
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3282  | https://doi.org/10.1038/s41598-024-52852-4

www.nature.com/scientificreports

Temporal variations in the gut 
microbial diversity in response 
to high‑fat diet and exercise
Saba Imdad 1,2, Byunghun So 1, Junho Jang 1, Jinhan Park 1, Sam‑Jun Lee 3, Jin‑Hee Kim 2* & 
Chounghun Kang 1,4*

High-fat diet-induced obesity is a pandemic caused by an inactive lifestyle and increased consumption 
of Western diets and is a major risk factor for diabetes and cardiovascular diseases. In contrast, 
exercise can positively influence gut microbial diversity and is linked to a decreased inflammatory 
state. To understand the gut microbial variations associated with exercise and high-fat diet over time, 
we conducted a longitudinal study to examine the effect of covariates on gut microbial diversity and 
composition. Young mice were divided into four groups: Chow-diet (CHD), high-fat diet (HFD), high-fat 
diet + exercise (HFX), and exercise only (EXE) and underwent experimental intervention for 12 weeks. 
Fecal samples at week 0 and 12 were collected for DNA extraction, followed by 16S library preparation 
and sequencing. Data were analyzed using QIIME 2, R and MicrobiomeAnalyst. The Bacteroidetes-to-
Firmicutes ratio decreased fivefold in the HFD and HFX groups compared to that in the CHD and EXE 
groups and increased in the EXE group over time. Alpha diversity was significantly increased in the 
EXE group longitudinally (p < 0.02), whereas diversity (Shannon, Faith’s PD, and Fisher) and richness 
(ACE) was significantly reduced in the HFD (p < 0.005) and HFX (p < 0.03) groups over time. Beta 
diversity, based on the Jaccard, Bray–Curtis, and unweighted UniFrac distance metrics, was significant 
among the groups. Prevotella, Paraprevotella, Candidatus arthromitus, Lactobacillus salivarius, 
L. reuteri, Roseburia, Bacteroides uniformis, Sutterella, and Corynebacterium were differentially 
abundant in the chow-diet groups (CHD and EXE). Exercise significantly reduced the proportion of 
taxa characteristic of a high-fat diet, including Butyricimonas, Ruminococcus gnavus, and Mucispirillum 
schaedleri. Diet, age, and exercise significantly contributed to explaining the bacterial community 
structure and diversity in the gut microbiota. Modulating the gut microbiota and maintaining its 
stability can lead to targeted microbiome therapies to manage chronic and recurrent diseases and 
infections.

Obesity is a complex multifactorial disease attributed to excessive adiposity, with 60% of adults and nearly one 
third of children affected by obesity and overweight issues. Overweight and obesity are the fourth most common 
risk factors for multiple noncommunicable diseases (NCDs), after elevated blood pressure, diet-related risks, and 
tobacco use1. Moreover, with reference to recent events, several meta-analyses and reports have documented an 
increased risk of COVID-19 morbidity and mortality linked to obesity and body mass index (BMI)2–5. NCDs, 
such as cardiovascular diseases, type 2 diabetes (T2D), hepatic steatosis, cancer6, and chronic respiratory diseases, 
are categorized as chronic diseases caused by a combination of genetic, environmental, and lifestyle factors7. The 
adverse effects of the therapies for the management of NCDs or chronic diseases associated with high-fat diet 
and obesity have refocused research into bacteriotherapy or microbiome therapy8.

Human beings consist of trillions of symbiotic microbes and bacteria, whose collective genomes make up 
the microbiome9. The microbiome has coevolved with the human host and shapes the physiological well-being 
of the host by actively impacting various host functions, such as energy metabolism, training and regulating the 
immune system, helping in digestion, producing vitamins and other essential compounds, including antimi-
crobials, and protecting against harmful pathogens10. The bulk bacterial metabolites and complex bacteria–host 
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interactions form an active and diverse microbial ecosystem in the gut that plays a crucial role in maintain-
ing health and preventing diseases11. The gut microbiota, with a repertoire of bacteria and other microbes, is 
dynamic and resilient to variations through influencing factors that are in constant flow. However, apart from 
natural fluctuations, genetics12, intestinal mucosa13, the immune system14, native microbiota, physical activity or 
exercise15, diet16, and exposure to antibiotics and other medications are the major factors influencing homeostasis 
and gut dysbiosis17–19. Deviations in the gut microbiota can lead to negative health impacts and an increased 
risk of NCDs in general as well as gastrointestinal diseases, including inflammatory bowel disease (IBD)20 and 
celiac disease21, in particular.

