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White blood cells (WBCs) play a vital role in immune responses against infections and foreign agents. 
Different WBC types exist, and anomalies within them can indicate diseases like leukemia. Previous 
research suffers from limited accuracy and inflated performance due to the usage of less important 
features. Moreover, these studies often focus on fewer WBC types, exaggerating accuracy. This study 
addresses the crucial task of classifying WBC types using microscopic images. This study introduces a 
novel approach using extensive pre‑processing with data augmentation techniques to produce a more 
significant feature set to achieve more promising results. The study conducts experiments employing 
both conventional deep learning and transfer learning models, comparing performance with state‑
of‑the‑art machine and deep learning models. Results reveal that a pre‑processed feature set and 
convolutional neural network classifier achieves a significantly better accuracy of 0.99. The proposed 
method demonstrates superior accuracy and computational efficiency compared to existing state‑of‑
the‑art works.

Blood is composed of various components including different cell types and plasma. Blood performs the crucial 
function of transporting oxygen and nutrients to the body’s tissues and organs. Additionally, it helps eliminate 
waste products like carbon dioxide and ammonia. Blood performs several biological functions like transport 
of gases to and from the body and exchanging them in the lungs, clotting of blood by making oxyhemoglobin, 
immune response, and body temperature regularization. Blood serves several important biological functions 
including oxygen transport, cell regeneration, clotting, body temperature regulation, and immune response. It 
comprises four essential cellular components: red blood cells (RBCs), white blood cells (WBCs), platelets, and 
plasma. RBCs, which make up around 40% to 50% of total blood volume, are primarily responsible for the supply 
of oxygen throughout the body from the lungs where gaseous exchange takes place between the human body and 
its  environment1. WBCs are found in both the lymphatic nodes and the blood. Although WBCs constitute only 
1% of the blood in a healthy individual, they play a critical role in the immune system’s defense against foreign 
 invaders1. WBCs actively seek out, identify, and bind to bacterial, fungal, or viral proteins to eliminate them and 
provide a first-hand defense against intruders. Several types of WBCs are identified each performing its specific 
function in our body’s immune  response2.

WBCs also known as leukocytes, have the crucial function of providing immunity and the first defense 
wall in the human body against intruders and diseases. These cells can be categorized into four primary types: 
neutrophils, eosinophils, lymphocytes, and monocytes. Each type possesses distinct physical and functional 
 characteristics3. Neutrophils are granulocytes equipped with enzymes that aid in the digestion of  pathogens4. 
Monocytes are classified into macrophages that eat up the damaged cells including RBC platelets and detrimen-
tal invaders.5–7. Eosinophils are the defense force against viral infections and also contribute to inflation and 
tissue damage as observed in numerous diseases. Lymphocytes safeguard the body against tumor cells and cells 
infected by  viruses8,9.
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The WBC count holds significant importance in detecting diseases and predicting their prognosis, making it 
a crucial aspect of the healthcare industry. While manual methods are commonly used for determining these cell 
counts, labs can use alternative methods where automated apparatus is  unavailable10. In the traditional differential 
method, blood samples are examined under a microscope to classify different types and count the WBCs by a 
pathologist  manually11. Automated systems, on the other hand, utilize techniques such as cytochemical blood 
sample testing, Coulter counting, and static and dynamic light scattering to generate plots by analyzing the data, 
that represent distinct groups corresponding to different types of white blood  cells12–14.

A complete blood count (CBC) is a blood test that provides valuable information about an individual’s health 
status. Traditionally, WBC classification has been performed by experienced medical personnel who visually 
differentiate WBCs based on their morphologies in blood smear samples observed under a  microscope15. How-
ever, manual classification has several limitations and challenges. Human observation is prone to bias and may 
result in less accurate estimations. Additionally, manual classification is time-consuming, complex, and requires 
extensive expertise from inspectors, which may not meet the demands of precision and accuracy on a large 
scale in modern times. Consequently, there has been significant development in automatic WBC classification 
 methods16,17. In cases of the presence of abnormal WBCs, manual results can be misleading, so the best option 
to avoid such misleading outcomes is automated methods. Automated processes are best suited to classifying 
and ascertaining the count of WBCs, providing improved accuracy and reliability.

WBCs (leukocytes) are produced within the bone marrow and consist of nuclei and cytoplasm. There are 
five distinct groups of leukocytes: basophil, eosinophil, lymphocyte, monocyte, and neutrophil. These cells play 
a vital role in protecting the body by providing immunity to the body against infections, foreign substances, 
and microorganisms, forming a crucial component of the immune system. In a healthy adult human, there are 
typically around 4 to 11 billion white blood cells per liter of blood. This translates to approximately 7,000 to 
25,000 cells per drop of blood. Figure 1 illustrates the average number of white blood cells in a healthy adult 
individual. Neutrophils are the most abundant type of leukocytes found in human blood. They have multi-lobed 
nuclei consisting of 3 to 5 lobes. Neutrophils account for 99% of all leukocytes, with polymorphonuclear cells 
representing approximately 70% of the total leukocyte count. Eosinophils exhibit a red color due to their uptake 
of eosin dye, a type of acid red dye, during staining. They possess large granules and have a lifespan of 1 to 2 
weeks, comprising about 2 to 3% of all leukocytes. Eosinophils have an average diameter of 10 to 12 µ m, and 
their nuclei are divided into two lobes.

