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Vibrations and energy distribution 
in inhomogeneous rods with elastic 
and viscous boundary conditions
János Lelkes *, Bendegúz Dezső Bak  & Tamás Kalmár‑Nagy 

Functionally graded materials have broad engineering applications including mechanical engineering, 
electronics, chemistry, and biomedical engineering. One notable advantage of such materials is 
that their stiffness distribution can be optimized to avoid stress concentration. A novel approach for 
solving the equations describing the longitudinal vibration of functionally graded rods with viscous 
and elastic boundary conditions is proposed. The characteristic equation of the system is derived for 
the solution of the undamped case for the constant stiffness rod. Then, a homotopy method is applied 
to compute the eigenvalues and mode shapes of graded rods for viscoelastic boundary conditions. The 
changes of the eigenvalues and mode shapes as function of the damping parameters are investigated. 
The optimal damping of the system is computed. It is shown that the qualitative behavior depends on 
the relation between the actual damping and the optimal damping of the system. The energy density 
distribution of graded rods is also discussed. An energy measure, the mean scaled energy density 
distribution is introduced to characterize the energy distribution along the rod in the asymptotic time 
limit. The significance of such a measure is that it reveals how the energy tends to distribute along the 
rod. It is shown that the energy distribution can be manipulated by changing the damping parameters. 
Qualitative changes depending on the relation between the actual damping and the optimal damping 
are highlighted.

List of symbols
A  Area of cross section [ m2]
c0, cL  Damping at the two ends of the rod [ kg/s]
d0, d1  Dimensionless damping at the two ends of the rod [1]
D1,D2  Coefficients of the general solution [1]
e(x, t), ê(x, t)  Dimensionless energy distribution and scaled energy distribution [1]
E, Ê, Ē  Dimensionless, scaled and averaged energy [1]
f(x)  Nondimensional initial displacement [1]
g(x)  Nondimensional initial velocity [1]
k(ξ), k(x)  Function of the variation of the Young’s modulus [1]
k0, k1  Dimensionless spring stiffness at the two ends of the rod [1]
L  Length of the rod [ m]
Pc , Pg  Characteristic polynomials of the constant stiffness and graded rods [ s]
Q(x, �)  Real mode shape associated with the imaginary part of U(x, �) [ 1]
s0, sL  Stiffness of the springs at the two ends of the rod [ kg/s2]
t  Dimensionless time [ 1]
T(t, �)  Temporal part of the solution [1]
u(x, t)  Dimensionless displacement in longitudinal direction [ 1]
u(x, t, �)  Partial solution [ 1]
U(x, �)  Complex mode shape [ 1]
W(x, �)  Real mode shape associated with the real part of U(x, �) [ 1]
x  Dimensionless axial coordinate [1]
α,α1  Real part of the eigenvalue and that of the rightmost eigenvalue [1]
ε(ξ)  Function of the Young’s modulus [Pa]
ε0, εL  Values of the Young’s modulus at the two ends of the rod [Pa]
�  Timescale of the system [ s]
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�, �1  Eigenvalue and rightmost eigenvalue [1]
µ  Grading coefficient [1]
ξ  Axial coordinate [ m]
ρ  Density [ kg/m3]
τ  Time [ s]
φ(ξ , τ)  Displacement in longitudinal direction [ m]
ϕ(x, t, �)  Function used in Eq. (12) [ 1]
�(x, �)  Function of the general solution [1]
ω,ω1  Imaginary part of the eigenvalue and that of the rightmost eigenvalue [1]

Many natural and engineering processes involve vibrations and the associated energy transfer. An oft-cited 
engineering application of the study of vibrations and energy transfer is vibration  reduction1–3. Simple examples 
of tools for passive vibration reduction are tuned mass-damper  systems4 . Many studies investigate the problem 
of optimal damping, i.e., what value should the damping have to achieve the fastest decay of energy. Nakić5 
summarizes the different approaches on finding the optimal damping. In this field, a frequently arising problem 
is the vibration of cantilevers, consoles, and poles, i.e., any structure that resembles a rod (having a significant 
length relative to its thickness) with considerable mass.

There are two approaches to describe the behavior of such rods: the discrete and continuum models. The 
discrete approach is the chain oscillator model. In the chain oscillator, the continuum is replaced by a finite 
number of masses that are connected through springs and dampers. With this approach, the vibration can be 
described by means of a system of ordinary differential  equations6. Many interesting applications arose even from 
this simpler approach; problems related to mass-spring chains on a line (the 1D lattice) have been extensively 
studied in the past  decades7–12 .

Rods can be described by various continuum models as  well13–19 . Recently, complex rod models can include 
nonlinearity and/or graded material. For instance, Santo et al.20 investigated the harmonic response of vibrating 
homogeneous rods with nonlinear elastic boundary conditions. In this study, we investigate the mode shapes 
as well as the energy distribution of functionally graded (position-dependent stiffness) elastic rods with elastic 
and viscous boundary conditions. Continuous changes in the properties of the functionally graded materials 
have engineering relevance, since this material behavior yields a lot of engineering benefits, such as avoiding 
the occurrence of large shear  stresses21 . For example, Shi et al.22 investigated carbon-nanotube-reinforced com-
posite beams where different nanotube distributions were assumed including functionally graded distributions 
through the thickness of the beams. Other base models with functionally graded material distribution are also 
considered in recent literature, such as the work of Zhang and  Liu23 who investigated moving rectangular plates 
and the work of Ghamkhar et al.24 that discusses a three-layered cylinder shaped shell in which the central layer 
consists of functionally graded material. The static and dynamic characteristics of functionally graded materi-
als are favorable in many scientific and engineering fields, such as aerospace, automobile, electronics, optics, 
chemistry, biomedical engineering, nuclear engineering and mechanical  engineering25–29.

The functionally graded elastic rod model in this work is formulated in a general way. This means that the 
model gives a general solution for the following cases: inhomogeneous and homogeneous rod with free-free, 
fixed-free, fixed-fixed, fixed-spring, fixed-damper, spring-spring or spring-damper boundary conditions. An 
initial-boundary value problem describes the inhomogeneous elastic rod model. We solve this viscous-elastic 
initial-boundary value problem for the longitudinal displacement of the rod. We calculate the eigenvalues and 
mode shapes of the system that consists of a rod attached to springs and dampers at one or both ends. Then we 
compute the mean energy distribution along the rod for different stiffness distributions and damping parameters 
to show the effects of these parameters.

The mathematical description of the vibration of continuum rods leads to a Sturm–Liouville  problem30,31. 
The richness of the underlying dynamics is highlighted by the variety of papers dealing with the vibration of 
homogeneous or inhomogeneous rods with different types of boundary conditions (fixed, free, elastic or vis-
cous). Previous works have involved the determination of the natural frequencies and mode shapes for different 
boundary  conditions32–35.