The gut microbiome has been extensively studied and has been associated with obesity and obesity-related 
disorders22–27. Previous reports have shown that a high-fat diet intake can impair the gut microbial commu-
nity, leading to systemic inflammation and insulin resistance, thus linking obesity to insulin resistance28–30. In 
contrast, exercise is associated with the physiological well-being of humans by influencing microbial diversity, 
modulating mucosal immunity, and improving barrier function, potentially contributing to weight reduction, 
improved gut health, and a reduced risk of metabolic diseases19,31–33. Exercise is known to influence whole-body 
insulin sensitivity, which is mediated by enhanced insulin-dependent and independent glucose uptake by skel-
etal muscles34. Regular exercise has the potential to mitigate the detrimental effects of a high-fat diet and aid in 
weight management. A recent systematic review showed that one hour of aerobic training and physical activity 
(at 60% maximum heart rate [HRmax]) influenced beta diversity in athletes, whereas the abundance of beneficial 
microbial metabolites, short-chain fatty acids (SCFAs), was markedly influenced by increased physical activity 
in nonathletes, highlighting a more diverse intestinal microbiota in athletes35.

Multiple studies have elaborated on the effect of a range of factors, including high-fat diet and exercise, on the 
composition of the gut microbiome; however, most studies are cross-sectional in nature, and the comprehension 
of the intervention dynamics associated with the gut microbiota is limited. Here, we performed a longitudinal 
analysis to account for temporal changes in the composition, stability, and diversity of the gut microbiota over 
a period of 12 weeks, with high-fat diet (chow control diet) and treadmill exercise (sedentary control) interven-
tions in a diet-induced mouse model of obesity.

Materials and methods
Animal care
Four-week-old C57BL/6 J female mice were housed in sterile cages at a temperature of 22 ± 2 °C and relative 
humidity of 50 ± 10%, under a 12 h light–dark cycle, with ad libitum access to food and water. Animal experi-
ments were authorized by the Ethics Committee of Inha University (INHA 220,203–811, 2022–02-03) and were 
conducted in accordance with the relevant regulations. The reported methods and outcomes comply with the 
ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

Diet intervention and exercise training
For the 12-week longitudinal study, 20 mice were randomly assigned to four intervention groups. The sedentary 
groups were fed either control chow diet (CHD; fat 4%) (rodent NIH-31 open formula auto diet; Zeigler Feed) or 
high-fat diet (HFD; fat 60%) (D12492; Research Diets). The exercise groups performed treadmill running with 
intake of either chow diet (EXE) or high fat-diet (HFX) for 5 days a week. Prior to starting the exercise experi-
ment, the mice were acclimatized to the treadmill exercise for one week. The EXE and HFX groups underwent 
daily exercise training for 1 h in a treadmill chamber, at a 5% incline and an intensity starting at 4 m/min. Exercise 
intensity was increased to 15 m/min for the first half of the training period and to 20 m/min for the second half, 
followed by a cool-down period (5 m/min for 5 min). The weight of the mice was recorded weekly until the final 
week. After completion of the experiment, the mice were euthanized by isoflurane overdose in random order.

Sample collection and DNA extraction
Mice feces were collected by restraining the animals, whereby they were allowed to defecate individually in 
sterile containers. The fecal pellets were then transferred under sterile conditions in microcentrifuge tubes, 
snap frozen, and stored at − 80 °C, until further processing. Fecal samples were collected at two time points: at 
the beginning (week 0) and at the end of the experiment (week 12). The fecal samples were thawed at 4 °C and a 
sample of ~ 150 mg was homogenized in a Fast-Prep 24 (MP Biomedicals, Irvine, CA, USA) bead homogenizer 
for DNA extraction using the SPINeasy DNA Kit for Feces (MP Biomedicals), according to the manufacturer’s 
protocol. The extracted DNA was electrophoresed on a 1% agarose gel and visualized for quality using the Chemi-
Doc imaging system (Bio-Rad, Hercules, CA, USA). DNA quality was further examined using a SpectraMax 
iD3 spectrophotometer (Molecular Devices, San Jose, CA, USA) and quantified using Qubit 4 (Thermo Fisher 
Scientific, Waltham, MA, USA).

16S library preparation
A two-step PCR amplification protocol was used for DNA amplification. Briefly, in the first PCR run, the V4 
region of the bacterial 16S rRNA gene was amplified using the 515F and 806R primers (F-primer: 5′-TCG TCG 
GCA GCG TCA GAT GTG TAT AAG AGA CAG GTG CCA GCM GCC GCG GTA A-3′ and R-primer: 5′- 
GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G-3′) and the 2X KAPA Hifi HotStart ReadyMix 
(KAPA Biosystems, UK). The second PCR was run to attach dual indices and Illumina sequencing adapters, 
and libraries were generated using a Nextera XT Index Kit v2 (Illumina, San Diego, CA, USA). PCR products 
were cleaned using AMPure XP beads (Beckman Coulter, USA) after each PCR amplification. PCR thermal 
cycling conditions were as described in our previous publication36. Equal concentrations of purified amplicons 
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were pooled, and paired-end sequencing was carried out on the iSeq 100 Illumina platform for 150 cycles at a 
targeted depth of 1.2 Gb.