Basophils are another group of leukocytes that have granules with a strong affinity for basic dyes, resulting 
in a deep blue-purple color. They possess an irregular nucleus composed of two lobes that are indistinguishable. 
Basophils are the least abundant type of leukocytes. Monocytes are the largest cells found in the peripheral blood, 
measuring approximately 15-22 µ m in size. The nucleus of a monocyte exhibits folds and can have various shapes 
including round, lobular, kidney-shaped, bean-shaped, or horseshoe-shaped. Lymphocytes have the ability to 
undergo division and generate new lymphocytes. When they encounter antigenic stimulation, they undergo 
morphological transformation, differentiation, and multiplication. After neutrophils, lymphocytes are the most 
prevalent type of leukocytes in the blood.

Computer-aided diagnostic (CAD) methods and machine learning (ML) have extensively been used by several 
studies during the last two decades to address the limitations of WBC diagnosis and subgroup determination in 
laboratory image analysis. These studies have focused on analyzing blood smear images to diagnose, differentiate, 
and count various types of WBCs. ML, a prominent branch of artificial intelligence, encompasses algorithms and 
mathematical relationships that enable computers to learn from experience without explicit programming. The 
application of ML in medical data processing has yielded remarkable success, particularly in disease  diagnosis18. 
In medical image processing, ML methods have proven beneficial in complex medical decision-making processes 
by extracting and analyzing image features. As the availability of medical diagnostic tools increased and generated 
large volumes of high-quality data, there emerged a pressing need for more advanced data analysis methods. 
Traditional approaches are unable to effectively analyze such vast amounts of data or identify underlying data 
patterns. In this context, the present study contributes in the following ways

Figure 1.  Average values for normal adult white blood cell count.
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• This study presents a framework for accurate white blood cell classification using an optimized convolutional 
neural network (CNN). Contradictory to existing works which predominantly rely on more complex transfer 
learning-based models, the deep learning CNN model is adopted to reduce computational complexity without 
affecting the model accuracy.

• For the most part, existing studies perform experiments on imbalanced datasets which might lead to model 
overfit for the majority class. Data augmentation is employed to balance the number of samples for various 
classes thereby reducing the probability of model overfitting.

• The efficacy of the proposed model is analyzed in comparison to several transfer learning models like ResNet, 
VGG16, MobileNet, and InceptionV3. In addition, the performance of the proposed model is compared with 
state-of-the-art approaches from existing literature.

The organization of this paper is as follows. “Section Related work” delves into the literature and background 
relevant to the WBC classification. The proposed framework, dataset, ML, and deep learning (DL) models are 
detailed in “Section Materials and methods”. Results are discussed in “Section Results and discussion” of this 
study. “Section Conclusion” concludes this study by outlining the avenues for future work.

Related work
ML and DL have emerged as prominent research areas within the field of artificial intelligence. They have dem-
onstrated promising outcomes in various applications including medical image classification, without the need 
for manual feature engineering. Umer et al.19 employed deep learning and ML techniques for medical image 
classification. He et al.20 focused on multi-label image classification using these methodologies. Rustam et al.21 
explored text categorization, while Alturki et al.22 worked on brain tumor classification in medical imaging. 
Additionally, DL and ML have been applied to diabetes  prognosis23, breast cancer  detection18, and athlete gesture 
 tracking24. In the context of WBC classification, numerous studies have been conducted. This section is about 
the discussion of some of the advanced WBC classification systems.

In order to achieve efficient classification of white blood cells, Elen and  Turan25 introduced an automated ML 
system. Their experimentation involved utilizing geometric and statistical features, and the authors employed 
various ML models such as multiple linear regression (MLR), decision trees (DT), random forest (RF), Naive 
Bayes (NB), k-nearest neighbors (k-NN), and support vector machines (SVM). The results reveal that the MLR 
model achieves the highest accuracy of 95%. On the other hand, a WBC detection system based on DL is pro-
posed by Praveen et al.26. The authors introduced you only look once (YOLOv3) object detection model for 
identifying and localizing WBC using bounding boxes. Additionally, the authors compared the results with the 
Faster R-CNN model utilizing the VGG16 architecture for the detection and classification task. The YOLOv3 
model which incorporates contextual information about the available classes in a single pass, outperformed other 
models and achieved an accuracy of 99.2%.

Yao et al.27 proposed a highly efficient technique for WBC classification based on object detection. Their 
approach involved combining the segmentation and recognition of targets in a single step. They utilized two 
transfer learning models, namely Faster CNN and YOLOv4, for this study. The results demonstrated that Faster 
CNN achieved an accuracy score of 96.25%, which was 0.5% higher than YOLOv4. In another study, Rustam 
et al.28 employed RGB and texture features extracted from oversampled microscopic images for efficient WBC 
classification. They utilized the SMOTE (Synthetic Minority Over-sampling Technique) method for data over-
sampling. The Chi2 (Chi-squared) method was used for selecting RGB features. Along with machine learning 
models, deep learning models were also employed in their study. The results showed that the Random Forest 
(RF) model using RGB features yielded superior results, achieving an accuracy score of 97%.