One novelty of this study is that we propose a homotopy method to determine the eigenvalues for the general 
inhomogeneous and damped cases. The basic idea behind homotopy methods is that a known solution of a simple 
problem may continuously be “deformed” into a solution of a more complex problem. Such deformation is called 
a  homotopy36.  He37,38 was the first who applied homotopy method to solve boundary value problems. Chun and 
 Sakthivel39 applied the homotopy perturbation method for solving the linear and nonlinear two-point boundary 
value problems and compared it with the Adomian Decomposition  Method40,41 and the shooting  method42. Since 
then a huge amount of literature discusses the possible applications of the homotopy  method43–49.

We also note here that continuation based on the homotopy method can fail for some  systems50. The steps 
of our homotopy method can be summed up as follows: we first solve the governing equations of the vibration 
for an undamped homogeneous rod for which the solution can be obtained analytically. Then the Sturm–Liou-
ville problem of the homogeneous rod with elastic boundary conditions is homotopically changed into that of 
a functionally graded rod with elastic and viscous boundary conditions. This way we can compute the eigen-
values numerically for slightly inhomogeneous and weakly damped systems, then we can gradually proceed to 
strongly inhomogeneous and/or strongly damped systems. Eventually the eigenvalues for the desired parameter 
combinations are reached.

The significant advancement presented in this research lies in its detailed exploration of a more compre-
hensive scenario of longitudinally vibrating rods, which distinguishes it from prior studies in this domain. This 
research goes beyond the existing  literature22,32–35,51,52 by examining rods with both elastic and viscous boundary 
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conditions at their ends, coupled with the complexity of inhomogeneous stiffness throughout the rod’s length. 
This particular case represents a new avenue in the field that, as far as we are aware, has yet to be previously 
addressed. Additionally, this study makes a notable contribution by calculating the optimal damping parameters 
and mapping out the energy distribution for these rods in such a generalized setting. This extended analysis 
provides a deeper understanding of the dynamics of longitudinally vibrating rods, offering valuable insights for 
future research and practical applications.

This paper is structured as follows: in “The functionally graded elastic rod model” section we describe the 
investigated system that consists of a functionally graded elastic rod model that is attached to springs and 
dampers on both ends. We formulate the partial differential equation that describes the longitudinal vibrations 
of the system. In “Characteristic equation, mode shapes, particular solution” section it is shown how the 
formulated initial-boundary value problem can be solved and how the eigenvalues and mode shapes of the 
system are obtained. The difficulty in determining the mode shapes stems from the transcendental nature of 
the characteristic Eq. (10), which in general can only be solved numerically. In “The constant stiffness rod and 
graded rods” section we show the solution for the simple case of the constant stiffness rod ( k(x) ≡ 1 ). We also 
show the first few eigenvalues of the system calculated by the novel homotopy approach as the function of the 
damping coefficients for graded rods. In “Optimal damping” section we briefly discuss the concept of optimal 
damping. Then, in “Energy and its distribution in the rod” section we define the energy measures that describe 
the energy distribution in the vibrating rod, e.g., the energy density of the rod. In “Energy density distribution 
of the damped system with varying stiffness” section we will use �±1 = α1 ± iω1 (the rightmost eigenvalue) and 
the corresponding mode shape that are associated with the slowest decaying vibration component to compute 
a time-independent energy measure of the system. This energy measure characterizes the asymptotic behavior 
of the system, essentially showing us how the energy tends to distribute along the rod during free vibration. It is 
shown how the energy is distributed in different graded rods and it is demonstrated that the energy distribution in 
the rods can be manipulated by tuning the damping coefficients at the ends of the rod. This finding has potential 
applications in channeling vibrational energy. Further potential physical applications include elastic wave 
propagation and localization in band gap  materials53 and utilizing multi-mode vibration absorption capability 
of metamaterial  beams54. Finally, conclusions are drawn in “Conclusions” section.

A few additional subscripts are used in the paper that are fully descriptive, hence, they are not listed in this 
table.

The functionally graded elastic rod model
The longitudinal vibrations of an inhomogeneous, functionally graded rod, that is depicted in Fig. 1, are 
considered in the axial direction. The modulus of elasticity ε(ξ) is a function of the axial coordinate ξ . The 
density ρ and cross section A are constant along the rod. The left end of the rod at ξ = 0 is connected to a spring 
of stiffness s0 and a linear damper with damping parameter c0 . At the right end ξ = L , the rod is connected to a 
spring of stiffness sL and a linear damper with damping parameter cL.

The governing differential equation with the above described boundary conditions is (for a detailed derivation 
 see51)

where φ(ξ , τ) is the displacement in longitudinal direction, τ is the time, ε0 = ε(0), εL = ε(L) . The variation of 
the Young’s modulus is defined as ε(ξ) = ε0k(ξ) , where k(0) = 1.

The discussion of initial conditions is deferred to “Initial conditions and the particular solution” section.
To reduce the parameters of the system we introduce the nondimensional coordinate x, time t and 

displacement u(x, t) as x = ξ
L , t =

τ
�
, u = φ

L , where L is the length of the rod and � is the timescale of the system. 
After nondimensionalization of Eq. (1) and setting � = L

√

ρ
ε0

 , we get
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Figure 1.  The continuous, functionally graded rod model with viscoelastic boundary conditions.
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For the sake of simplicity we set the dimensionless groups of the spring boundary conditions equal to 1, i.e., 
s0L
ε0A

= 1, sLL
εLA

= 1 . These choices allow us to match the stiffnesses of the springs with the stiffness of the rod at 
its two endpoints x = 0 , x = 1 . Thus, the force is the same regardless of whether the spring or the connecting 
endpoint of the rod is displaced by the same amount. Otherwise, these two dimensionless groups could be 
adjusted between 0 (free end) and infinity (fixed end). These cases are not covered in this paper.

We introduce the dimensionless stiffnesses as k0 = s0L
ε0A

= 1, k1 = sLL
ε0A

= sL
s0

 , and the dimensionless damping 
coefficients as d0 = c0

ε0A

√

ε0
ρ
, d1 = cL

εLA

√

ε0
ρ

 . Substituting the dimensionless stiffnesses and damping coefficients 
into Eq. (2), the dimensionless boundary value problem becomes

where the dot and the prime denote the derivative with respect to the dimensionless time and space, respectively.

Characteristic equation, mode shapes, particular solution
First we will determine the general solution of the problem, and later we determine the particular solution for 
given initial conditions.

Let us note that system (3) is not self-adjoint due to the form of the boundary conditions (see  also34). Even 
though separation of variables can in general be used for self-adjoint problems, there are some exceptions 
(including the wave equation with impedance boundary  conditions55).