Data and statistical analyses
The paired-end raw reads were imported into QIIME 2 v2022.0237. Quality plots were produced using FastQC 
and inspected for quality control parameters, including trimming of reads, adapter sequences, and PhiX con-
tamination. Cutadapt v4.038 was used to remove the primers, and the reads were quality-filtered with a minimum 
median quality (Phred) score of 20. Since the joining of paired-end reads did not yield sufficient merged reads, 
the analysis was carried out with forward reads only. The reads were denoised using the Deblur plugin and 
trimmed at the 3′ end (19 bp) to remove low-quality bases, and the abundances and representative sequences 
were extracted. The phylogenetic tree was constructed using the fragment-insertion method, where the sequence 
variants were aligned using SEPP (SATé-enabled Phylogenetic Placement)39, against the Greengenes 13.8 refer-
ence database40. The same reference database was used to extract the 16S rRNA V4 region sequences to train the 
Naive Bayes classifier41 for taxonomic classification of representative sequences. Samples with fewer than 7570 
sequences were removed during rarefaction for downstream analysis. Alpha diversity indices, including Shannon, 
Pielou’s evenness, and Faith’s phylogenetic diversity (PD) were estimated via QIIME 2. Moreover, the qiime2 
output files were imported into R v4.2.2 using the qiime2R package v0.99.6 and microbial richness, including 
the abundance-based coverage estimator (ACE), Fisher, and Inverse Simpson indices, was estimated using the R 
phyloseq package v1.42.0. Šidák’s test and the improved Benjamini–Hochberg procedure for false discovery rate 
(FDR) correction were employed to calculate the significance of alpha diversity metrics across multiple groups. 
The beta diversity of the microbial communities was assessed using the Jaccard, Bray–Curtis, unweighted, and 
weighted UniFrac distance metrics, and principal coordinate analysis (PCoA) plots were generated to segregate 
the samples and determine community structure. The PCoA data were subjected to pairwise permutational 
multivariate analysis of variance (PERMANOVA) by comparing the true F statistics to the distribution of F 
statistics randomly permuted (default = 999) from the data. The PERMANOVA results were confirmed using 
PERMDISP. The significant covariates of microbial diversity were examined using ADONIS. The Bacteroidetes/
Firmicutes (B/F) ratio was evaluated, and the important features for predicting sample characteristics were 
identified and generated as a heatmap by utilizing the random forest classifier, a machine-learning method42. 
Linear discriminant analysis (LDA) of effect size (LEfSe), multiple linear regression, phylogenetic tree analysis, 
and clustering heatmap analyses were performed on the web-based platform MicrobiomeAnalyst43,44, using 
the marker data profiling module. A similar rarefaction depth was maintained, resulting in the removal of one 
sample from the 12-week time point. For this analysis, data were filtered for low abundant features, with a mini-
mum of 20% samples containing at least four counts. Additionally, 20% of the low-variance features, measured 
using the interquartile range, were removed. The data were normalized using total sum scaling (TSS). The LEfSe 
algorithm45 was employed to detect biomarker features/taxa with significant differential abundance and their 
effect size among different variables by employing the Kruskal–Wallis rank sum test. A multiple linear regres-
sion model with covariate adjustment was utilized to determine the association between microbial taxa and the 
exercise intervention group. Two-way ANOVA and Tukey’s post-hoc tests were used for calculation of statistical 
significance, which was set to adjusted p-value < 0.05, and error bars represented mean ± SEM.

Results
The 16S metagenomics analysis of mouse fecal samples revealed a dataset of filtered quality reads generated after 
sequencing the V4 region of 40 DNA samples from the pre-intervention (week 0) and final (week 12) time points. 
The body weights of mice were monitored to support the intervention based on diet and activity. The analysis 
of body weight changes showed that the HFD group gained significant weight at week 7 compared to the CHD 
group (p = 0.008), and the weight of HFD mice increased consistently (p < 0.008) till the final time point at week 
12 (p = 0.006), compared to the CHD group (Fig. S1). Moreover, the EXE group gained significantly less weight 
than the HFD (p = 0.01) and HFX (p = 0.04) groups at the final time point (Fig. S1).