Patil et al.29 tackled the challenge of classifying overlapping WBCs by utilizing the CNN model, recurrent 
neural networks (RNN), and a hybrid approach that combines both CNN and RNN. The authors employed the 
Canonical correlation analysis method and utilized the BCCD dataset. The proposed approach yielded an accu-
racy of 95%.  Manthouri30 conducted a study focused on WBC detection using a hybrid approach that combines 
the CNN model with scale-invariant feature transform (SIFT). Feature detection was done using SIFT and the 
extracted features were used to train the CNN using the WBCs and LISC datasets. The suggested fusion prototype 
achieved impressive accuracy of 95.84% and 97.33% for the LISC and WBC datasets, respectively.

WBCs are automatically classified by an automated system based on DL  in31. The authors experimented 
with different variants of CNN including DenseNet, VGG, SqueezeNet, and AlexNet. The results showed that 
DenseNet 161 achieved a perfect accuracy score of 100% on the BCCD dataset. Fatih Özyurt32 used a supervised 
ML approach for WBC detection, combining a CNN with an extreme learning machine (ELM) model. Several 
pre-trained CNN models, such as GoogleNet, AlexNet, VGG-16, and ResNet, were used for extracting the 
features. The extracted features were then utilized to train the ELM model, resulting in an accuracy of 96.03%. 
In another  study33, the DenseNet121 model was utilized for WBC classification. Data normalization and data 
augmentation techniques were employed in conjunction with the enhanced DenseNet121 model. The recom-
mended prototype attained an impressive accuracy score of 98.84% when evaluated on the KBC dataset.

Siddique et al.34 proposed an advanced DL system for WBC classification. The authors utilized the SqueezeNet 
model, a transfer learning-based approach, on the BCCD dataset. Experimental results demonstrated that the 
SqueezeNet model achieved an accuracy of 93.8%. In a study conducted by Girdhar et al.,35, a CNN-based 
approach was introduced for WBC classification. The researchers applied the proposed method to the WBC 
images dataset from Kaggle and accomplished an impressive accuracy score of 98.55%.

Table 1 performs a comparative analysis of the discussed research works. Most of these studies concentrated 
on classifying WBCs and employed transfer learning techniques, which typically require more computational 
resources compared to simple ML and DL models. It is important to highlight that some studies achieved 
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impressive accuracy scores for WBC classification but they focused on a small number of WBC classes. Addition-
ally, a few studies conducted experiments using imbalanced datasets, which can lead to overfitting in models. In 
contrast, this specific study tackles the issue of high computational costs by utilizing a simple DL model. While 
acknowledging the trade-offs associated with narrowing the scope of WBC classes, our study aimed to contrib-
ute a practical alternative to WBC classification methodologies, emphasizing efficiency without compromising 
essential diagnostic accuracy.

Materials and methods
This section provides details about the dataset employed for WBC classification, as well as the steps taken for 
data pre-processing. Furthermore, it outlines the DL and ML models utilized for the classification task.

Dataset
The dataset utilized in this study consists of five WBC classes including monocyte, neutrophil, eosinophil, lym-
phocyte, and basophil. The dataset is obtained from the IEEE  Dataport36. Table 2 provides information regarding 
the number of images available for each WBC type. In total, the dataset comprises 3539 images which include 
1464 augmented images, 667 raw images, and 1408 cropped and classified images.

Data preprocessing
Several preparation techniques, including data augmentation and image resizing, are employed to yield optimal 
results and construct a robust image classifier. Image resizing, the process of adjusting the dimensions of an image 
file, involves either enlarging or reducing its size without eliminating any content. In this research, all images 
were resized to 256 × 256 before inputting them into the CNN for further processing.

Effectively training CNN models necessitates a substantial volume of training data to ensure the development 
of a well-performing model. Image augmentation is a commonly utilized method to enhance the efficacy of neu-
ral networks in achieving efficient image categorization through a relatively straightforward learning approach. 
The practice of altering existing images to generate additional data for model training is referred to as image 
augmentation. In this study, the ImageDataGenerator class is employed to create additional  images37,38. Keras 
offers an image generator class that defines the configuration for image augmentation, encompassing features 
such as ’random rotation, shift, shear, and flips’, ’whitening’, and ’dimension reordering’, among others. Table 3 
provides the parameter names and corresponding values utilized in the present study.

Image preprocessing
The preprocessing is carried out to eliminate noise from WBC images and enhance the training process. Initially, 
large input images were used leading to increased training  time39. To address this issue, firstly, the image size of 
WBCs is reduced. The size of images may vary, as depicted in Figure 2. Initially, as shown in Figure 2b, the image 

Table 1.  Summary of the related work.

