect due to Wallerian degeneration. Of note, our results bridge 
the published  findings8,18 by highlighting that a joint analysis strategy is a favorable solution for constructing 
a dementia classifier across the aging spectrum. We consider that the joint analysis strategy integrating both 
gray and WM is an informative ensemble which can be used to stratify the subtype of dementia across the aging 
spectrum. This also mirrors the regional/tissue vulnerability inherently associated with individual dementia sub-
types. As we only investigated two dementia subtypes and cognitively normal older adults, identifying dementia 
subtypes other than SIVD or AD falls beyond the scope of discussion.

Our results connect neuronal substrates associated with global cognition to some specific WM hubs, including 
the genu of the corpus callosum and cingulum of the right hemisphere, and the bilateral superior corona radiata. 
In addition, THA delineated a pervasive pattern scattered across multiple thalamic nuclei. The overall hubs identi-
fied in this study considerably overlapped with landmarks belonging to the Papez circuit or frontal-subcortical 
 circuit19. As the interplay between these two circuits plays a critical role in harmonizing global  cognition19, using 
diffusional kurtosis metrics could provide additional value in exploring neuronal substrates critical for cogni-
tion. In addition, the current metrics exhibit pervasive correlations with the HIS, and the significance remains 
in considering demographics and indices of cerebral small vessel disease. This corroborates that the diffusional 
kurtosis metrics can be regarded as potential biomarkers that mirror the composite vascular risk in the aging 
spectrum. The strength of this study is the integration of WMA and THA analysis strategies with several clinical-
radiological constraints targeting the very early stage of SIVD. Diffusion metrics were derived and compared 
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with macroscopic pathology including WMHs and lacunes, and the results showed that combining DKI and 
DTI metrics could provide robust differential power and resilience to predefined vascular lesions. Moreover, 
the optimal combination of diffusion metrics showed robust performance in two- or three-group comparisons, 
suggesting its potential for clinical applications. There are also several limitations to the study. Not all dementia 
subtypes were included, and the prevalence of dementia subtypes varies across medical settings. Including more 
dementia subtypes in future studies may provide an opportunity to investigate the robustness and improve the 
optimal selection of diffusion metrics. In addition, the insignificant differences of diffusional kurtosis metrics 
between AD and NC within WM could be related to the excluding the effect of WMHs by both imaging process-
ing and statistics. Since the effect of WMHs has been minimized, we believe that the diffusion metrics used in 
this study provide a reliable reference for future application in differential diagnostics.

In conclusion, the current study investigates the sensitivity and resilience of diffusion metrics for macroscopic 
vascular lesions that are pathognomonic to SIVD. The optimal combination of diffusion metrics included MK, 
 Kradial, and FA, which could effectively differentiate SIVD from other groups across the aging spectrum in both 
WMA and THA strategies (AUC > 0.9). The joint analysis strategy showed the best performance. The additional 
and complementary values of the diffusion metrics were comprehensively explored as hubs for global cognition 
identified and anatomically overlapped with Papez and frontal-subcortical circuits.

Methods
Study design and participants
This prospective, observational, cross-sectional single-center study was approved by the Research Ethics Commit-
tee of Taichung Tzu Chi Hospital (#REC-107-28). Written informed consent was obtained from all participants. 
A total of 150 subjects with cognitive complaints from an outpatient dementia clinic were consecutively screened 
from January 2019 to December 2020 (Fig. 3). Those with clinical assessments showing cognitive complaints, 
brain CT showing no cortical encephalomalacia, and a MMSE score ≤ 26 were initially included; those with 
incomplete cognitive assessment and brain MRI scans were excluded. SIVD was diagnosed using the research 
criteria proposed by Erkinjuntti et al.1; AD was diagnosed using the National Institute of Neurological and 
Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association  criteria20; 
patients with mixed dementia were excluded if the Hachinski Ischemic Scale was 5–621. As the  published8, the 
inclusion and exclusion criteria were presented in Supplementary Table S4 Overall, 42 patients with SIVD and 
50 with AD were recruited in this study. In addition, another 30 older adults who showed no cognitive symptoms 
and had an MMSE score ≥ 26 were recruited as the NC group. There is some overlap of these participants with a 
previously published  article22, however the analysis approaches were different from the current study.

