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Construction and optimization 
of representative actual driving 
cycles based on the improved 
autoencoder
Zhichao Zhao 1,2, Xilei Sun 3*, Xun Wang 3, Yi Wang 1,2, Jianqin Fu 3,4* & Jingping Liu 3,4

In this study, much work has been performed to accurately and efficiently develop representative 
actual driving cycles. Electric vehicle road tests were conducted and the associated data were 
gathered based on the manual driving method, and the Changsha Driving Cycle Construction (CS-DCC) 
method was proposed to achieve systematical construction of a representative driving cycle from the 
original data. The results show that the refined data exhibit greater stability and a smoother pattern 
in contrast to the original data after noise reduction by five-scale wavelet analysis. The Gaussian 
Kernel Principal Component Analysis (KPCA) algorithm is chosen to reduce the dimensionality of 
the characteristic matrix, and the number of principal components is selected as 5 with a cumulative 
contribution rate of 85.99%. The average error of the characteristic parameters between the 
optimized drive cycle and the total data is further reduced from 13.6 to 6.1%, with a reduction ratio of 
55.1%. Meanwhile, the constructed driving cycle has prominent local characteristics compared with 
four standard driving cycles, demonstrating the necessity of constructing an actual driving cycle that 
reflects localized driving patterns. The findings present a powerful application of artificial intelligence 
in advancing engineering technologies.
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The driving cycle delineates the intricate correlation between the temporal progression of vehicle speed within 
a specific setting, which is commonly referred to as the vehicle test cycle1,2. As an essential fundamental tech-
nology for the automotive industry, the driving cycle plays a vital role in the realms of vehicle advancement, 
assessment and experimentation3. It is also the leading benchmark when optimizing various vehicle performance 
indicators4,5. With the growth of vehicle ownership, the gap between the actual fuel consumption and the results 
of regulatory certification using standard driving cycles is gradually widening6,7. Simultaneously, regional dis-
parities in topography, climatic conditions, socioeconomic advancement, road topologies, and traffic patterns 
engender considerable variation, rendering the adoption of a uniform driving cycle impractical across diverse 
regions8,9. At present, individual nations are endeavoring to devise driving cycles tailored to the idiosyncrasies 
of their actual road networks during the development, testing and evaluation of automobiles10,11. As the most 
critical basic technology for the automotive industry, it is increasingly essential to develop actual driving cycles 
that fit the country or even a specific city12,13. Therefore, in order to save development costs and improve reus-
ability, it is necessary to propose a method for facilitating the transition from original vehicle data to a final 
representative driving cycle14.

In order to construct the actual driving cycle with regional characteristics, numerous scholars have carried 
out extensive empirical vehicle tests and research endeavors. Amirjamshidi et al.15 used simulation data derived 
from a coordinated micro-traffic model of the Toronto waterfront to generate a representative driving cycle, 
which had distinct regional characteristics and high emission factors. Representative driving cycles tailored for 
passenger cars and motorcycles were developed to reflect the authentic driving conditions of Chennai in Ref.16, 
resulting in two driving cycles of 1448 and 1065 s, respectively. Berzi et al.17 obtained a driving cycle by monitor-
ing a fleet of electric vehicles and employing pseudo-random selection of raw data, and the results demonstrated 
commendable regenerative braking capacity and smooth traction at low speeds of the cycle. A new driving cycle 
construction method based on a two-level optimization process was proposed in Ref.18, which produced a more 
representative driving cycle that was closer to the statistical data of 2.49% than the traditional Markov chain 
(MC) method. Cui et al.19 presented a novel method based on simulated annealing (SA) algorithm, which led to 
a velocity-acceleration model that better matched real-world driving characteristics and significantly reduced 
errors by up to 23%. An innovative data-driven driving cycle development method based on minimum maximum 
ant colony optimization (MMACO) and the MC method was introduced to improve the representativeness of 
driving cycles in Ref.20, potentially serving as a benchmark for establishing fuel consumption standards. Gong 
et al.21 collected high-frequency operational data from battery electric vehicles (BEVs) and established the Beijing 
driving cycle through statistical and MC methods, laying a robust foundation for the precise evaluation of BEV 
performance in Beijing. The inaugural driving cycle for gasoline-powered vehicles was produced for the Greater 
Cairo of Egypt based on a diverse collection of high-resolution on-board measurements in Ref.22, which was 
superior in estimating fuel consumption and emissions.