Ref. Classifiers Dataset Achieved accuracy
25 DT, MLR, NB, k-NN, RFand SVM 350 blood smear images(self collected) 95% MLR
26 YOLOv3, faster RCNNusing VGG16 Kaggle (364 images) 99.2% YOLOv3
27 Faster RCNN,YOLOv4 Kaggle (364 immages) 96.25% Faster RCNN
28 DT, RF, SVM, k-NN, CNN,VGG16, ResNet15 IEEE dataport (3539images) RF 97%
29 CNN, RNN, CNN+RNN BCCD and Kaggle dataset 95.89% (CNN+RNN)
30 WTPSSR, SVM, DistanceClassifier, CNN LISC and WBC(gitHub) datasets LISC= 95.84% and WBC=97.33% using CNN with SIFT features

31 AlexNet, VGG Net 13, 11,ResNet 18, 34, 50, SqueezeNet 10, 11, 
DenseNet 121, 161. BCCD dataset 100% DenseNet 161

32 CNN, ELM, AlexNet,GoogleNet, VGG-16, and ResNet, BCCD dataset 96.03% using ELM
33 DenseNet 121 withdifferent patch sizes KBC dataset 98.84% DenseNet 121
34 SqueezNet BCCD 93.8%
35 CNN Kaggle 98.55%

Table 2.  Dataset original and augmented record details.

WBC Type Original Augmented Total

Neutrophil 319 194 513

Lymphocyte 905 – 905

Monocyte 82 418 500

Eosinophil 82 405 487

Basophil 20 447 467
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size is adjusted to 120 × 120 × 3. For image edge detection, a value-based filter ([0, − 1, 0], [− 1, 6, − 1], [0, − 1, 0]) 
is applied to the images, with visible edges as an outcome as demonstrated in Figure 2c. The third step involves 
converting the BGR image to the luma component, red projection, and blue projection (YUV). This step results 
in reduced U and V channels’ resolution while retaining Y at full resolution. This conversion is done because 
luminance is preferred over color. By reducing the V and U channels, the CNN size can be significantly decreased. 
Figure 2d displays the outcomes of the BGR to YUV conversion. Finally, the YUV images are transformed back 
to BGR, incorporating histogram normalization and edge smoothing techniques. These steps contribute to the 
overall preprocessing pipeline described in the study.

Deep learning models
The proposed system’s effectiveness is assessed by a combination of DL models, transfer learning models, and 
ML models. With the advancements in research, DL models and transfer learning models are widely utilized for 
WBC classification. Specifically, for WBC classification based on image data, CNN deep learning models and 
transfer learning models such as EfficientNet, U-Net, and MobileNet are commonly utilized. These models have 
shown promising results in accurately classifying WBCs.

Table 3.  Hyperparameters tunning with the ’ImageDataGenerator’ class for augmenting images.

Paramter Value

rotation_ range 30

rotation_ range 30

width_ shift_ range 0.20

height_ shift_ range 0.20

shear_ range 0.25

zoom_ range 0.20

horizontal_ flip True

fill_ mode nearest

Figure 2.  Complete data preprocessing procedure.
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Within the multidisciplinary realm of artificial intelligence, the DL model CNN stands out as an advanced 
architecture widely employed for a range of computer vision tasks. When compared to other network structures, 
CNNs have showcased superior performance and notable accomplishments in the field of computer  vision40. 
CNNs possess a distinct characteristic known as invariance, enabling them to perceive images broadly. This 
means that even if an image contains dispersed facial attributes, CNNs can still recognize it as a person. In a CNN, 
convolution serves as a feature extraction technique, utilizing a specific-sized kernel. The kernel is thoroughly 
applied across the network with defined strides, determining the step size during the architecture’s implementa-
tion. The output obtained from this process is referred to as a feature map. Subsequently, the feature map’s size 
is reduced by deploying pooling. Each layer in the network consists of these aforementioned processes, and the 
network itself comprises multiple layers. Eventually, the image is flattened, leading to the formation of a partial or 
fully connected layer. Finally, a classification layer is utilized to categorize the image, determining its likelihood 
of belonging to any of the predefined  classes41.

This paper explores various CNN architectures that have been tweaked to develop prototypes explicitly 
designed for WBC image classification. The aim is to create models that are optimized and customized to accu-
rately classify WBC images.

Transfer learning
In the transfer learning technique, a pre-trained prototype is used by the practitioners and the researchers for 
a new job. In the context of computer vision, transfer learning can be particularly advantageous as it leverages 
knowledge acquired from a previous task to enhance predictions for a new task. This approach is gaining increas-
ing attention, primarily because it enables the training of deep networks even with limited input data. For transfer 
learning to be effective, the skills learned in the initial task should be applicable in a broader sense. Additionally, 
the input data for the new task must have the same dimensions as the data used to train the pre-existing model. 
In cases where the input size differs, a resizing operation is necessary to align the input with the pre-trained 
network before feeding it for further processing.

VGG16
It is a well-known variant of CNN, developed by the visual geometer group, and is known as  VGG1642. The 16 
in its name shows the 16 layers that have weights. It has convolutional layers of 3 x 3 filter with a stride value 
of 1 and has 2 x 2 layers of max pool and padding; these layers are followed by the softmax for the output. It is 
considered a large network because it has 138 million parameters. VGG16 is a pre-trained variant of a network 
trained on billions of images from the ImageNet database (Simonyan & Zisserman, 2014), more than thousands 
of classes can be classified with it.