With this caveat, we develop a decoupled series of ordinary differential equations that represent the boundary 
value problem (3), i.e., we formulate the solution u(x, t) by separation of variables. Our approach is similar to 
the derivation described  in32, but we assume the general solution of Eq. (3) to have the infinite sum of products 
form (akin to the eigenfunction expansion technique)

Each term of the sum in Eq. (4) describes a partial solution u(x, t, �j) associated with the eigenvalue �j as

The space-dependent functions U(x, �j) are the complex mode shapes associated with the complex eigenvalues 
�j . Equation (4) is substituted into Eq. (3) to yield

The solution for the temporal part has the form

and thus T̈(t,�j)T(t,�j)
= �

2
j  . Substituting this result into Eq. (6) and rearranging the equation yields the boundary value 

problem

The boundary value problem (8) is a Sturm–Liouville problem with separated, but eigenparameter-dependent 
boundary  conditions30. We emphasized the �j-dependence of U by writing U

(

x, �j
)

 . Equation (8) is a second-
order linear equation, its general solution U(x, �j) can be written as

(2)

∂

∂x

[

k(x)
∂u(x, t)

∂x

]

= ∂2u(x, t)

∂t2
,

∂u(x, t)

∂x

∣

∣

∣

∣

x=0

= s0L

ε0A
u(0, t)+ c0

ε0A

√

ε0

ρ

∂u(x, t)

∂t

∣

∣

∣

∣

x=0

,

∂u(x, t)

∂x

∣

∣

∣

∣

x=1

= − sLL

εLA
u(1, t)− cL

εLA

√

ε0

ρ

∂u(x, t)

∂t

∣

∣

∣

∣

x=1

.

(3)

ü(x, t) = k(x)u′′(x, t)+ k′(x)u′(x, t),

u′(0, t) = u(0, t)+ d0u̇(0, t),

u′(1, t) = −u(1, t)− d1u̇(1, t).

(4)u(x, t) =
∞
∑

j=−∞
u(x, t, �j).

(5)u(x, t, �j) = U(x, �j)T(t, �j).

(6)

T̈(t, �j)

T(t, �j)
= U ′′(x, �j)

U(x, �j)
k(x)+ U ′(x, �j)

U(x, �j)
k′(x),

U ′(0, �j) = U(0, �j)+ d0U(0, �j)
Ṫ(t, �j)

T(t, �j)
,

U ′(1, �j) = −U(1, �j)− d1U(1, �j)
Ṫ(t, �j)

T(t, �j)
.

(7)T
(

t, �j
)

= T(0, �j)e
�j t ,

(8)

k(x)U ′′(x, �j)+ k′(x)U ′(x, �j)− �
2
j U(x, �j) = 0,

U ′(0, �j) = U(0, �j)
(

1+ d0�j
)

,

U ′(1, �j) = −U(1, �j)
(

1+ d1�j
)

.
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where the complex functions �1,�2 and the constants D1 , D2 depend on the choice of k(x) . By substituting Eq. 
(9) into the boundary conditions of Eq. (8) a matrix equation is obtained for the unknown constants D1,D2 . To 
get a non-trivial solution for D1 and D2 , the determinant of the matrix has to vanish. Computing the determinant 
yields the characteristic equation of the system:

where Pg (�j , d0, d1) is the characteristic polynomial of a graded rod. The characteristic Eq. (10) is, in general, a 
transcendental equation with a countably infinite set of complex roots �j = αj ± iωj (called characteristic roots or 
eigenvalues). We order the characteristic roots based on the magnitude of their real parts as α0 ≥ α±1 ≥ α±2 ≥ ... , 
with �−j = �̄j where the overbar symbol stands for complex conjugation.

The complex mode shapes corresponding to the complex conjugate roots are also complex conjugates, i.e., 
U(x, �−j) = U(x, �̄j) = Ū(x, �j) . Furthermore, using Eq. (7) and �−j = �̄j we have T(t, �−j) = T(t, �̄j) = T̄(t, �j) . 
Making use of these complex conjugate relations, and substituting Eq. (7) for T(t, �j) the solution (4) can be 
written as

where ϕ(x, t, �j) = U(x, �j)e
�
j t + Ū(x, �j)e

�̄
j t and Tj(0) ≡ T(0, �j).

The term ϕ(x, t, �j) in Eq. (11) can be reformulated with Euler’s formula (using �j = αj ± iωj ) as

where W(x, �j) and Q(x, �j) are the real mode shapes.

Initial conditions and the particular solution
To obtain the particular solution of the problem we also need the (nondimensional) initial conditions

The initial functions f(x) and g(x) have to satisfy the boundary conditions (see Eq. (3)), i.e.,

A partial solution u(x, t, �j) cannot in general satisfy the initial conditions for f (x), g(x) . To obtain u(x, t) 
for given initial conditions f (x), g(x) , the Tj(0) coefficients must be determined. To do this, we can use 
the relationship between W(x, �j) , Q(x, �j) and the initial conditions f (x), g(x) , that can be determined by 
substituting the initial conditions (13) into (11) to yield

This equation shows that the initial functions are combinations of the mode shapes, arbitrarily chosen functions 
cannot satisfy Eq. (15). This does not restrict practical applicability of the method as any prescribed initial 
condition can be approximated with a combination of mode shapes.

The constant stiffness rod and graded rods
Solving the characteristic equation for the constant stiffness rod
A particularly simple case of the problem is when the stiffness distribution along the rod is constant, i.e., k(x) ≡ 1 . 
The boundary-value problem (8) is now simplified and yields

(9)U(x, �j) = D1�1(x, �j)+ D2�2(x, �j),

(10)
Pg (�j , d0, d1) =

(

(1+ d0�j)�1(0, �j)−� ′
1(0, �j)

)(

(1+ d1�j)�2(1, �j)+� ′
2(1, �j)

)

−
(

(1+ d0�j)�2(0, �j)−� ′
2(0, �j)

)(

(1+ d1�j)�1(1, �j)+� ′
1(1, �j)

)

= 0,

(11)u(x, t) =
∞
∑

j=−∞
U(x, �j)Tj(0)e

�j t =
∞
∑

j=0

Tj(0)
(

U(x, �j)e
�
j + Ū(x, �j)e

�̄
j t
)

=
∞
∑

j=0

Tj(0)ϕ(x, t, �j),

(12)

ϕ(x, t, �j) = U(x, �j)e
�
j t + Ū(x, �j)e

�̄
j t = U(x, �j)e

(αj+iωj)t + Ū(x, �j)e
(αj−iωj)t

= U(x, �j)e
αj
[

cos(ωjt)+ i sin(ωjt)
]

+ Ū(x, �j)e
αj
[

cos(ωjt)− i sin(ωjt)
]

= eαj
[(

U(x, �j)+ Ū(x, �j)
)

cos(ωjt)+
(

U(x, �j)− Ū(x, �j)
)

i sin(ωjt)
]

= eαj t
[

W(x, �j)cos(ωjt)+Q(x, �j)sin(ωjt)
]

,

W(x, �j) = U(x, �j)+Ū(x, �j) = 2ReU(x, �j),

Q(x, �j) = i(U(x, �j)− Ū(x, �j)) = −2ImU(x, �j),

(13)u(x, 0) = f (x), u̇(x, 0) = g(x).