In addition, many studies have delved into examining vehicle energy consumption and emissions by utilizing 
autonomously constructed actual driving cycles. Achour et al.23 estimated the contribution of private cars to local 
emission inventories based on a proposed representative driving cycle, and the strong representativeness of the 
driving cycle was verified by comparing with empirical measurements. The actual data from electric vehicles over 
six months were used to derive a driving cycle specifically tailored for evaluation in Ref.24, and energy consump-
tion calculations indicated that the driving cycle adeptly mirrors the genuine local driving conditions. Ho et al.25 
compared emissions of the Singapore Driving Cycle (SDC) and New European Driving Cycle (NEDC) using 
micro-estimation models, which revealed that NEDC underestimated most of vehicle emissions and SDC was 
more appropriate in Singapore. The online energy management of the Plug-in Hybrid Electric Vehicles (PHEV) 
was implemented using the dynamic programming (DP) algorithm based on the constructed actual driving cycle 
in Ref.26, and simulation results demonstrated a minimum 19.83% improvement in fuel efficiency compared to 
the charge depletion and charge sustain (CDCS) control strategy. Koossalapeerom et al.27 developed the driv-
ing cycle of electric motorcycles and measured the energy consumption, affirming the faithful reflection of the 
constructed cycle for real driving conditions. The fuel economy for both conventional and autonomous vehicles 
was precisely predicted according to the customized driving cycle in Ref.28, further emphasizing the necessity 
of enhancing fuel economy estimates through the use of customized driving cycles. Ma et al.29 introduced the 
AMarkov chain method to create representative driving cycles with actual driving characteristics, and the study 
underlined the significance of addressing real-world characteristics when improving fuel economy regulations. 
The CO2 emissions of five passenger cars were simulated in actual driving cycles in Ref.30, which revealed that 
local driving cycles were 30% closer to empirical data compared to the World Light-duty Vehicle Test Cycle 
(WLTC).

The constructed driving cycles exhibit diverse characteristics due to the varied objectives and methods 
adopted by researchers31,32. However, there is a lack of a complete systematic construction method from the 
collected original data to the actual urban driving cycles, thus improving efficiency, saving costs and facilitating 
comparisons. At the same time, the representativeness of the actual driving cycles constructed at present needs 
to be further improved, so as to reflect local driving characteristics more realistically. Currently, artificial intel-
ligence (AI) has become increasingly ubiquitous across diverse domains, playing a pivotal role in numerous 
applications33,34. Deep learning is one of the essential components in the field of artificial intelligence35, which 
has become an important technology because of its exceptional generalization and prediction performance36,37. 
It is a novel and valuable research to construct driving cycles that are more relevant to the actual conditions by 
using deep learning as an effective tool. Therefore, a systematic driving cycle construction method called CS-DCC 
is proposed in this study, which integrates multi-scale wavelet analysis, KPCA, the Balanced Iterative Reducing 
and Clustering using Hierarchies (Birch) algorithm, and the improved autoencoder. The key contributions are 
delineated below.
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•	 Electric vehicle road tests were conducted and relevant data were collected using the manual driving method.
•	 The CS-DCC method was proposed to systematically generate a representative driving cycle from the original data.
•	 The constructed driving cycle was compared with four standard driving cycles to verify the regional charac-

teristics.
•	 The study introduced a new way to effectively use deep learning for constructing highly representative actual 

driving cycles.