InceptionV3
InceptionV3 is a deep learning model designed for image recognition tasks. It employs a unique architecture 
called the Inception module, which utilizes multiple convolutional filters of varying sizes to capture features at 
different  scales43. This enables the model to learn hierarchical representations of images, detecting both low-level 
details and high-level patterns. InceptionV3 combines these multi-scale features through concatenation and 
learns global representations through auxiliary classifiers. It has been trained on large-scale image datasets and 
achieved state-of-the-art performance on various benchmarks. It is a powerful and efficient model that plays a 
vital role in computer vision applications, including object recognition and scene understanding.

ResNet50
ResNet50 is a popular deep learning model known for its impressive performance in image recognition and fea-
ture extraction tasks. It is a variant of the ResNet (Residual Network) architecture, which addresses the problem 
of vanishing gradients by introducing residual  connections44. These connections enable the model to bypass 
certain layers and allow the direct flow of gradients during training, facilitating the training of very deep net-
works. ResNet50 consists of 50 layers and uses residual blocks as its building blocks. Each residual block contains 
multiple convolutional layers and shortcut connections. The model employs skip connections that add the output 
of a previous layer to a later layer, preserving and propagating important information across the network. By 
using residual connections, ResNet50 can effectively train deeper architectures while mitigating the degradation 
problem. It has been pre-trained on large-scale datasets, such as ImageNet, and has achieved state-of-the-art 
performance on various computer vision tasks. Due to its depth and skip connections, ResNet50 is capable of 
capturing intricate details and learning high-level representations, making it a valuable tool in applications like 
image classification, object detection, and semantic segmentation.

MobileNetV2
MobileNetV2 is a compact architecture designed for mobile devices and embedded systems. It offers a smaller 
structure, reduced computation, and increased  precision45. MobileNets influence deeply distinguishable con-
volutions and a couple of global hyper-parameters to balance the accuracy and efficiency. The basic concept of 
MobileNet revolves around disintegrating convolution kernels. By utilizing deeply distinguishable convolution, 
a standard convolution can be decomposed into a pointwise convolution and a deep convolution with a 1 × 1 
convolution kernel. The deep convolution screens apply convolution independently to each channel, while the 1 
× 1 convolution combines the productivities of the deep convolution layers. The N standard convolution kernel 
is substituted in this approach with M deep convolution kernels and N pointwise convolution kernels. While a 
standard convolutional filter combines inputs to produce new outputs, depthwise separable convolution divides 
inputs into two layers, one for filtering and the other for merging.
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Proposed CNN model
This study uses a customized CNN model, as shown in Figure 3. CNN is the best and the most widely used tool 
for computer vision projects. CNN consists of a large number of convolutional, pooling, and fully connected lay-
ers. These layers perform their functions and perform different tasks. For instance, a convolutional layer utilizes a 
fixed-size filter that is known as a kernel. This kernel is used for the extraction of the local features from the input 
image. Every time a new convolved image is obtained and after that, the conversation is applied to this image. 
This convolved image has a feature that was extracted from the image of the previous step. Considering I(x, y) is 
a two-dimensional image that is used as the input image and also considering f(x, y) is a two-dimensional kernel 
used for the conversations, then the conversation is captured  by41.

When we use conversation, the pixel values at the edges cannot be ignored or will make use of the padding 
technique. The result of the convolution can be converted by utilizing non-linear activation.

CNN not only contains a convolutional layer but it also contains fully connected and pooling layers. The pooling 
layers in the CNN are used for the summarization of local patches of convolutional layers. The pooling layers are 
also responsible for the calculations of the “ximum” and “verage” functions. These functions are also known as 
“ax pooling” and “average pooling”, with respect to the function they are performed. Pixel spacing is also a very 
important feature in the CNN model. In the CNN model pooling of every layer can be computed as

where M and N denotes the pooling space size and I and j shows the position of the output map.
For better classification of the CNN model dropout and dense layers are used. The extracted features are 

given to the fully connected layer. These layers have different weights with each association and need good 
computation resources. In this study, three layers are used with different filter sizes. The size of the filter is 32, 
64, and 128. The purpose of using 32 filter sizes is to get minute information extracted from data. Then we use 
64 and 128 filter sizes to broaden the information. The dropout value is set to 0.2. This layer is used to prevent 
the phenomena of overfitting. Then we use the flatten layer; it is used to convert the data into a single dimension 
because CNN is two-dimensional so, we use the flatten layer to convert the neuron into one dimension. After 
the flatten layer, a dense layer is used with 256 neurons, and after that dense layer of 4 neurons is used for target 
classes. For activation, softmax is used while the Adam optimizer is used for the optimization and the batch size 
is 32. Table 4 shows the details of the proposed CNN model.

Evaluation parameters
Accuracy alone does not provide a comprehensive measure of a classifier’s performance. Therefore, along with 
accuracy, other performance metrics such as precision, recall, and F1 score are computed. Accuracy represents 
the ratio of correct predictions to the total number of predictions. Precision, also known as the positive predictive 
value, quantifies the ratio of true positive predictions to the total number of positive predictions generated by a 

(1)y(i, j) = (I , f )(x, y) =

∞∑
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Figure 3.  Proposed methodology diagram.
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classifier for a particular class. Recall also referred to as sensitivity or true positive rate, measures the proportion 
of correctly predicted instances for a class out of all the actual samples belonging to that class. The F1 score is a 
statistical measure that combines precision and recall into a single metric for evaluating classifier performance. 
Every performance indicator has mathematical definitions presented below. Mathematical representations use 
FP (false positives), TP (true positives), FN (false negatives), and TN (true negatives).