Bacterial richness and diversity profiling
Compared to the other groups, the EXE group had the lowest richness and diversity (p < 0.001), while the CHD, 
HFD, and HFX groups showed no difference pre-intervention, as estimated by Pielou’s evenness and Shannon 
index. ACE metric estimation during pre-intervention revealed the lowest richness in EXE group, while the 
other groups displayed a decreasing trend in microbial richness in the order of CHD > HFD > HFX (p-value 
range = 0.048 to < 0.0001) (Fig. 1). The alpha diversity trend showed significantly lower diversity in the EXE 
group than in the CHD (p =  < 0.001), HFD (p =  < 0.0001), and HFX (p < 0.02) groups, as measured by the Inverse 
Simpson and Fisher metrics, during pre-intervention. Moreover, the Fisher metric showed decreased richness in 
HFX compared to CHD (p = 0.0016). Phylogenetic diversity (Faith’s PD), too, was the lowest in the EXE group 
(p = 0.01), and it was significantly lower than the HFX group (p = 0.0054), as well. In addition, the CHD and HFD 
groups showed similar diversities in phylogenetic terms, which were significantly higher than those in the HFX 
and EXE (p < 0.005) samples when examined pre-intervention (Fig. 1).

At week 12, the diversity and richness of the chow-fed groups (CHD and EXE) were significantly higher than 
those of the high-fat diet-fed groups (HFD and HFX) (p < 0.005) based on all alpha diversity metrics except the 
Inverse Simpson index (Fig. 1). The EXE group had higher diversity than HFD (p = 0.049) and HFX (p = 0.027), as 
evaluated by the Inverse Simpson index, after 12 weeks of intervention. No differences were noted after 12 weeks 
of intervention in the evenness of the groups, measured using Pielou’s index. In this analysis, the alpha diversity 
in the gut microbiota of mice was not greatly influenced by 12 weeks of exercise among the intervention groups, 
especially in the high-fat diet-fed groups (HFD and HFX), as displayed in Fig. 1.
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The longitudinal analysis comparing the data from week 12 and week 0 showed that the alpha diversity 
remained unchanged in the CHD group; however, it increased significantly in the EXE group over the period 
of 12 weeks (Shannon, p < 0.001; Faith’s PD, p = 0.008; ACE, p = 0.009; Inverse Simpson, p = 0.0001; and Fisher, 
p = 0.002). Interestingly, compared to week 0, 12 weeks of exercise also significantly increased the group’s even-
ness, estimated by Pielou’s metric (EXE, p < 0.001), whereas no changes in evenness were observed among the 
other groups (Fig. 1). Moreover, diversity (Shannon, Faith’s PD, and Fisher indices) and richness (ACE) were 
significantly reduced in the HFD (p < 0.005) and HFX (p < 0.03) groups over time (12 weeks). However, the 
Inverse Simpson metric showed nonsignificant diversity alterations in the HFX group over time (Fig. 1).

Gut bacterial community structure
Beta-diversity analysis was performed to determine the distances between microbial samples and compare the 
effect of the intervention on the gut microbial communities. The Jaccard index (a qualitative, nonphylogenetic 
metric) showed that the experimental groups did not share the exact same microbial taxa and were clustered 
according to the intervention categories (p < 0.02) at week 0 and 12. The bacterial taxa were significantly different 
(p < 0.02) among groups, and the increase in the distance among the different intervention groups at the 12-week 
time point, along axes 1 and 2, showed significant variation in the microbial communities (Fig. 2).

Similarly, examination of the intervention groups, based on the number of microbes and their abundance, 
showed that the groups did not share the same number of bacteria at the same abundances, as depicted by the 

Figure 1.   Alpha-diversity boxplots illustrating species richness (ACE) and diversity (Shannon, Faith’s 
phylogenetic diversity [PD], Fisher, Pielou’s Evenness and Inverse Simpson). Two-way ANOVA followed by the 
2-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli test and Šidák’s test were performed for 
mean comparison and multiple comparisons across groups. Boxes indicate interquartile ranges, lines denote 
medians, and whiskers demarcate the ranges. P-values are false discovery rate (FDR)-corrected. Longitudinal 
significance among intervention groups is marked.
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Bray–Curtis dissimilarity metric shown in Fig. 2. The CHD, HFD, HFX, and EXE groups were separately clus-
tered (p < 0.02) over the two time points along the axes, where axis 1 explained the maximum variance (~ 40%) 
in bacterial communities among the intervention groups (Fig. 2). The dissimilarity between the HFD and HFX 
groups was insignificant after 12-weeks of intervention, demonstrating a stronger effect of diet, compared to 
exercise, in the observed gut microbial community structure. Moreover, the phylogenetic relationship between 
bacterial taxa in the intervention groups was assessed using PCoA based on the unweighted UniFrac distance 
metric. Significant differences were revealed among groups (p < 0.02) over the two time points (Fig. 2). Overall, 
the variability in the beta diversity was higher in the groups initially than after 12 weeks of intervention, and the 
dissimilarities between the groups were evident.