Methods
In this study, the CS-DCC method is proposed to systematically generate a representative driving cycle from 
the original data, and the workflow is illustrated in Fig. 1. More specifically, the original data collected from 
electric vehicle road tests are sequentially subjected to seven steps, including data preprocessing, micro-trip 
division, characteristic extraction, dimensionality reduction, micro-trip clustering, driving cycle establishment 
and driving cycle optimization. These steps collectively lead to the creation of a highly representative actual 
driving cycle. During the data preprocessing phase, a sequential process is implemented involving missing data 
addressing, abnormal data handling and noise reduction, where multi-scale wavelet analysis is employed to 
mitigate data noise. In the micro-trip division step, the collected continuous data are segmented in a specific way 
according to the CS-DCC method. The characteristic extraction stage involves extracting characteristics from 
the micro-trips based on a predetermined set of 14 parameters specified in this algorithm. In the dimensionality 
reduction step, the KPCA algorithm is utilized to reduce the dimensionality of the characteristic matrix, which 
serves to alleviate computational complexity. The micro-trip clustering phase uses the Birch algorithm to clus-
ter all micro-trips into three distinct classes based on predetermined criteria within the algorithm. During the 
driving cycle establishment stage, the Markov chain Monte Carlo (MCMC) method is applied to construct the 
driving cycle, leveraging the properties of stochastic processes with Markov characteristics. In the driving cycle 
optimization step, the constructed driving cycle is optimized based on the improved autoencoder to enhance 
its representativeness. It is worth noting that although the CS-DCC method is proposed based on city-specific 
road test data, it can still be applied to other road test data to generate actual driving cycles. More details about 
the seven steps are shown below.

The data preprocessing mainly includes two steps: (1) Interpolation of Missing and Abnormal Data; (2) Noise 
Reduction. The abnormal data are composed of driving at consistently low speeds intermittently and unusual 
acceleration patterns. Situations such as prolonged traffic congestion or intermittent low-speed driving (below 
10 km/h within 30 s) are considered as an idling state, and the maximum continuous idling time is limited to 
180 s. The processing method for intermittent low-speed driving is directly setting the value to 0 m/s and elimi-
nating segments exceeding 180 s of idling, and the provided example in Fig. 2 demonstrates the comparison 
before and after this processing step. In this study, the time taken for the tested electric vehicles from 0 km/h to 
reach 100 km/h is assumed to be at most 7 s38, and the maximum deceleration during emergency braking is set at 
− 8 m/s239. When an abnormal acceleration point is identified, the speed value is replaced by interpolation based 
on the surrounding 10 s data (5 s before and after), and then the acceleration at that point is adjusted accord-
ingly. If abnormal acceleration persists even after processing, the timestamp of the data point is recorded and the 
micro-trip containing the abnormal data is removed. The driving behavior of a vehicle is a complex and random 
process, and the driving status is influenced by various factors, such as non-motorized vehicles driving on the 
motorway and diverse road conditions. As a result, there is a large amount of noise in the collected original data. 
To address this, a five-scale wavelet decomposition is employed for signal reconstruction through inverse trans-
formation, effectively removing diverse noise sources. The micro-trip division entails segmenting the speed-time 
curve within a specific duration according to the trajectory of “end of idling—driving—end of idling”, which is a 
prevalent technique for segment division and can effectively realize the continuous combination of micro-trip.

Figure 1.   Workflow of the CS-DCC method.
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Characteristic extraction involves the comprehensive characterization of the micro-trip by extracting essential 
parameters, and 14 parameters are selected in this study which are enumerated in Table 1 and calculated by Eqs. 
(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13) and (14).

where Pa, Pd, Pi and Pu represent the time percentage corresponding to acceleration, deceleration, idling and 
uniform speed for the micro-trip, while Ta, Td, Ti and Tu are the respective durations of these states; T is the total 
duration of the micro-trip.

(1)Pa =
Ta

T
× 100%

(2)Pd =
Td

T
× 100%

(3)Pi =
Ti

T
× 100%

(4)Pu = 1− Pa − Pd − Pi

(5)vmax = max {vi , i = 1, 2, · · · ,N}

Figure 2.   Speed-time curves before (a) and after (b) abnormal data processing.

Table 1.   14 characteristic parameters selected from the basic evaluation criteria.

No Parameter Unit Abbreviation

1 Time percentage of acceleration – Pa

2 Time percentage of deceleration – Pd

3 Time percentage of idling – Pi

4 Time percentage of uniform speed – Pu

5 Maximum speed km/h vmax

6 Mean speed km/h vm

7 Mean driving speed km/h vmd

8 Standard deviation of the speed km/h vsd

9 Maximum acceleration m/s2 amax

10 Mean acceleration m/s2 aam

11 Maximum deceleration m/s2 amin

12 Mean deceleration m/s2 adm

13 Standard deviation of the acceleration m/s2 aasd

14 Standard deviation of the deceleration m/s2 adsd
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where vmax, vm, vmd and vi are the maximum, mean, mean driving and idling speeds, respectively; vsd and N 
are the standard deviation of speed and total time, respectively.