Results and discussion
The objective of this study is to classify WBC images using various DL and ML models. The performance of dif-
ferent approaches, along with their computational complexity, has been analyzed through comparative analysis. 
In this section, the individual results of all models on the provided datasets under various scenarios are presented.

Experimental setup
For the training of the models, this study uses a Dell PowerEdge T430 machine. The machine features a graphical 
processing unit of 8GB equipped with 2xIntel Xeon processors, each consisting of 8 cores running at 2.4 GHz. 
Additionally, it has 32 GB of DDR4 RAM. The training process required approximately 50 minutes to complete 
the learning phase and make predictions. The epochs are set to 15, the batch size is 256, early stopping patience 
value is 3. The loss is calculated as the ’categorical cross entropy’ optimizer is ’adam’, and the activation function 
is ’Relu’ in all layers.

The proposed model is tested along with the transfer learning models such as VGG16, InceptionV3, Mobile-
NetV2, and ResNet50. For the experimentation, we used 70% of the dataset for the training of the learning 
models and 30% is used for validation purposes. The dataset used in this study consists of four target classes 
EOSINOPHIL (Class 0), LYMPHOCYTE (Class 1), MONOCYTE (Class 2), and NEUTROPHIL (Class 3).

Results of transfer learning models
This study leverages several well-known transfer learning models such as VGG16, InceptionV3, MobileNetV2, 
and ResNet50 for WBC classification to carry out a performance analysis with the proposed approach. The pur-
pose of using these models is to check the efficacy of the proposed system for the WBC classification. Class-wise 
results of the transfer learning models for the WBC classification are shown in Table 5.

Results of the transfer learning models show that VGG 16 achieved an accuracy score of 0.9609, Incep-
tionV3 achieved an accuracy score of 0.9720 and MobileNetV2 achieved an accuracy score of 0.7847. For WBC 

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1score = 2×
Precision× Recall

Precision+ Recall

Table 4.  Architectural details of the proposed CNN model.

Name Description

Convolution Stride = (1 × 1), filter= (2 × 2, @ 256), kernel_regularizer=l2(0.01)

Dropout 0.5

Convolution Stride = (1 × 1), filter= (3 × 3, @ 128), kernel_regularizer=l2(0.01)

Dropout 0.5

Convolution Stride = (1 × 1), filter= (3 × 3, @ 64), kernel_regularizer=l2(0.01)

Dropout 0.5

Max polling Stride = (2 × 2), pool size= (2 times 2)

BatchNormalization –

Fully connected Dense (120 neurons)

Dropout 0.5

Fully connected Dense (60 neurons)

Dropout 0.5

Fully connected Dense (10 neurons)

Layer Flatten

Softmax Softmax(4-class)



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3570  | https://doi.org/10.1038/s41598-024-52880-0

www.nature.com/scientificreports/

classification, ResNet50 is the lowest performer and achieved an accuracy score of 0.7458. The performance of 
InceptionV3 and MobileNetV2 is slightly different. Regarding the class-wise precision, recall, and F1 score, results 
for LYMPHOCYTE (Class 1) and MONOCYTE (Class 2) are better from all models except for MobileNetV2 
which show low precision scores of 0.76 and 0.85, for these classes, respectively. VGG16 and InceptionV3 show 
excellent results for all classes in terms of precision, recall, and F1 score.

Results of proposed approach
For the WBC classification, the proposed CNN is applied to the WBC dataset, the same dataset that is used for 
transfer learning models. Similarly, the training and test split ratio is also the same. Experimental results for the 
proposed CNN model are given in Table 6. Experimental results reveal that the proposed CNN model obtained 
an average accuracy score of 0.9986 which is better than all transfer learning models used in this study.

Results of the proposed CNN show that the proposed model achieved an accuracy score of 0.9986 and also 
achieved good values for other evaluation metrics such as precision, recall, and F1 score. For class 1 (LYMPHO-
CYTE) proposed CNN achieved a 1.0 score for all evaluation metrics. Similarly, for class 2 (MONOCYTE) it 
achieves 0.99 scores for the precision, recall, and F1 score. While the other classes (class 0 and class 3), it has 0.98 
scores each for precision, recall, and F1 score. Results demonstrate the superior performance of the proposed 
model compared to transfer learning models.

Comparison of transfer leaning models and proposed CNN model
If we compare the average results of the classifiers used in this study it shows that the proposed CNN achieved 
an accuracy score of 0.9989, as shown in Table 7. It is followed by the transfer learning models InceptionV3 
and VGG16 with 0.9720 and 0.9609 accuracy scores, respectively. ResNet50 shows poor performance with an 
accuracy score of only 0.7458 which is the least among all employed models. The proposed CNN model achieved 
an average precision of 0.99 while average scores for recall and f1 score are also 0.99.