The longitudinal analysis of the intervention groups generated volatility plots, displaying a divergent varia-
tion pattern along the principal coordinate axis 1, which was responsible for the maximum variability among 
the groups. The plots depicted the change in mean magnitude in each group based on different distance metrics, 
where the intervention groups deviated from each other longitudinally primarily showing an influence of diet 
(Fig. S2).

Adonis statistical analysis was performed to test the influence of multiple test variables on beta diversities in 
the gut microbiota of the mice. Diet was the strongest factor influencing the unweighted UniFrac distances, by 
explaining 21.3% (p = 0.001) of the variance, as shown in Table 1. After adjusting for diet in the Adonis model, 
mouse age (5 and 17 weeks) and exercise retained a statistically significant effect by explaining 11.8% (p = 0.001) 
and 4.3% (p = 0.017) of the overall diversity, respectively (Table 1). Similar results were obtained using the Adonis 
model for the Jaccard distance metric, where diet (R2 = 20%, p = 0.001), age (R2 = 11.4%, p = 0.001), and exercise 
(R2 = 3.6%, p = 0.046) were significantly associated with the variance (Table S1). Additionally, diet and age retained 
a significant influence by explaining 33.5% and 12.5% (p = 0.001) of the beta diversity in the mouse gut, respec-
tively, whereas exercise showed no effect (p = 0.057, ns), based on the Bray–Curtis distance metric (Table S2).

Figure 2.   PCoA of the intervention groups using the Jaccard, Bray–Curtis, and unweighted UniFrac distance 
metrics based on feature level. The data points represent individual samples (triangles for 0-week and circles 
for 12-week). Values in parentheses show the percentage of total variance explained by each axis. Statistical 
significance was determined using PERMANOVA and confirmed using PERMDISP; Jaccard (p = 0.001), Bray–
Curtis (p = 0.002), and unweighted UniFrac (p = 0.001).
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Gut bacterial compositional analysis
Among the nine phyla identified in the mouse gut microbiota, the two dominant phyla were Bacteroidetes 
and Firmicutes, which represent gram-negative and gram-positive bacterial populations, respectively (Fig. 3A). 
The relative abundance of Bacteroidetes increased significantly from the initial 38%, to 57%, after 12 weeks of 
intervention in CHD (p < 0.0001). Likewise, in the EXE group, the proportion of Bacteroidetes after 12 weeks 
increased (~ 45%) compared to week 0 (35%) (p < 0.0001), as shown in Fig. 3A.

The relative percentage of the members of the Firmicutes phylum significantly increased in the high-fat diet 
fed group (HFD: ~ 60% and HFX: 63.6%, p < 0.0001) after 12 weeks compared to week 0 of the intervention 
(~ 50%), and the proportions of this phylum in the high-fat diet fed groups also increased compared to those in 
the CHD and EXE groups at week 12 (34.5% and 49%, respectively, p < 0.0001). In contrast, the relative abundance 
of Firmicutes significantly decreased in CHD (p < 0.0001) and EXE (p = 0.0001) over time. The relative propor-
tion of the Proteobacteria phylum was significantly higher in HFD (p = 0.0005) and HFX (p < 0.0001) compared 
to CHD initially. A similar trend was observed for HFD (p = 0.002) and HFX (p < 0.0001) compared to EXE at 
week 0. The expansion of Proteobacteria in the HFD and HFX groups was amplified at week 12 compared to 
that in the CHD and EXE groups (p < 0.0001) (Fig. 3A). However, the difference in the blooming of Proteobac-
teria in the high-fat diet-fed groups was not significant between weeks 0 and 12. In addition, no variability was 
observed, either among groups or temporally, in the taxonomic composition of other reported phyla, including 
Actinobacteria, Deferribacteres, Verrucomicrobia, TM7, Cyanobacteria, and Tenericutes.

The B/F ratio was similar among the groups at week 0 and no difference was observed between the HFD 
and HFX groups after 12 weeks of intervention (Fig. 3B). However, this ratio was significantly different between 
CHD and EXE at the 12-week time point (p < 0.0002). Additionally, it significantly decreased in the high-fat 
diet-fed groups (HFD and HFX) compared to CHD (p < 0.001) and EXE (p < 0.0003), at the 12-week time point 
(Fig. 3B). Over the course of 12 weeks, the B/F ratio significantly increased in the CHD (p < 0.0001) and EXE 
(p = 0.041) groups, whereas it decreased in the HFX (p = 0.023) and HFD (p = 0.057, ns) groups compared to that 
at the initial time point (Fig. 3B).