Clinical data collection
We recorded age, gender, education, cognitive symptom duration, and Hachinski Ischemic Score. WMHs were 
rated according to Scheltens scale (a total of 12 subregions within the supra-tentorial parts)23 by a neurologist 
(M.C.T.) with 11 years of experience, and quantified using the Lesion Prediction Algorithm (LPA)24. The LPA 
results, morphology of the thalamus, and number of lacunes were visually assessed by the same neurologist. 
Global cognitive scores including the MMSE, CASI, and Clinical Dementia Rating were rated by a team of certi-
fied clinical psychologists led by Y.H.H., who has 8 years of experience.

MRI protocols
The brain MR images were obtained at a 3 T MRI scanner (Discovery MR750, GE HealthCare, Milwaukee, 
WI) with an eight‐channel phased‐array head coil. The following protocols were acquired: three‐dimensional 
T1‐weighted imaging (3D‐T1), T2 fluid‐attenuated inversion recovery imaging (T2‐FLAIR), and diffusional 
kurtosis imaging (DKI). For 3D‐T1, a fast spoiled gradient echo with RF‐spoiling (FSPGR) was performed with 
repetition time (TR) of 7.90 ms, echo time (TE) of 3.06 ms, inversion time (TI) of 450 ms, flip angle of 12°, matrix 
size (MTX) of 240 × 240 × 160, achieving an isotropic voxel size of 1  mm3. Parameters for T2‐FLAIR were TR of 
12,000 ms, TE of 120 ms, TI of 2200 ms, field‐of‐view (FOV) of 220 mm, MTX of 384 × 224, 21 slices with slice 
thickness (SL) of 5 mm. Spin‐echo diffusion-weighted echo‐planar imaging was used to obtain DKI datasets. 
A total of 30 diffusion gradient directions were obtained with two b‐values (1000 and 2000 s/mm2) along each 
direction, and 5 un-weighted images (b0, b = 0 s/mm2) were acquired, resulting a total of 65 volumes for DKI 
dataset. Other scanning parameters were TR of 6000 ms, TE of 68 ms, FOV of 240 mm, MTX of 96 × 96, 60 slices 
with SL of 2.5 mm, resulting an isotropic spatial resolution of 2.5  mm3.

MRI analysis
Image processing
Figure 4 illustrates the processing steps for MRI data (S.M.H. and L.W.K., with 12 years and 22 years of experi-
ence, respectively). All image processing and registration steps were performed using AFNI software (https:// 
afni. nimh. nih. gov)25. All of the 3D-T1 images were aligned and normalized into standard MNI space, and all 
of the spatial warping transformation matrices were utilized for the alignment of the DKI-derived  metrics26,27. 
Initially, the 3D-T1 image were skull-stripped and roughly registered with the MNI T1 template via 12-param-
eter affine alignment. After initial alignment, tissue segmentation was performed on the roughly-aligned T1 
image to identify white matter, gray matter, and cerebrospinal fluid (CSF). CSF voxels were set to zero to gener-
ate the CSF-free T1 image. The same masking process was performed on the MNI T1 template to generate the 
CSF-free MNI T1 template. After this process, a two-step non-linear warping process was employed for better 
co-registration outcome. First, the CSF-free 3D-T1 image was co-registered to the CSF-free MNI T1 template 
by using non-linear co-registration, and this output non-linear warping transformation was then applied on the 

https://afni.nimh.nih.gov
https://afni.nimh.nih.gov


9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2570  | https://doi.org/10.1038/s41598-024-52910-x

www.nature.com/scientificreports/

roughly-aligned 3D-T1 images to generate the first warped 3D-T1 image. The first warped 3D-T1 image was 
then non-linearly co-registered to the MNI T1 template again to form the final aligned 3D-T1 image. As the size 
of ventricle varies across subjects, the two-step procedure was carried out to achieve adequate image alignment 
results. All of the warp parameters and transformation matrices derived from the alignment process were used 
for the following alignment of diffusion weighted images (DWIs).