The proposed model training and testing graphs are given in Figure 4. Starting with epoch 1, it gradually 
improves the training and validation accuracy while the model loss is gradually reduced. An early stopping 
criteria helps to stop the model training when the performance is optimal. Graphs indicate that there is no 
overfitting occurring during these phases.

The hyperparameters details are shown in Table 4. The table also demonstrates the layers like dropout, batch 
normalization, and max pooling with supporting parameters like kernel, regularizer, etc. Using the dropout layer 
further helps to reduce the probability of model overfitting. Furthermore, before training, we added the parameter 

Table 5.  Results of transfer learning models.

Classifiers Class Accuracy Precision Recall F1 Score

VGG16

EOSINOPHIL(Class 0)

0.9609

0.93 0.92 0.92

LYMPHOCYTE (Class 1) 1.00 1.00 1.00

MONOCYTE (Class 2) 1.00 1.00 1.00

NEUTROPHIL (Class 3) 0.92 0.92 0.92

InceptionV3

EOSINOPHIL(Class 0)

0.9720

0.95 0.94 0.95

LYMPHOCYTE (Class 1) 0.99 1.00 0.99

MONOCYTE (Class 2) 1.00 0.99 1.00

NEUTROPHIL (Class 3) 0.94 0.95 0.95

MobileNetV2

EOSINOPHIL(Class 0)

0.7847

0.73 0.66 0.69

LYMPHOCYTE (Class 1) 0.76 0.95 0.84

MONOCYTE (Class 2) 0.85 0.87 0.86

NEUTROPHIL (Class 3) 0.79 0.64 0.71

ResNET50

EOSINOPHIL(Class 0)

0.7458

0.73 0.32 0.45

LYMPHOCYTE (Class 1) 1.00 0.95 0.98

MONOCYTE (Class 2) 1.00 0.75 0.86

NEUTROPHIL (Class 3) 0.50 0.92 0.65

Table 6.  Performance of the proposed CNN models.

Class Accuracy Precision Recall F1 Score

EOSINOPHIL (Class 0)

0.9986

0.98 0.98 0.98

LYMPHOCYTE (Class 1) 1.00 1.00 1.00

MONOCYTE (Class 2) 0.99 0.99 0.99

NEUTROPHIL (Class 3) 0.98 0.98 0.98
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of early stopping that continuously monitors the training loss with a patience value of 3. If loss continues to drop 
consecutively 3 times then model training is stopped.

Comparison of computational complexity
For a fair comparison regarding the computational complexity of the models, the execution time of all models 
is also analyzed in this study. Table 8 shows the executing time during training and testing of all employed mod-
els. Results indicate that the proposed model has the lowest time compared to other models. Transfer learning 
models have a higher number of trainable parameters which require a larger execution time. In comparison, the 
proposed CNN model has the least training and testing time.

K‑fold cross‑validation
K-fold cross-validation is employed to ensure the robustness of the models. The results of 10-fold cross-validation 
are presented in Table 9, unequivocally showcasing that the proposed approach outperforms other models in 
terms of accuracy, precision, recall, and F1 score. Additionally, the proposed approach exhibits minimal standard 

Table 7.  Comparison results of models used in this study.

Classifier Accuracy Precision Recall F1 score

VGG16 0.9609 0.96 0.96 0.96

InceptionV3 0.9720 0.97 0.97 0.97

MobileNetV2 0.7847 0.78 0.78 0.78

ResNET50 0.7458 0.81 0.74 0.73

Proposed CNN 0.9986 0.99 0.99 0.99

Figure 4.  Training and validation accuracy and loss graphs for the proposed approach.
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deviation, emphasizing its reliability and consistency. These findings signify that the proposed approach consist-
ently demonstrates strong performance across multiple folds, further instilling confidence in its reliability and 
robustness.

Ablation analysis
In order to check the participation of the pre-processing component, we performed an ablation study and con-
sidered the performance of all models with and without pre-processing phase. The results shown in Table 10 
demonstrate that pre-processing plays an important role in improving the accuracy of all learning models.

Comparative performance analysis
A performance comparison is carried out to demonstrate the effectiveness and competitiveness of the intro-
duced approach by comparing its performance with state-of-the-art methods for WBC diagnosis. In this regard, 
Table 11 shows the comparison of various existing approaches.  In25, ML models were used for WBC classification, 
resulting in the highest accuracy of 95%. The  study28 proposed a CAD system that utilized both ML and DL 
models for efficient WBC diagnosis. The study achieved the highest accuracy of 97% using the ML model RF. 
Similarly,32 obtained excellent results from various models including CNN, ELM, AlexNet, GoogleNet, VGG-
16, and ResNet. Among them, ELM achieved a good accuracy score. The  study33 employed DenseNet121 and 
achieved the highest accuracy of 98.84%. Along the same line,34,35 used single models and achieved an accuracy 
of 93.8% and 98.55%, respectively. Performance comparison with the above-mentioned state-of-the-art systems 
demonstrates that the proposed CNN model outperforms other models and achieves high accuracy for WBC 
detection, proving its effectiveness for WBC classification.

Table 8.  Training and testing time of all learning models in minutes.