Phylogenetic tree analysis was used to assess the evolutionary relationships among taxonomic groups at 
the family level. Members of Odoribacteraceae, a family of the phylum Bacteroidetes, were present in reduced 
proportions in the EXE group at week 12 compared to initial time point (Fig. S3). The relative abundance of 

Table 1.   Adonis multivariate analysis of the unweighted UniFrac distance metric.

Factors Df Sums of squares Mean squares F. Model R2 p-value

Exercise 1 0.209 0.209 2.429 0.043 0.017

Age 1 0.566 0.566 6.583 0.118 0.001

Diet 1 1.024 1.024 11.911 0.213 0.001

Residuals 35 3.010 0.086 – 0.626 –

Total 38 4.890 – – 1.000 –

Figure 3.   Taxonomic profiling of the gut microbiota of mice among experimental groups over time. (A) 
Phylum level composition, and (B) Bacteroidetes/Firmicutes ratio. Two-way ANOVA and Tukey’s multiple 
comparison tests (p: **** < 0.0001 and *** < 0.0005).
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the closely placed Porphyromonadaceae family bloomed in the EXE samples at week 12 compared to week 0. 
Moreover, in the HFD group, the proportions of Verrucomicrobiaceae and Prevotellaceae shrank at the final time 
point compared to the initial time point (Fig. S3).

Gut bacterial temporal variations at the genus/species level
Relative variations at the genus/species level were studied and elaborated by comparing group differences at week 
0 (initial period), week 12 (final period), and over time (between weeks 0 and 12). Approximately 40–60% of the 
bacteria remained unclassified at the genus level.

The Oscillospira genus (Firmicutes, Ruminococcaceae) was significantly higher (p < 0.0001) in the groups fed 
high-fat diet (HFD and HFX) than in the chow-fed groups (CHD and EXE) at both the initial (week 0) and final 
time points (week 12). Moreover, the relative proportion of Oscillospira was initially higher in CHD (p = 0.006) 
than in EXE, however, the difference in the relative proportion of Oscillospira between the CHD and EXE groups 
became insignificant after 12 weeks of intervention (Fig. 4A,B). Longitudinal analysis showed no difference in 
the relative percentage of Oscillospira between the groups over the period of 12 weeks, except for HFX, which 
showed a relatively reduced proportion (p =  < 0.0001) after 12 weeks. The relative abundance of Lactobacillus 
salivarius (Firmicutes, Lactobacillaceae) in the CHD and EXE groups (p < 0.0001) was higher initially than in 
the final time point of analysis. Moreover, the EXE group had higher relative proportions of the gram-positive 
bacterium than CHD at the 0-week time point, but the difference between the two groups became negligible 
after 12 weeks. No difference was found between the HFD and HFX groups at the initial time point and between 
the CHD and EXE groups at the final time point. However, the L. salivarius abundance significantly increased 
in the HFX group over time (p = 0.0002).

Another Lactobacillus sp. showed a similar pattern of relative abundance; it was initially higher in the CHD 
(p < 0.002) and EXE (p < 0.0001) groups than in the HFD and HFX groups, whereas, at the final time point, 
abundance in the CHD group became similar to the HFD and HFX groups. However, the EXE group retained a 
significantly higher relative abundance than the groups fed the high-fat diet (p < 0.0001), at the final time point. 
The longitudinal analysis for Lactobacillus sp. revealed a similar reduction pattern to that of L. salivarius in the 

Figure 4.   Relative abundance of microbiota at the genus/species level in the guts of mice among the 
intervention groups over time, comparing the initial (week 0) and final time points (week 12). (A) Percent 
relative abundance. Two-way ANOVA and Tukey’s multiple comparison tests were used to determine 
significance (p < 0.05). (B) Log-transformed counts of differentially abundant features estimated using the LEfSe 
algorithm.
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CHD (p = 0.003) and EXE (p < 0.0001) groups over time. In contrast, Lactobacillus sp. remained significantly 
abundant in EXE compared to CHD (p < 0.0001) at the final time point (Fig. 4A,B).

The relative abundance of the Prevotella genus (Bacteroidetes, Prevotellaceae) was almost doubled in the CHD 
(13.4%) and EXE (~ 10%) groups (p < 0.0001) at the final time point (week 12) compared to its abundance at the 
initial time point, where it was significantly lower in the EXE group compared to HFX (p = 0.0003) and CHD 
(p = 0.0002) (Fig. 4A,B). The levels of Prevotella dropped significantly in HFD and HFX (p < 0.0001) from ~ 5% 
and ~ 7%, respectively, to less than 1% over the time duration of 12 weeks. The Paraprevotella genus (Bacteroi-
detes, Prevotellaceae) shares the same family with Prevotella and showed a similar pattern of abundance in the 
CHD and EXE groups and negligible relative counts in the high-fat diet-fed groups (HFD and HFX) at both 
the initial (p < 0.006) and final time points (p < 0.0001). Moreover, Paraprevotella increased more than threefold 
in CHD (p < 0.0001) over time, whereas no difference was observed in EXE over time (Fig. 4A). Flexispira has 
been referred to as Helicobacter sp. along with the appropriate flexispira taxon number46,47. Therefore, we used 
Helicobacter sp. flexispira taxa to refer to the Flexispira genus (Proteobacteria, Helicobacteraceae). Helicobacter 
sp. flexispira taxa showed a higher abundance pattern in the HFD and HFX samples than in the CHD and EXE 
samples, at both the initial and final time points (p < 0.005), with no significant change over time (Fig. 4A,B).