(14)f ′(0) = f (0)+ d0g(0), f ′(1) = −f (1)− d1g(1).

(15)

u(x, 0) =
∞
∑

j=0

Tj(0)W(x, �j) = f (x),

u̇(x, 0) =
∞
∑

j=0

Tj(0)(αjW(x, �j)+ ωjQ(x, �j)) = g(x).
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A simple substitution of �j = 0 into Eq. (16) shows that 0 is not an eigenvalue. The general solution of Eq. (16) is

and the characteristic Eq. (10) becomes

where Pc(�j , d0, d1) is the characteristic polynomial of the constant stiffness rod. Equation (18) is a transcendental 
equation with countably infinite complex roots.

We note that Eq. (18) can have one or two negative real roots if the damping of the system reaches its critical 
value. The relation for the number of real roots is

In this paper, we are interested in the oscillatory motions and time-varying energy distributions. Thus the 
overdamped behavior will not be investigated.

We solve Eq. (18) for the d0 = d1 = 0 case. We know that the eigenvalues are purely complex in this case, i.e., 
�±j = ±iωj and the characteristic equation becomes

Even though this equation is also transcendental, it is easy to solve numerically to yield a set of ωj’s. We then 
apply a homotopy continuation method to determine the characteristic roots, i.e., the solutions of Eq. (18) of 
the damped system similarly  to36. The dampings d0, d1 are increased in small steps and the characteristic roots 
of Eq. (18) are calculated by Newton’s method with the roots determined in the previous step as the starting 
point of the root finding.

Figure 2 shows how the six rightmost complex characteristic roots ( �j’s) change on the complex plane as the 
function of the damping d1 ∈ [0, 2.5] , with d0 = 0 . The change of the real parts ( αj’s) against the damping d1 
are also depicted here. In Fig. 3 the real mode shapes W(x, �1) and Q(x, �1) corresponding to �1 are depicted for 
d0 ∈ {0.25, 0.5, 0.75, 1} with d1 = 0 . These are calculated from the complex mode shapes U(x, �1) and Ū(x, �1) 
using Eq. (12).

(16)

U ′′(x)− �
2
j U(x) = 0,

U ′(0) = U(0)(1+ d0�j),

U ′(1) = −U(1)(1+ d1 �j).

(17)U(x, �j) = D1e
�jx + D2e

−�jx ,

(18)Pc(�j , d0, d1) =
(

(d0d1 + 1)�2 + (d0 + d1)�j + 1
)

sinh(�j)+
(

(d0 + d1)�
2
j + 2�j

)

cosh(�j) = 0.

(19)

no real �j if 0 ≤ d0 ≤ 1 and 0 ≤ d1 ≤ 1,

one real �j if (0 ≤ d0 ≤ 1 and 1 < d1) or (1 < d0 and 0 ≤ d1 ≤ 1),

two real �j ‘s if 1 < d0 and 1 < d1.

(20)tan(ωj) =
2ωj

ω2
j − 1

.

Figure 2.  (a) Root locus plot for the characteristic Eq. (18) with constant rod stiffness k(x) = 1 for d1 ∈ [0, 2.5] , 
d0 = 0 . (b) Real part of the rightmost six complex eigenvalues as function of the damping d1.
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Calculating the analytical solution for the constant stiffness rod
To determine the analytical solution u(x, t), the � eigenvalues, the W(x, �j) real mode shapes, and the Tj(0) 
coefficients are needed. Since we already determined the eigenvalues and real mode shapes, we only need to 
determine the Tj(0) coefficients.

To get the analytical solution u(x, t), the initial functions f (x) and g(x) need to be decomposed in the basis 
of the real mode shapes W(x, �j) as

Since this basis is non-orthogonal, we determine the coefficients Tj(0) by minimizing the mean square error 
(MSE)

We discretize the initial displacement function and apply the least squares method to find the Tj(0) coefficients 
of the real modes W(x, �j).

To illustrate this approximation of the initial displacement function we use two examples: (a) 
f (x) = 1+ x − x2 and (b) f (x) = 1+ x − x2 − 10x3 + 8x4 . Using the first 12 modes decreases the error value 
to 10−6 , while for 50 modes, the error is 5 · 10−7 . Using more modes is not beneficial since we could not reduce 
the error to less than 10−7.

The solutions u(x, t) corresponding to the 10-mode approximation of the initial displacement functions 
f (x) = 1+ x − x2 and f (x) = 1+ x − x2 − 10x3 + 8x4 are illustrated in Fig. 4 for d0 = 0.5 , d1 = 0 . In both 
cases, we observe that after the initial transient behavior, the first real mode becomes dominant. In further 
investigations, we will use the first dominant mode shape, which corresponds to the eigenvalue with the largest 
real part, i.e., its decay rate is the slowest.

Rod with exponential stiffness distribution
An Example for the general solution of Eq. (8) for a particular stiffness distribution is provided in this section. 
We will present an exponential stiffness distribution as an example for a relatively extreme grading. We also 
carried out all of the following investigations for a linearly changing stiffness distribution as an example for a 
mild grading, and came to similar conclusions.

The step-by-step method to compute u(x, t) of the functionally graded rod with elastic and viscous boundary 
conditions for any k(x) is summarized as follows:

• From the boundary value problem (6) we construct the characteristic Eq. (10). The general solution (complex 
mode shapes) U(x, �j) is determined.

• The characteristic Eq. (20) for the constant stiffness rod is solved to obtain the first approximation of the 
eigenvalues.

• A homotopy method (described in the Supplementary Appendix) is used to determine the eigenvalues �j 
corresponding to the arbitrary stiffness distribution k(x) and d0, d1 damping values.

(21)f (x) ≈
N
∑

j=0

Tj(0)W(x, �j).

(22)MSE =
1

�

0



f (x)−
N
�

j=0

Tj(0)W(x, �j)





2

dx.

Figure 3.  (a) First mode shape W(x, �1) and (b) Q(x, �1) with constant rod stiffness k(x) = 1 for different 
damping values d0 , when d1 = 0.
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• The complex mode shapes U
(

x, �j
)

 are determined for k(x), d0, d1.
• The real valued functions W(x, �j) and Q(x, �j) are determined using Eq. (12).
• The constant Tj(0) are determined using Eq. (15) for given initial conditions f (x), g(x).
• The real valued solution u(x, t) is provided based on Eqs. (11)–(12).