where amax and aam are the maximum and mean accelerations, respectively; amin and adm are the maximum 
and mean decelerations, respectively; aasd and adsd are the standard deviation of acceleration and deceleration, 
respectively; aa

i
 and ad

i
 are the acceleration and deceleration at the i-th second, respectively; N1 and N2 are the 

total time of acceleration and deceleration processes, respectively.
The 14 characteristic parameters extracted from micro-trips contain information pertaining to speed, accel-

eration and time percentage, which has overlapping and redundant information. To address this, the KPCA 
algorithm40 is employed in this study for dimensionality reduction to reduce computational complexity and 
improve efficiency. The KPCA algorithm operates on the kernel trick, enabling the kernelization of linear dimen-
sionality reduction techniques to identify an appropriate low-dimensional embedding. This approach effectively 
mitigates dimensional discrepancies and preserves distinct information across each characteristic factor, ulti-
mately enhancing the realism and reliability of the final outcomes.

In accordance with the classification criteria observed in the WLTC and China Light-duty Vehicle Test Cycle 
(CLTC), the vehicle speed is categorized into three classes which are low, medium and high speeds. In this 
study, all micro-trips are clustered using the Birch algorithm41 following these principles. The Birch algorithm 
is a robust and classical hierarchical clustering technique that can efficiently cluster data with a single scan and 
handle outliers, making it well-suited for managing extensive datasets. This distance-based hierarchical cluster-
ing method initially performs a bottom-up hierarchical coalescing process and subsequently employs iterative 
relocation to refine the results. During the hierarchical coalescing phase, individual objects are considered as 
atomic clusters and progressively combined to create larger clusters until all objects belong to a cluster or a 
specified end condition is met.

The process of establishing a driving cycle involves selecting specific micro-trips in a manner that constructs 
a speed-time curve of a defined length, endeavoring to capture the actual driving characteristics to the greatest 
extent possible. The MCMC method42 is employed for constructing the actual driving cycle in this study, which 
estimates the posterior distribution of interest parameters by utilizing random sampling in the probability space. 
Each subsequent sample in this process relies on the previous sample, thereby creating a stochastic process 
model with Markov properties. The Markov chain principle assumes that the probability of transitioning from 
one state to another at any given moment depends solely on the preceding state. This might seem arbitrary, but it 
serves as an effective approach to streamline the complexity of the model, substantially simplifying calculations. 
Mathematically, assuming that the state sequence is · · ·Xt−2,Xt−1,Xt ,Xt+1 · · · , then the conditional probability 
of the state Xt+1 depends only on the previous state Xt:

(6)vm =

(

N
∑

i=1

vi

)

/T

(7)vmd =

(

N
∑

i=1

vi

)

/(T − Ti)

(8)vsd =

√

√

√

√

1

N − 1

N
∑

i=1

(vi − vm)
2, i = 1, 2, · · · ,N

(9)amax = max {ai , i = 1, 2, · · · ,N − 1}

(10)aam =

∑

aai
Ta

, i = 1, 2, · · · ,N − 1

(11)amin = min {ai , i = 1, 2, · · · ,N − 1}

(12)adm =

∑

adi
Td

, i = 1, 2, · · · ,N − 1

(13)aasd =

√

√

√

√

1

N1 − 1

N1
∑

i=1

(

aai − aam
)2
, i = 1, 2, · · · ,N1

(14)adsd =

√

√

√

√

1

N2 − 1

N2
∑

i=1

(

adi − adm
)2
, i = 1, 2, · · · ,N2

(15)P(Xt+1|· · ·Xt−2,Xt−1,Xt ) = P(Xt+1|Xt )
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The process of constructing the actual driving cycle through the MCMC method involves several steps: (1) 
Calculating the Markov chain state transition matrix P derived from the clustering results; (2) Given an arbitrar-
ily set initial state distribution probability Z, obtaining the final stable probability distribution Q through the 
iterative action of Z and P; (3) Employing the Monte Carlo sampling technique to generate the driving cycle that 
satisfies specified conditions based on the derived probability distribution Q.