DKI reconstruction
The DKI data analyses were implemented using in-house MATLAB scripts (MathWorks, MA, USA). Before DKI 
reconstruction process, all the DWIs were denoised with local PCA  method28. DKI reconstruction was performed 
according to the estimation approach of DKI model proposed by Tabesh et al.29. The DKI data was fit to the 
DKI model using the Levenberg–Marquardt algorithm with least-squared error estimations. The diffusivity and 
kurtosis metrics along all diffusion gradient directions were derived and averaged by using diffusion data with all 
b-values (i.e., 1000 and 2000 s/mm2). The quantitative metrics of DTI (MD;  Daxial;  Dradial; FA) and DKI (MK;  Kaxial; 
 Kradial; KFA) were then calculated from the DKI model. The diffusion metrics were first estimated in each subject’s 
native space, and then the DKI parametric maps were aligned to MNI space according to the transformations 
from the following alignment process on DWIs. First, the b0 images were aligned to each subject’s own 3D-T1 
images via 12-parameter affine alignment. Second, the T1-related transformation matrix and warp parameters 
described in previous section (‘Image processing’) were applied onto the T1-aligned b0 image to generate aligned 
b0 image in the MNI space. Finally, the DKI parametric maps were aligned to MNI space by applying the same 
transformations previously determined on b0 images. To reduce potential registration bias surrounding the edge 
of ventricular space and thalamus, a ventricle mask was generated from averaged b0 images of the SIVD group 
by AFNI software to avoid including unwanted ventricular voxels when calculating the regional DKI metrics.

WMH volume assessment
We performed automatic WMH segmentation by using the  LPA24,30 as implemented in the lesion segmentation 
tool (LST 3.0.0, https:// www. appli ed- stati stics. de/ lst. html) for SPM. This algorithm utilizes FLAIR images to 
estimate the lesion probability of white matter. The segmentation result of each subject was visually inspected 
by an experienced neurologist (M.C.T.). To calculate the total volume of WMH, we used LST’s default settings 
of probability threshold of 0.5 (probability of a voxel being WMH) (Supplementary Figure S1).

Regional diffusion metric
In the WMA, a total of 16 tracts including the corpus callosum (genu and body parts), the anterior limb of the 
internal capsule, anterior corona radiata, superior corona radiata, external capsule, cingulum (cingulate gyrus 
part), and superior longitudinal fasciculus of bi-hemispheres were used based on the JHU DTI-based white-
matter atlases available in FSL (https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/ Atlas es). In the WMA, pixels with WMHs 
are excluded according to the LPA method described above, and hence the measurements focus on WM free 
from WMHs. In the THA, a total of 14 thalamic sub-regions including the pulvinar, anterior, mediodorsal, ven-
tral–lateral–dorsal, central, ventral-anterior, and ventral–lateral–ventral nuclei were used based on a segregated 
thalamic  atlas31.

Statistical analysis
Analysis of variance and the chi‐square test were used to compare demographic data. Analysis of covariance with 
Tukey post hoc comparison was used to compare diffusion metrics by controlling for age, education, symptom 
duration, volume of WMHs, and number of lacunes. After exploring the performance of diffusion metrics using 
discriminant analysis with clinical and macroscopic imaging constraints, receiver operating characteristic (ROC) 
curves were further used to examine the ability of the selected diffusion metrics to detect SIVD. The key goal of 
serial discriminant analyses aimed at identifying which diffusional kurtosis metric(s) perform the best value of 
correct classification. The purpose of additional analyses for examining both hemispheres or single hemisphere 
was to present the effect related to number of variables fed into the discriminant analyses as well as intra-group 
variation, if any. The rationale to include clinical and macroscopic imaging constraints was to examine the current 
diffusional kurtosis metrics among those population with a relatively early dementia stage (i.e., CDR ≤ 0.5) or 
limited cerebral vascular burden (i.e., WMH ≤ 15 ml and lacune number ≤ 8). To constrain composite diffusion 
metrics from multiple regions of interest, binary logistic regression was used to derive probability values of diffu-
sion metrics in each ROC trial. Pearson correlation analysis was used to quantify relationships between diffusion 
metrics and cognitive parameters. Stepwise linear regression analysis was used to identify estimated effects of 
diffusion metrics on cognition. All statistical tests were performed using SPSS version 25 (IBM, Armonk, NY). 
A P value < 0.05 was considered statistically significant.

Ethics declarations
This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the 
Research Ethics Committee of our Hospital (#REC-107-28).

Consent to participate
Informed consent was obtained from all individual participants included in the study.

Data availability statement
Data generated or analyzed during the study are available from the corresponding author on reasonable request.
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