Bacteroides (Bacteroidetes, Bacteroidaceae) relative abundance was initially higher in HFX than in the chow-
diet fed groups (CHD and EXE, p < 0.0001) and HFD (p = 0.02). However, at the final time point, HFD, HFX, 
and CHD showed similar Bacteroides relative abundances, but its relative proportion in EXE was significantly 
reduced compared to that in the HFD (p = 0.03) and HFX (p = 0.0009) groups. No temporal variations were 
found among the groups for Bacteroides (Fig. 4). Ruminococcus gnavus (Firmicutes, Lachnospiraceae) initially 
showed similar abundance among the groups. However, its relative abundance significantly increased in the 
high-fat diet-fed groups (HFD and HFX) compared to that in the CHD (p = 0.002) and EXE (p < 0.02) groups 
at the final time point. Longitudinal analysis revealed a significant increase in the HFD (p < 0.001) and HFX 
(p = 0.001) groups—from ~ 1% to ~ 5%—over 12 weeks. Similarly, Lactococcus sp. (Firmicutes, Streptococcaceae) 
was significantly enhanced by ~ fivefold only in HFX (p = 0.0001) as assessed by the longitudinal analysis over 
time. Additionally, Lactococcus sp. counts were negligible in the CHD and EXE samples. Akkermansia mucin-
iphila (Verrucomicrobia, Akkermansiaceae), a gram-negative symbiotic bacterium, was absent in CHD and EXE 
at week 0; however, it was enhanced in EXE and significantly enhanced in CHD (p = 0.0008), after 12 weeks of 
intervention. Moreover, the CHD group was significantly more abundant in A. muciniphila (p < 0.01) than the 
HFD and HFX groups at the final time point of analysis. The groups fed high-fat diet had negligible relative 
proportions of A. muciniphila. Among members of the gut microbiota, the relative abundance of Mucispirillum 
schaedleri (Deferribacteres, Deferribacteraceae) was initially (week 0) the lowest in all groups, at < 1% relative 
proportions; however, its abundance was significantly enhanced in HFD (p = 0.03) longitudinally, and, at the 
final time point (week 12), the species was relatively abundant in HFD compared to CHD and EXE (p = 0.002). 
No significant longitudinal or among-group statistical differences were observed in the other bacterial genera/
species, as shown in Fig. 4A.

Characteristics, biomarker features, and clustering analysis
Biomarker taxa were identified using LEfSe. The groups fed high-fat diet were characterized by relative abun-
dances of Lactococcus, Helicobacter sp. flexispira taxa, Oscillospira, Bacteroides, R. gnavus, M. schaedleri, Para-
bacteroides (Bacteroidetes, Porphyromonadaceae), Butyricimonas (Bacteroidetes, Odoribacteraceae), Enterococcus 
haemoperoxidus (Firmicutes, Enterococcaceae), Bilophila (Proteobacteria, Desulfovibrionaceae), Dehalobacterium 
(Firmicutes, Peptococcaceae), Desulfovibrio (Proteobacteria, Desulfovibrionaceae), Streptococcus, and Clostridium 
cocleatum (Firmicutes, Clostridiaceae) (Fig. 5A). The chow diet-fed groups were typified by relative abundances of 
Prevotella, Paraprevotella, Candidatus arthromitus (Firmicutes, Clostridiaceae), L. salivarius, Lactobacillus reuteri, 
Roseburia (Firmicutes, Lachnospiraceae), Bacteroides uniformis, Corynebacterium (Actinobacteria, Corynebac-
teriaceae), and Sutterella (Proteobacteria, Sutterellaceae), as illustrated in Fig. 5A.