In order to create a driving cycle that authentically reflects the data characteristics of the vehicle under actual 
driving conditions, it is crucial not only to align with the real data distribution but also to minimize the average 
characteristic error with the entire dataset. Therefore, an improved version of the autoencoder43 is employed to 
optimize the constructed actual driving cycle, which learns the effective encoding of a dataset in an unsupervised 
way. The traditional autoencoder constructs a reconstruction loss based on the input and output data, which 
minimizes the gap between the output and input data by reducing the reconstruction loss, aiming to closely align 
the output with the input data. In this study, the constraints of the specific physical problem are integrated into 
the design of the autoencoder. Specifically, the average error of the characteristic parameters between the con-
structed driving cycle and the total data is taken as the characteristic loss, and a new loss is derived by weighted 
summation of the characteristic loss and the reconstruction loss. In this way, the driving cycle output from the 
improved autoencoder can maintain the essential driving characteristics of the original driving cycle under the 
constraint of the reconstruction loss. Meanwhile, the output driving cycle can further reduce the average error of 
the characteristic parameters with the total data under the constraint of feature loss, so as to improve the overall 
representativeness of the driving cycle.

where X = x1, x2, · · · , xT is the initial driving cycle, xt is the vehicle speed at time t, T is the total cycle time, Fdata 
i represents the value of the i-th characteristic parameter of the total data, M is the total number of characteristic 
parameters, Lr and Lf are the reconstruction loss and the characteristic loss, respectively.

The structure of the improved autoencoder is presented in Fig. 3, which consists of three primary parts: 
the input layer, the hidden layer and the output layer. The driving cycle constructed based on the MCMC 
method is fed into the input layer, while the driving cycle optimized by the improved autoencoder is output 
from the output layer. The hidden layer comprises an encoder and a decoder, the encoder involves three fully-
connected neural networks with a decreasing number of neurons for the purpose of down-sampling. Conversely, 
the decoder is comprised of three fully connected neural networks with an increasing number of neurons to 
facilitate up-sampling.

Experiments and data
The experiment was conducted using three light-duty battery electric vehicles in Changsha, China. The data 
acquisition equipment comprised the Speed BOX data acquisition instrument, CAN module and transmission 
line, with a data acquisition frequency of 1 Hz. The Speed BOX serves as an input–output terminal capable of 
real-time signal collection, including vehicle speed, altitude, latitude, and longitude. Furthermore, it communi-
cates with external systems through the CAN module, allowing reception of external signals such as accelerator 
and brake pedal opening signals. The primary signals recorded during vehicle operation include vehicle speed, 
torque and accelerator pedal opening. The manual driving method was employed to obtain the speed-time curve 

(16)L = �1Lr + �2LP

(17)Lr =

T
∑

t=1

(xt − xt ′)
2

(18)Lf =
1

M

M
∑

i=1

(

Fi′ − Fdatai

)2

Figure 3.   Structure of the improved autoencoder.
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during actual driving, which granted drivers the freedom to conduct tests based on their driving habits without 
limitations concerning time, space or location. Consequently, the test data obtained through this manual driv-
ing method demonstrated a higher degree of randomness and closer approximation to real-world conditions. 
At the same time, a different driver was designated each day to prevent data collection from being influenced 
by driving styles. Considering fewer vehicles on the road during night and early morning hours, data collection 
was set between 7:00 a.m. and 6:00 p.m. daily. The test equipment, driving paths and datasets are illustrated in 
Fig. 4. Although only one driving path is displayed due to the multitude of paths, it is evident that the driving 
routes cover the city comprehensively.

Results and discussions
Firstly, a total of 136 data points with missing information were identified after detailed examination, primarily 
resulting from weakened GPS signals when passing through tunnels or underground passages. In addition, 1115 
abnormal data instances were initially detected, and this number was reduced to 295 through interpolation, which 
were found to be within 216 micro-trips. Consequently, these 216 micro-trips were excluded, resulting in 1058, 
699 and 793 micro-trips extracted from the three datasets, summing up to a total of 2550 micro-trips as defined. 
The first dataset along with its approximation and detail coefficients under five-scale wavelet decomposition 
before and after noise reduction are illustrated in Fig. 5. The original data were subjected to five-scale wavelet 
decomposition, where the noise signal within the detail coefficients with higher frequencies was addressed using 
a gate threshold. Subsequently, the detail and approximate coefficients were wavelet reconstructed to achieve 
noise reduction. Considering the vast amount of data, the change in a micro-trip within the first dataset before 
and after noise reduction was specifically selected to illustrate the effect of multi-scale wavelet analysis, as shown 
in Fig. 6. It can be seen that the refined data after noise reduction exhibit greater stability and a smoother pattern 
in contrast to the original data.