An example for a functionally graded elastic rod with closed-form mode shapes is when the stiffness distribution 
changes exponentially along the rod, i.e., k(x) = eµx . The general solution of (8) can be computed with a symbolic 
computational tool (e.g., Wolfram Mathematica). For this exponentially varying stiffness it is

where K1 and I1 are the modified Bessel function of the second kind and the modified Bessel function of the first 
kind, respectively.

Figure 5a shows how the six rightmost characteristic roots change as the function of the damping d1 for 
the exponential stiffness distribution k(x) = eµx with µ = 2 . The other damping is set to zero, i.e. d0 = 0 . The 
dependence of the real parts on the damping coefficient d1 are depicted separately in Fig. 5b. The dependence 
of the eigenvalues on the parameter µ was also investigated. Figure 5c shows the behavior of the real parts αj as 
function of the parameter µ for fixed damping values d0 = 0, d1 = 0.5 . The damping is added at the stiff end, 
the parameter µ has an optimal value where the decay rate of the vibration is the highest.

Due to the asymmetry of the stiffness distribution, setting the damping coefficients in the other way around 
yields different results. We also computed the case as the function of d0 with d1 = 0 this time. The eigenvalues 
on the complex plane and the real parts as function of the damping value showed similar trends, but the 
dependence on µ yielded a different result for the investigated damping value pair d0 = 1.5, d1 = 0 . Even though 
we significantly extended the investigated parameter range for µ ( µ ∈ [0, 20] was investigated), we did not find 
any minimum, the real parts monotonously decrease as µ increases.

(23)U(x, �j) = D1

�j

√
e−µx

(

K1

(

2
√
e−µx

µ
�j

))

µ
+ D2

−�j

√
e−µx

(

I1

(

2
√
e−µx

µ
�j

))

µ
,

Figure 4.  Solution u(x, t) corresponding to the 10 mode approximation of the initial displacement functions (a) 
f (x) = 1+ x − x2 and (b) f (x) = 1+ x − x2 − 10x3 + 8x4 for damping values d0 = 0.5 and d1 = 0.

Figure 5.  (a) Root locus plot for the characteristic Eq. (10) with exponentially changing rod stiffness k(x) = e2x 
for different damping values d1 , when d0 = 0 . (b) Real part of the rightmost six eigenvalues as function of the 
damping d1 . (c) Dependence of α on µ for exponentially varying stiffness with damping values d0 = 0, d1 = 0.5.
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In Fig. 6 the real valued mode shapes W(x, �1) and Q(x, �1) are depicted for different damping combinations 
when µ = 2 is chosen, i.e., k(x) = e2x . For simplicity, the initial functions f(x) and g(x) are specified by the domi-
nant mode of the vibration, which are the first elements of the sums defined in (15) (the mode corresponding 
to the rightmost eigenvalue):

In this case, T1(0) can be chosen arbitrarily since it is only a constant multiplier of the solution. The solution 
u(x, t) is depicted in Fig. 7 for two damping combinations.

Optimal damping
The damping of a particular vibrational system is considered optimal if the decay of the vibration is the fastest 
(oscillatory motion is assumed, the overdamped behavior is not investigated).  Nakic5 presents different 
approaches on finding the optimal damping for vibrational systems. One of these approaches relies on the 
spectral abscissa criterion where the optimal damping is achieved when the real part of the rightmost eigenvalue 
is minimal, i.e., where max{αj} is minimal (for a wealth of applications  see56).

This definition is straightforward when the vibrational system has only one damper. When one of the damping 
coefficients is zero in our rod model, the optimal damping based on the spectral abscissa criterion is the following:

• When d0 = 0 , d1 = d1,opt is the optimal damping.
• When d1 = 0 , d0 = d0,opt is the optimal damping.

For the constant stiffness rod ( k(x) ≡ 1 ) d0,opt = d1,opt . In general, for any functionally graded rod d0,opt  = d1,opt 
is expected. When both dampers are included in the model, the optimal damping is provided by the damping 
parameters d0 = d̃0,opt , d1 = d̃1,opt for which max{αj} is minimal. In general, these damping parameters are not 
expected to be equal with the aforementioned d0,opt , d1,opt , i.e., d̃0,opt �= d0,opt , and d̃1,opt �= d1,opt.

(24)f (x) = T1(0)W(x, �1), g(x) = T1(0)(α1W(x, �1)+ ω1Q(x, �1)).

Figure 6.  The first mode shape W(x) with exponential rod stiffness k(x) = e2x for (a) different damping values 
d0 , when d1 = 0 , (b) different damping values d0 , when d1 = 0.5 , and (c) different damping values d1 , when 
d0 = 0 . The first mode shape Q(x) with exponential rod stiffness k(x) = e2x for (d) different damping values d0 , 
when d1 = 0 , (e) different damping values d0 , when d1 = 0.5 , and (f) different damping values d1 , when d0 = 0.
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In Fig. 8 the contours of max{αj} are shown for a constant stiffness rod and a functionally graded rod with 
exponential stiffness distribution as function of d0 and d1 . The thin vertical and horizontal lines mark d0,opt and 
d1,opt , respectively, while the white cross marks the point [d̃0,opt , d̃1,opt ].

Energy and its distribution in the rod
In the previous “The functionally graded elastic rod model”–“The constant stiffness rod and graded rods” section 
we showed how to compute the eigenvalues and mode shapes of the functionally graded rod for non-constant 
stiffness distributions and damping parameters. Now we can compute the energy measures of the system based 
on those results.

The total dimensionless energy is the sum of the energy stored in the rod and the energy stored in the springs. 
The energies stored in the two springs are

The energy density distribution of the rod is given by the sum of the kinetic and potential energy densities of a 
cross-section at location x at time t, i.e.,

Equation (26) captures the temporal distribution of energy along the length of the rod. The total energy Erod(t) 
stored in the rod at time t equals to the spatial integral of e(x, t) over the length of the rod, while the total energy 
Etotal(t) of the entire system (3) at time t is the sum of the energy of the springs and the energy of the rod, i.e.,

(25)Espring,left(t) =
1

2
k0u

2(0, t), Espring,right(t) =
1

2
k1u

2(1, t).

(26)
e(x, t) = ekin(x, t)+ epot(x, t) =

1

2

(

∂u(x, t)

∂t

)2

+ 1

2
k(x)

(

∂u(x, t)

∂x

)2

,

ekin(x, t) =
1

2

(

∂u(x, t)

∂t

)2

, epot(x, t) =
1

2
k(x)

(

∂u(x, t)

∂x

)2

.

Figure 7.  Solution u(x, t) corresponding to the first mode shape for exponentially changing rod stiffness with 
damping values (a) d0 = 0.25 and d1 = 0 , and (b) d0 = 0 and d1 = 0.25.