Classifier Training Testing

VGG16 45.1 2.7

InceptionV3 49.3 2.3

MobileNetV2 55.0 1.9

ResNET50 51.7 2.2

Proposed CNN 39.7 1.3

Table 9.  10-fold cross-validation result of the proposed model.

Model Accuracy Precision Recall F1 score

Fold-1 0.985 0.993 0.996 0.995

Fold-2 0.982 0.994 0.994 0.994

Fold-3 0.988 0.990 0.998 0.994

Fold-4 0.991 0.999 0.999 0.999

Fold-5 0.989 0.989 0.989 0.989

Fold-6 0.989 0.994 0.997 0.995

Fold-7 0.992 0.994 0.995 0.994

Fold-8 0.999 0.997 0.999 0.998

Fold-9 0.995 0.998 0.988 0.990

Fold-10 0.997 0.999 0.990 0.996

Average 0.994 0.994 0.991 0.992

Table 10.  Ablation study to show the effect of each component of the proposed model.

Classifier Accuracy with pre-processing Accuracy without pre-processing

VGG16 0.9609 0.8434

InceptionV3 0.9720 0.8552

MobileNetV2 0.7847 0.7369

ResNET50 0.7458 0.7842

Proposed CNN 0.9986 0.9578
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Discussion
The proposed model (modified Novel CNN architecture) outperforms all other transfer learning models when 
its performance is compared in terms of accuracy, precision, recall, and f-score. Some of the reasons why transfer 
learning models cannot perform well are:

• Data Size and Distribution: In our case, the dataset distribution in each class is not very large. The dataset 
has a total of 1408 images belonging to different classes. With data augmentation, we tried to increase the 
records but still not sufficient. In these cases, training a model from scratch (modified CNN) might be more 
advantageous than using a pre-trained model. Transfer learning models often benefit from large and diverse 
datasets.

• Overfitting and Fine-Tuning: Transfer Learning, in some cases, especially with limited data, transfer learning 
models might suffer from overfitting during fine-tuning. If the transfer learning model is not fine-tuned care-
fully or if the task is substantially different from the pre-training task, it can lead to suboptimal performance.

• Dataset Quality and Labeling: If the quality of the dataset is high, and the labeling is accurate (as in our case), 
a model trained from scratch (modified CNN) can leverage this information effectively. Transfer learning 
models can be sensitive to noisy or mislabeled data.

• Architecture Design Choices: The choice of specific layers, activation functions, or other architectural ele-
ments in modified CNN could be well-suited to the nature of your task, contributing to better performance. 
In our case, we shared how we designed the novel modified CNN with different hyper-parameters and layers 
tuning 4.

Validation using additional dataset
To validate the effectiveness of our proposed approach, we conducted additional experiments using a different 
dataset featuring blood smear images specifically for malaria parasite screening. Table 12 displays the outcomes 
achieved by applying the proposed approach to this dataset. Notably, the proposed method excelled in detecting 
malarial parasites within blood cell images, demonstrating an accuracy score of 0.9996, a precision score of 1.0, 
a recall value of 0.99, and an F1 Score of 0.99.

Conclusion
The significance of WBC classification emerges from their pivotal role in immune defense against infections 
and foreign agents. Detecting types of WBC types holds the potential to identify complications in the blood. 
However, prevailing research confronts limitations in accuracy, overfitting due to the usage of a large number 
of irrelevant features, and classification of a limited number of WBC types. To address these challenges, this 
study introduces an extensive pre-processing with a data augmentation phase to extract significant feature sets. 
This research work makes use of an optimized CNN model to ensure robust outcomes. Experimental findings 
underscore the efficacy of the approach attaining a remarkable 0.9986 accuracy score with the CNN model. The 
results are further compared with transfer learning models and state-of-the-art techniques to show the superiority 
of the proposed model. The proposed method demonstrates superior accuracy. As a future endeavor, we aim to 
explore further experiments employing machine-deep ensemble learning techniques.

Table 11.  Comparative performance analysis with state-of-the-art models.

Reference Classifiers Achieved accuracy
25 DT, MLR, NB, k-NN, RFand SVM 95% MLR
26 YOLOv3, faster RCNNusing VGG16 99.2% YOLOv3
27 FasterRCNN, YOLOv4 96.25% Faster RCNN
28 DT, RF, SVM, k-NN, CNN,VGG16, ResNet15 RF 97%
29 CNN, RNN, CNN+RNN 95.89% (CNN+RNN)
30 WTPSSR, SVM, DistanceClassifier, CNN LISC= 95.84% and WBC=97.33% using CNN with SIFT features
32 CNN, ELM, AlexNet,GoogleNet, VGG-16, and ResNet, 96.03% using ELM
33 DenseNet 121 withdifferent patch sizes 98.84% DenseNet 121
34 SqueezNet 93.8%
35 CNN 98.55%

Proposed CNN 99.86%

Table 12.  Comparison results of models used in this study.

Classifier Accuracy Precision Recall F1 score

Proposed CNN 0.9996 1.0 0.99 0.99
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Data availability
The dataset utilized in this research is publicly available and can also be requested from the author (Muhammad 
Umer).
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