Secondly, the Pearson correlation coefficients between the 14 characteristic parameters are demonstrated in 
Fig. 7 and calculated by Eq. (19):

where X = (x1, x2, · · · , xn) and Y =
(

y1, y2, · · · , yn
)

 are n-dimensional vectors; x and y are the mean values of X 
and Y, respectively. The Pearson correlation coefficient is an indicator to measure the linear correlation between 
two variables, which offers a straightforward calculation, easy comprehension, and widespread applicability. The 
value of the Pearson correlation coefficient ranges from − 1 to 1, where a value closer to 1 signifies a stronger 
positive correlation, while a value closer to − 1 indicates a stronger negative correlation. It can be seen that there 
are extremely strong positive or negative correlations among various variables, so it is necessary to reduce the 
dimensionality of the 14 characteristic parameters, thus avoiding unnecessary calculations and improving effi-
ciency. Figure 8 presents the variation in the cumulative contribution rate concerning the number of principal 
components based on the KPCA algorithm. In this study, the criterion for selecting the number of principal 
components is based on a cumulative contribution rate of 80% and above. It can be observed that the cumulative 
contribution of the principal components stands at 85.99% when the number of principal components reaches 
5. As a result, the determined number of principal components is 5. The principal component load matrix of the 

(19)PearsonXY =

n
∑

i=1

(xi − x)
(

yi − y
)

√

n
∑

i=1

(xi − x)2

√

n
∑

i=1

(

yi − y
)2

Figure 4.   Test equipment, driving paths and datasets (Google Maps 2023, https://​www.​google.​com/​maps).

https://www.google.com/maps
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principal components and original characteristics is listed in Table 2, in which r6,1 = 0.9467 indicates that the 
original characteristic X6 has a strong correlation with the first principal component Z1. The principal component 
load matrix not only illustrates the robust representativeness of the five chosen principal components, but also 
emphasizes the validity and soundness of this selection.

Thirdly, the KPCA algorithm using four distinct kernel functions was used to reduce the dimensionality of the 
matrix, which contained the characteristic parameters of all micro-trips. The comparison and analysis of these 
results were conducted to choose the optimal kernel function, considering that the number of principal compo-
nents discussed earlier was determined to be five. The scatter plots of the first and second principal components 
after the dimensionality reduction based on the KPCA algorithm are displayed in Fig. 9, and it can be found 
that various kernel functions map the data into different high-dimensional spaces. Notably, the Gaussian KPCA 

Figure 5.   The first dataset with its approximation and detail coefficients before and after noise reduction.
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and Cosine KPCA exhibit relatively dense data in high-dimensional spaces, while the Polynomial KPCA and 
Linear KPCA display scattered data. The micro-trips after dimensionality reduction by four KPCA algorithms 
were clustered using the Birch algorithm, and the results are given in Table 3 while the scatter plots of the first 
and second principal components are presented in Fig. 10. It should be noted that there is a significant difference 
in the number of three classes after dimensionality reduction by the Linear KPCA and Poly KPCA algorithms, 
which indicates that the results obtained using these two KPCA algorithms are notably less reasonable. Employ-
ing the Linear KPCA algorithm for dimensionality reduction results in 1725 micro-trips in the first class and 
only 214 in the third class, while using the Poly KPCA algorithm produces merely one micro-trip in the second 
class and 2537 micro-trips in the third class. On the contrary, the Gaussian KPCA and Cosine KPCA algorithms 
yield more balanced and coherent outcomes in terms of the distribution of micro-trips across the three classes, 
particularly the Gaussian KPCA algorithm. Considering the distribution of data in high-dimensional space and 
the class balance following clustering, the Gaussian KPCA algorithm is chosen for reducing the dimensionality 
of the characteristic matrix.