Figure 8.  Contours of max{αj} as function of the damping parameters d0, d1 for stiffness distributions (a) 
k(x) = 1 , and (b) k(x) = e2x.
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Now we can define the scaled energy Êrod(t) of the rod and the scaled energy density distribution ê(x, t) of the 
rod as

where l = 1 is the dimensionless length of the rod. Thus, the sum of the scaled energies of the rod and the springs 
are equal to 1, i.e.,

Energy density distribution of the damped system with varying stiffness
The eigenvalues �±1 = α1 ± iω1 with the least negative real part are associated with the slowest decaying motion. 
After sufficiently long time, the mode shapes W(x, �1), Q(x, �1) associated with the rightmost eigenvalue pair 
�1, �̄1 will be the dominant one and thus properly characterizes the vibration in the asymptotic limit t → ∞.

We define the mean of the scaled energy of the rod ( ̄Erod(ω1) ) as as well as the mean of the scaled energy 
density distribution of the rod ( ̄e(x,ω1) ) in the asymptotic limit averaged over the oscillation period ω1/π:

The energy measure ē(x,ω1) characterizes the asymptotic behavior of the system, it shows us how the energy 
tends to distribute along the rod during free vibration.

We can compute the mean scaled energy density distribution ē(x,ω1) and the mean scaled energy of the rod 
Ērod(ω1) as defined by Eq. (30) of rods having different stiffness distributions for different combinations of the 
damping values d0, d1 . To compute ē(x,ω1) and Ērod(ω1) , it is convenient to compute u(x, t) by choosing the 
initial conditions as

For this natural choice of initial conditions we can have T1(0) = 1 and it is ensured that the boundary conditions 
satisfy (14). With initial conditions (31), the mean scaled energy Ērod(ω1) of the rod and the mean scaled energy 
density distribution ē(x,ω1) can simply be calculated as

Figure 9 shows how the total energy Etotal(t) of the system decays for homogeneous and a functionally graded 
elastic rod with different damping values. In the cases shown in Fig. 9a the dissipation rate of the total energy is 
gradually increasing as the damping increases. In Fig. 9b we see that the value of d1,opt must be in the investigated 
range as the decay rate starts to decrease past d1 = 0.5 . Indeed, either from Figs. 5b or 8b we see that for the 
exponential stiffness distribution k(x) = e2x with d0 = 0 the value of the optimal damping is about d1,opt ≈ 0.5.

We now show how the mean scaled energy density distribution ē(x,ω1) changes as function of the damping 
values d0, d1 for constant and varying stiffness distributions. Figure 10 shows ē(x,ω1) for k(x) = 1 , the parameter 
of the curves is d0 which is the damping coefficient of the damper attached to the left end of the rod. In the cases 
depicted in Fig. 10a and b the right damping was set to d1 = 0 , d1 = 0.5 , respectively. The graphs show that 
increasing the damping in one end increases the energy fraction stored in that half of the rod. For d0 = d1 the 
distribution of ē(x,ω1) is symmetric as expected.

Figure 11a and b show ē(x,ω1) for k(x) = e2x , the parameter of the curves is d0 , the other damping is set to 
d1 = 0 and d1 = 0.5 , respectively. Again, in most cases we see that the energy distribution tends to be higher close 
to the more strongly damped end of the rod. When d1 = 0.5 , the d0 ≤ d1 cases show that the energy content of 
both half of the rod is more or less equal, but for d1 > d0 the energy content of the left half of the rod -to which 
this stronger damper is attached- increases again.

In Fig. 11c and d ē(x,ω1) graphs are depicted again for k(x) = e2x , but this time the parameter of the curves is 
d1 and d0 = 0 is set. As the damping d1 increases on the stiff end, the energy distribution becomes highly skewed 
and most of the energy is concentrated in the softer half of the rod. Below the optimal damping d1,opt ≈ 0.5 the 
energy distributions are less skewed and contain an inflection point.

(27)
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1
∫

0
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(30)Ērod(ω1) = lim
τ→∞

ω1

π

τ+ π
ω1

∫

τ
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(31)f (0) = W(0, �1), g(0) = α1W(0, �1)+ ω1Q(0, �1).
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All of the calculations were also carried out for a milder linear stiffness distribution that has the form 
k(x) = 1+ 1.5x to obtain more general conclusions. Figure 12a and b show ē(x,ω1) for k(x) = 1+ 1.5x , the 
parameter of the curves is d0 . The other damping is set to d1 = 0 and d1 = 0.5 , respectively. Similarly to the 
constant stiffness rod, we see that the energy distribution tends to be higher close to the more strongly damped 
end of the rod.

In Fig. 12c and d ē(x,ω1) graphs are depicted for k(x) = 1+ 1.5x , but this time the parameter of the curves 
is d1 and d0 = 0 is set. Initially, we can see that the energy distribution increases in the more strongly damped 
stiff part of the rod. A qualitative change is observed in the energy distribution by the value of d1 = 1 . The rea-
son for this is that the damping d1 = 1 already exceeds the optimal damping d1,opt for this case that leads to less 
efficient energy dissipation. A significantly smaller fraction of energy is passed to the springs connected parallel 
with the dampers, this is why the total mean scaled energy Ē(ω1) of the rod is higher (the entire ē(x,ω1) graph 
is lifted compared to the d1 ≤ d1,opt cases). Eventually, the energy distribution tends to gravitate towards a more 
uniform distribution.

These results show that increasing the damping at the soft end will generally increase the energy fraction 
stored in the softer part of the rod. That is, the energy distribution can be manipulated along the rod by tuning 
the damping at the soft end. One can also see that the mean energy density distribution is qualitatively different 
in the case of inhomogeneous rods compared to the homogeneous rod. For a homogeneous rod we have a convex 
distribution in every case, whereas for the inhomogeneous cases there is an inflection point in multiple cases.

On the other hand, increasing the damping at the stiff end leads to very different energy distributions 
depending on the stiffness distribution of the rod. By the linear stiffness distribution this increased the energy 
fraction stored in the stiff part of the rod, but by the exponential stiffness distribution the effect was completely 

Figure 9.  Total energy Etotal(t) of the system (3) for (a) constant stiffness elastic rod, k(x) = 1, d0 = 0 , and (b) 
for a functionally graded elastic rod, k(x) = e2x , d0 = 0.

Figure 10.  Mean scaled energy density distributions ē(x,ω1) for k(x) = 1 and d0 = 0.25− 1 , while (a) d1 = 0 , 
(b) d1 = 0.5.
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the opposite. This implies that rods with such a highly inhomogeneous stiffness distribution are very sensitive 
to the variation of the damping at the stiff end of the rod.

Conclusions
The general mathematical description of the longitudinal vibration of functionally graded elastic rods with 
viscous and elastic boundary conditions was provided. The characteristic equation was derived for the undamped 
case. A homotopy-based approach to solve the equations describing the longitudinal vibration of functionally 
graded elastic rods was proposed. First, the solution for the undamped constant stiffness rod was calculated, 
then the homotopy method was used to determine the eigenvalues and mode shapes corresponding to graded 
rods with damping.

It was demonstrated that the method works for combined viscous and elastic boundary conditions for different 
types of rod stiffness distributions and a wide range of damping parameters. We carried out the computations 
for homogeneous rod and rods with exponentially and linearly changing stiffness. We showed the rightmost six 
eigenvalues and the mode shape associated with the rightmost eigenvalue for the homogeneous rod and the rod 
with exponentially changing stiffness.

An energy measure, the mean scaled energy density distribution was derived to compare the energy density 
distribution of different functionally graded elastic rods during the longitudinal vibration of the system. Besides 
the constant stiffness rod, two examples were provided: one with linearly changing stiffness and another with 
exponentially changing stiffness. It was shown that below the optimal damping the increase of the damping at 
one end generally makes the rod accumulate more energy close to that end. The only exception was by the most 
extreme case, the exponential stiffness distribution. In this case, we could not force the system to increase the 
relative energy content close to the stiff end.

Above the optimal damping, where the decay rate of the vibration is the highest, the energy distributions 
become very similar to each other, further increasing the damping does not lead to any significant changes. It 
was also found that there is usually an inflection point in the energy distribution of the inhomogeneous rods, 
while there is not any in that of the homogeneous rod that has constant stiffness. These results suggest that the 
energy distribution of functionally graded rods can be manipulated with the tuning of the damping parameters.

Figure 11.  Mean scaled energy density distributions ē(x,ω1) for k(x) = e2x and (a) d0 = 0.25− 1 , d1 = 0 , (b) 
d0 = 0.25− 1 , d1 = 0.5 , (c) d0 = 0 , d1 = 0.25− 1 , (d) d0 = 0 , d1 = 1.25− 2.
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In future work, the rod model will be extended to include nonlinear boundary conditions and nonlinear 
attachments (e.g., nonlinear energy sinks at certain rod positions). We want to study the targeted energy transfer 
between the inhomogeneous rod and the nonlinear attachment to achieve the fastest decay rate in the system. We 
also want to investigate the effect of external forcing and how it affects the energy distribution of the system. We 
also intend to extend the results by investigating the behavior of the model for further combinations of gradings 
and damping parameters.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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d1 = 0 , (b) d0 = 0.25− 1 , d1 = 0.5 , (c) d0 = 0 , d1 = 0.25− 1 , (d) d0 = 0 , d1 = 1.25− 2.



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2846  | https://doi.org/10.1038/s41598-024-52860-4

www.nature.com/scientificreports/

 10. Gendelman, O., Manevitch, L., Vakakis, A. F. & M’Closkey, R. Energy pumping in nonlinear mechanical oscillators: Part I-dynamics 
of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001).

 11. Vakakis, A. F. & Gendelman, O. Energy pumping in nonlinear mechanical oscillators: Part II-resonance capture. J. Appl. Mech. 
68(1), 42–48 (2001).

 12. Kalmár-Nagy, T. & Bak, B. D. An intriguing analogy of Kolmogorov’s scaling law in a hierarchical mass-spring-damper model. 
Nonlinear Dyn. 95(4), 3193–3203 (2019).

 13. Rosenau, P. Dynamics of nonlinear mass-spring chains near the continuum limit. Phys. Lett. A 118(5), 222–227 (1986).
 14. Rosenau, P. Dynamics of dense lattices. Phys. Rev. B 36(11), 5868 (1987).
 15. Rosenau, P. Dynamics of dense discrete systems: High order effects. Prog. Theor. Phys. 79(5), 1028–1042 (1988).
 16. Rosenau, P. Hamiltonian dynamics of dense chains and lattices: Or how to correct the continuum. Phys. Lett. A 311(1), 39–52 

(2003).
 17. Andrianov, I. V. & Awrejcewicz, J. Continuous models for 1D discrete media valid for higher-frequency domain. Phys. Lett. A 

345(1–3), 55–62 (2005).
 18. Balaji, N. N., Brake, M. R. W. & Leamy, M. J. Wave-based analysis of jointed elastic bars: Nonlinear periodic response. Nonlinear 

Dyn., 1–27 (2022).
 19. Balaji, N. N., Brake, M. R. W. & Leamy, M. J. Wave-based analysis of jointed elastic bars: Stability of nonlinear solutions. Nonlinear 

Dyn. 111(3), 1971–1986 (2023).
 20. Santo, D. R., Mencik, J. M. & Goncalves, P. J. P. On the multi-mode behavior of vibrating rods attached to nonlinear springs. 

Nonlinear Dyn. 100, 2187–2203 (2020).
 21. Zhou, Y., Lin, Q., Hong, J. & Yang, N. Optimal design of functionally graded material for stress concentration reduction. Structures 

29, 561–569 (2021).
 22. Shi, Z., Yao, X., Pang, F. & Wang, Q. An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-

reinforced composite beams with arbitrary boundary conditions. Sci. Rep. 7(1), 12909 (2017).
 23. Zhang, Y. F. & Liu, J. T. A widespread internal resonance phenomenon in functionally graded material plates with longitudinal 

speed. Sci. Rep. 9(1), 1907 (2019).
 24. Ghamkhar, M., Naeem, M. N., Imran, M., Kamran, M. & Soutis, C. Vibration frequency analysis of three-layered cylinder shaped 

shell with effect of FGM central layer thickness. Sci. Rep. 9(1), 1566 (2019).
 25. Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A. & Ford, R. G. Functionally Graded Materials: Design, Processing and 

Applications, vol. 5. (Springer Science & Business Media, 2013).
 26. Pompe, W. et al. Functionally graded materials for biomedical applications. Mater. Sci. Eng. A 362(1–2), 40–60 (2003).
 27. Awrejcewicz, J., Krysko, A. V., Pavlov, S. P., Zhigalov, M. V. & Krysko, V. A. Chaotic dynamics of size dependent Timoshenko beams 

with functionally graded properties along their thickness. Mech. Syst. Signal Process. 93, 415–430 (2017).
 28. Brailovski, V., Facchinello, Y., Brummund, M., Petit, Y. & Mac-Thiong, J. M. Ti–Ni rods with variable stiffness for spine stabiliza-

tion: Manufacture and biomechanical evaluation. Shape Memory Superelasticity 2(1), 3–11 (2016).
 29. Senthil, T. S., Babu, S. R. & Puviyarasan, M. Mechanical, microstructural and fracture studies on inconel 825-ss316L functionally 