The characteristic parameters of the three classes obtained by the Gaussian KPCA and Birch algorithms are 
detailed in Table 4, which differ from each other. The first class exhibits a moderate speed, and the ratio of the 
acceleration and deceleration time is relatively high which may be in the unobstructed period on urban roads. The 
average speed of the second class is small and the proportion of idling time is high, suggesting probable scenarios 
of vehicle start-up or road congestion. The third class showcases high speed, a minimal proportion of idling time 
and a significant time percentage of acceleration, which may represent driving at high speeds in suburban areas.

Finally, the MCMC algorithm is applied to construct the actual driving cycle, which is further optimized by 
the improved autoencoder to enhance its representativeness. The loss function during the training process of 

Figure 6.   Change in a micro-trip within the first dataset before and after noise reduction.

Figure 7.   Pearson correlation coefficients between the 14 characteristic parameters.
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the model is illustrated in Fig. 11, where the loss function gradually decreases and finally converges. The model 
undergoes training initially at a learning rate of 0.1 to accelerate the training for the first 30,000 iterations, fol-
lowed by a learning rate adjustment to 0.01 to refine model accuracy after 30,000 iterations. The total training 
spans 50,000 iterations, resulting in a final loss of 0.9084, with loss outputs recorded every 50 iterations. The 
characteristic parameters of the constructed driving cycle before and after optimization compared with the 
total data are given in Table 5. The average error of the characteristic parameters between the optimized drive 
cycle and total data is notably reduced from 13.6% to 6.1%, with a reduction ratio of 55.1%. This reduction in 
error is achieved while preserving driving properties, showcasing the remarkable optimization performance of 
the improved autoencoder model. In order to demonstrate the effectiveness and advancement of the proposed 
CS-DCC method, a comparison is carried out based on the same dataset using the method developed in Ref.19, 
where a SA-based method is introduced. The driving cycles obtained based on the two methods are illustrated in 
Fig. 12. It can be seen that although the two methods use the same dataset, the constructed driving cycles consist 
of different micro-trips. The 14 characteristic parameters of the driving cycle obtained by the SA-based method 
are listed in Table 4, and the average error with respect to the total data is 9.7%. The characteristic parameters 
of the driving cycle obtained by the CS-DCC method have an average error of 6.1%, with an improvement ratio 
of 37.1%.

The driving cycle constructed by the CS-DCC method is compared with four standard driving cycles and 
the results are shown in Table 6. It can be seen that the time percentage of acceleration in the constructed driv-
ing cycle exceeds that of the four driving cycles, while the ratio of idling time is lower than the Japanese 10–15 
Mode (J10-15). However, the time proportion of uniform speed in the constructed driving cycle is the lowest. 

Figure 8.   Variation in the cumulative contribution rate concerning the number of principal components.

Table 2.   Principal component load matrix of the principal components and original characteristics.

Original characteristic

Principal component

Z1 Z2 Z3 Z4 Z5

X1 0.7926  − 0.0879 0.2613 0.3203 0.2776

X2 0.5678  − 0.3258 0.6598 0.0575 0.1894

X3 − 0.8072 0.2239  − 0.4710  − 0.2630  − 0.0428

X4 0.4497  − 0.1201 0.1445 0.2228  − 0.6732

X5 0.8887 0.2209  − 0.2231  − 0.2746 0.0482

X6 0.9467 0.0836  − 0.0315  − 0.1354 0.0401

X7 0.8789 0.2115  − 0.2562  − 0.2784 0.0514

X8 0.7985 0.2480  − 0.2935  − 0.3051 0.1126

X9 0.1395 0.6042 0.4589  − 0.4580  − 0.2039

X10  − 0.4708 0.5813 0.3206  − 0.0226 0.2675

X11  − 0.4353  − 0.6418 0.1194  − 0.4106 0.1439

X12 0.2218  − 0.6453 0.0349  − 0.3172  − 0.4296

X13  − 0.3877 0.5730 0.4745  − 0.3136  − 0.1896

X14 0.1620 0.6504  − 0.1486 0.5233 0.2251
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Notably, the average driving speed aligns closely with that of Urban Dynamometer Driving Schedule (UDDS), 
whereas the average acceleration is close to WLTC and significantly lower than the other three driving cycles. 
This comparison underscores the locally prominent characteristics present in the driving cycle generated through 
the CS-DCC method in contrast to standard driving cycles, which emphasizes the necessity of constructing an 
actual driving cycle that reflects localized driving patterns.

Conclusions
In this study, extensive efforts have been dedicated to the development of representative actual driving cycles. 
Electric vehicle road tests were conducted and relevant data were collected using the manual driving method, 
and the CS-DCC method was proposed to systematically generate a representative driving cycle from the original 
data. Besides, the constructed driving cycle was compared with four standard driving cycles to verify the regional 
characteristics, and the main conclusions are summarized as follows.

(1)	 After noise reduction by five-scale wavelet analysis, the refined data exhibit greater stability and a smoother 
pattern in contrast to the original data. Analysis based on the Pearson correlation coefficients indicates 

Figure 9.   Scatter plots of the first and second principal components after dimensionality reduction by KPCA.

Table 3.   Results of micro-trip clustering using the Birch algorithm.

Class Linear Poly Gaussian Cosine

1 1725 12 774 1203

2 611 1 972 934

3 214 2537 804 413
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Figure 10.   Scatter plots of the first and second principal components after clustering by Birch.

Table 4.   Characteristic parameters of three classes obtained by the Gaussian KPCA and Birch algorithms.

No Parameter Class 1 Class 2 Class 3

1 Pa 0.522 0.350 0.377

2 Pd 0.298 0.317 0.135

3 Pi 0.145 0.322 0.094

4 Pu 0.034 0.010 0.394

5 vmax 72.4 36.5 101.5

6 vm 27.935 16.356 45.168

7 vmd 30.807 21.118 56.465

8 vsd 17.449 14.831 34.170

9 amax 2.9 3.2 3.3

10 aam 0.379 0.524 0.264

11 amin  − 6.321  − 7.786  − 8.223

12 adm  − 0.541  − 0.663  − 0.503

13 aasd 0.409 0.475 0.398

14 adsd 0.595 0.864 0.541
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the presence of extremely strong positive or negative correlations among the 14 extracted characteristic 
parameters.

(2)	 Considering the distribution of the data in the high-dimensional space and the number of three classes 
after clustering, the Gaussian KPCA algorithm is chosen to reduce the dimensionality of the characteristic 
matrix. The number of principal components is determined as 5, and the cumulative contribution rate is 
85.99%.

(3)	 The characteristic parameters of the three classes obtained by the Gaussian KPCA and Birch algorithms 
differ from each other. The average error of the characteristic parameters between the optimized drive 
cycle and total data is notably reduced from 13.6 to 6.1%, with a reduction ratio of 55.1%, showcasing the 
remarkable optimization performance of the improved autoencoder model.

(4)	 The proposed CS-DCC method demonstrates an effective method for constructing highly representative 
actual driving cycles, and the constructed driving cycle has obvious local characteristics in contrast to four 
standard driving cycles, which emphasizes the necessity of constructing an actual driving cycle that reflects 
localized driving patterns.

All of these not only provide an efficient method for the methodical construction of a representative driving 
cycle from original data, but also present a powerful application of artificial intelligence in advancing engineer-
ing technologies.

Figure 11.   Loss function during the training process of the improved autoencoder model.

Table 5.   Comparison between the 14 characteristic parameters of the constructed driving cycles and the total 
data.

No Parameter Total data Before optimization After optimization (CS-DCC method) SA-based method19

1 Pa 0.417 0.466 0.438 0.367

2 Pd 0.250 0.315 0.274 0.243

3 Pi 0.187 0.181 0.181 0.225

4 Pu 0.146 0.038 0.107 0.164

5 vmax 101.500 93.200 94.890 87.536

6 vm 29.820 30.419 30.407 26.107

7 vmd 36.130 37.147 37.144 34.146

8 vsd 22.150 24.146 24.142 23.133

9 amax 3.263 3.389 3.367 2.980

10 aam 0.389 0.356 0.364 0.354

11 amin  − 8.223  − 7.778  − 7.978  − 7.266

12 adm  − 0.569  − 0.525  − 0.582  − 0.493

13 aasd 0.427 0.354 0.412 0.399

14 adsd 0.667 0.599 0.651 0.643

15 Average error 0 13.6% 6.1% 9.7%
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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