graded wall fabricated by wire arc additive manufacturing. Sci. Rep. 13(1), 5321 (2023).
 30. Amrein, W. O., Hinz, A. M. & Pearson, D. B. Sturm-Liouville Theory: Past and Present. (Springer Science & Business Media, 2005).
 31. Herman, R. L. A second course in ordinary differential equations of dynamical systems and boundary value problems (2008)
 32. Hull, A. J. A closed form solution of a longitudinal bar with a viscous boundary condition. J. Sound Vib. 169(1), 19–28 (1994).
 33. Hull, A. J. A modal solution for finite length rods with non-uniform area. J. Acoust. Soc. Am. 138(3), 1941–1941 (2015).
 34. Udwadia, F. E. On the longitudinal vibrations of a bar with viscous boundaries: Super-stability, super-instability, and loss of damp-

ing. Int. J. Eng. Sci. 50(1), 79–100 (2012).
 35. Xu, D., Du, J. & Liu, Z. An accurate and efficient series solution for the longitudinal vibration of elastically restrained rods with 

arbitrarily variable cross sections. J. Low Freq. Noise Vib. Active Control 38(2), 403–414 (2019).
 36. Surya, S., Vyasarayani, C. P. & Kalmár-Nagy, T. Homotopy continuation for characteristic roots of delay differential equations 

using the Lambert W function. J. Vib. Control 24(17), 3944–3951 (2018).
 37. He, J. H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3–4), 257–262 (1999).
 38. He, J. H. Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350(1–2), 87–88 (2006).
 39. Chun, C. & Sakthivel, R. Homotopy perturbation technique for solving two-point boundary value problems—Comparison with 

other methods. Comput. Phys. Commun. 181(6), 1021–1024 (2010).
 40. Adomian, G. & Rach, R. Modified decomposition solution of linear and nonlinear boundary-value problems. Nonlinear Anal. 

Theory Methods Appl. 23(5), 615–619 (1994).
 41. He, J. H. Asymptotology by homotopy perturbation method. Appl. Math. Comput. 156(3), 591–596 (2004).
 42. Ha, S. N. A nonlinear shooting method for two-point boundary value problems. Comput. Math. Appl. 42(10–11), 1411–1420 

(2001).
 43. Saadatmandi, A. S., Dehghan, M. & Eftekhari, A. Application of He’s homotopy perturbation method for non-linear system of 

second-order boundary value problems. Nonlinear Anal. Real World Appl. 10(3), 1912–1922 (2009).
 44. Neamaty, A. & Darzi, R. Comparison between the variational iteration method and the homotopy perturbation method for the 

Sturm-Liouville differential equation. Bound. Value Probl. 1–14, 2010 (2010).
 45. Rahimian, S. K., Jalali, F., Seader, J. D. & White, R. E. A new homotopy for seeking all real roots of a nonlinear equation. Comput. 

Chem. Eng. 35(3), 403–411 (2011).
 46. Andrianov, I., Awrejcewicz, J., Danishevs’kyy, V. & Ivankov, A. Asymptotic Methods in the Theory of Plates with Mixed Boundary 

Conditions. (John Wiley & Sons, 2014).
 47. Parand, K., Ghaderi, A., Delkhosh, M. & Yousefi, H. A new approach for solving nonlinear Thomas-Fermi equation based on 

fractional order of rational Bessel functions. Electron. J. Differ. Equ. 2016(331), 1–18 (2016).
 48. Srivastav, V. K., Thota, S. & Kumar, M. A new trigonometrical algorithm for computing real root of non-linear transcendental 

equations. Int. J. Appl. Comput. Math. 5(2), 1–8 (2019).
 49. Sohail, M., & Nazir, U. Numerical computation of thermal and mass transportation in williamson material utilizing modified 

fluxes via optimal homotopy analysis procedure. Waves Random Complex Media, 1–22 (2023).
 50. Meijer, H. G. E. & Kalmár-Nagy, T. The Hopf-van der Pol system: Failure of a homotopy method. Differ. Equ. Dyn. Syst. 20(3), 

323–328 (2012).
 51. Rao, S. S. Vibration of Continuous Systems. (John Wiley & Sons, 2007).
 52. Udwadia, F. E. Boundary control, quiet boundaries, super-stability and super-instability. Appl. Math. Comput. 164(2), 327–349 

(2005).
 53. Li, F. M. & Wang, Y. Z. Elastic wave propagation and localization in band gap materials: A review. Sci. China Phys. Mech. Astron. 

55, 1734–1746 (2012).
 54. Casalotti, A., El-Borgi, S. & Lacarbonara, W. Metamaterial beam with embedded nonlinear vibration absorbers. Int. J. Non-Linear 

Mech. 98, 32–42 (2018).
 55. Cohen, D. S. Separation of variables and alternative representations for non-selfadjoint boundary value problems. Commun. Pure 

Appl. Math. 17(1), 1–22 (1964).



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2846  | https://doi.org/10.1038/s41598-024-52860-4

www.nature.com/scientificreports/

 56. Cross, J. A. Spectral abscissa optimization using polynomial stability conditions. PhD Thesis, (University of Washington, Seattle, 
2010).

Acknowledgements
The research reported in this paper is part of project no. TKP-6-6/PALY-2021. Project no. TKP-6-6/PALY-2021 
has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from 
the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.
This work has been supported by the Hungarian National Research, Development and Innovation Fund under 
contract NKFI K 137726. The research reported in this paper and carried out at BME has been supported by 
the ÚNKP-22-3 New National Excellence Program of the Ministry for Culture and Innovation from the source 
of the National Research, Development and Innovation Fund. The authors acknowledge the help of Mr. Ádám 
Zsiros with the initial, as well as the reviewers for their useful comments.

Author contributions
All authors contributed to the research reported in this manuscript. T.K.-N. worked out the basic idea and advised 
the research as the prime investigator. J.L. developed the methodology and worked on the derivations of “The 
functionally graded elastic rod model”–“The constant stiffness rod and graded rods” sections. B.D.B. developed 
the methodology and worked on the derivations of “Optimal damping”–“Energy density distribution of the 
damped system with varying stiffness” sections. J.L. and B.D.B. prepared the figures. All authors contributed to 
the writing of the main manuscript text. All authors reviewed the manuscript. All authors contributed to the 
revision of the manuscript.

Funding
Open access funding provided by Budapest University of Technology and Economics.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 52860-4.

Correspondence and requests for materials should be addressed to J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-52860-4
https://doi.org/10.1038/s41598-024-52860-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Vibrations and energy distribution in inhomogeneous rods with elastic and viscous boundary conditions
	The functionally graded elastic rod model
	Characteristic equation, mode shapes, particular solution
	Initial conditions and the particular solution

	The constant stiffness rod and graded rods
	Solving the characteristic equation for the constant stiffness rod
	Calculating the analytical solution for the constant stiffness rod
	Rod with exponential stiffness distribution

	Optimal damping
	Energy and its distribution in the rod
	Energy density distribution of the damped system with varying stiffness
	Conclusions
	References
	Acknowledgements