The gut bacterial taxa associated with exercise were revealed using a multiple linear regression model, after 
adjusting for diet and intervention duration. The relative proportions of Sutterella (p = 0.04), Butyricimonas 
(p = 0.01), R. gnavus (p = 0.03), and M. schaedleri (p = 0.04) were significantly reduced by the exercise intervention 
compared to those in non-exercise or sedentary mice. However, Streptococcus (p = 0.01) abundance was enhanced 
in the exercise group, as shown in Fig. 5B. The distribution of gut microbiota across samples was evaluated by 
visualizing the hierarchical clustering analysis heatmap, which showed that members of the Christensenellaceae 
family were enhanced in the HFD and HFX groups at week 12, whereas the unclassified Coriobacteriaceae (Act-
inobacteria) and F16 (TM7) bacterial families were abundant in the CHD and EXE groups (Fig. 6). B. uniformis 
was relatively enriched in CHD and EXE at week 12. Interestingly, the Bilophila genus was higher in the HFD 
and HFX samples at week 0 and diminished at week 12 (Fig. 6).

The random forest classifier machine learning algorithm was used to predict the most important bacterial 
taxa among the identified features that are predictive of the characteristics of the intervention groups. The bac-
terial taxa representing the family Desulfovibrionaceae (Proteobacteria) and most members of Lachnospiraceae 
(Firmicutes), including Coprococcus sp., were highly abundant in the high-fat diet intervention groups (HFD 
and HFX) over time and compared to the chow-diet intervention groups (CHD and EXE) (Fig. S4). Most of 
the species in the Ruminococcaceae family (Firmicutes) were enhanced in the high-fat diet intervention groups, 
particularly Oscillospira spp. Streptococcus sp. from the Streptococcaceae family (Firmicutes) bloomed in HFD 
and HFX over time and in comparison, to the chow-diet intervention groups (Fig. S4). Bacterial taxa of the 
Coriobacteriaceae family (Actinobacteria) were associated with the chow-diet intervention groups. Bacterial 
taxa belonging to the Rikenellaceae family (Bacteroidetes), including genus AF12, were relatively enhanced in 
the high-fat diet intervention groups compared to the chow-diet intervention groups. Moreover, two L. reuteri 
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spp. from the Lactobacillaceae family (Firmicutes) were found to be contrastingly associated with the high-fat 
diet intervention groups over time, while the other bloomed in the chow-diet intervention group at the final 
time point (week 12) (Fig. S4).

Discussion
The combination of a well-balanced diet and regular exercise supports metabolic health by lowering the risk of 
metabolic diseases like T2D and obesity. Microbiota accessible diet have significant influence on the ecology of 
the gut ecosystem48, by supporting the growth of beneficial bacteria, promoting the intestinal barrier function, 
lowering systemic inflammation and preventing some high-fat diet induced detrimental effects49,50. Our study 
demonstrated the longitudinal effect of CHD and HFD in relation to exercise and elaborated the influence on 
gut microbial changes. After the intervention the HFD mice significantly gained weight compared to CHD mice 
(Fig. S1). However, EXE mice did not show difference in weight compared to CHD mice (Fig. S1). This can be 
explained by the time-dependent effect of exercise. It is known that skeletal muscle function exhibits circadian 
rhythms like many other metabolic and inflammatory processes in the body. In addition, exercise performance is 
known to elevate in the evening overlapping with the maximum mitochondrial capacity of the skeletal muscle51. 
A study published recently showed in a disease model of mice that late dark phase (Zeitgeber time 22–23), but not 
early dark phase (Zeitgeber time 13–14), exercise training was able to reduce significant body fat mass (19%)52.

Gut bacterial richness and diversity were reduced in the high-fat diet fed mice (HFD and HFX) compared to 
the chow-fed mice (CHD and EXE) longitudinally (Fig. 1). Moreover, the alpha-diversity richness and evenness 
were temporally enhanced in EXE. Individuals with low bacterial richness have been characterized by enhanced 

Figure 5.   Analysis of differentially abundant bacterial taxa based on diet and exercise interventions. (A) LEfSe 
analysis based on diet is shown as a histogram of the log LDA score > 3 and FDR-corrected p value < 0.05 for 
the significant taxa. (B) Multiple linear regression analysis associating microbial genera/species with exercise 
intervention after covariate adjustment for diet and intervention duration. The Y-axis shows log-transformed 
counts of significantly altered bacterial taxa (FDR-corrected p < 0.05).
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adiposity, insulin resistance, and higher inflammation compared to individuals with high bacterial richness53. A 
systematic review showed that increased physical activity and cardiorespiratory fitness were positively associated 
with higher fecal bacterial alpha diversity and SCFAs54. A multi-omics analysis in overweight women subjected 
to endurance exercise (6 weeks) revealed a correlation between serum and fecal metabolites highlighting increase 
in serum levels of lyso-phosphatidylcholine moieties and fecal glycerophosphocholine, a signature associated 
with the abundance of beneficial Akkermansia and multiple microbial metagenome pathways55. The gut bacterial 
community structure among the high-fat diet and exercise groups was determined using different metrics. The 
Bray–Curtis dissimilarity index, which is sensitive to differences in abundance between species, showed signifi-
cant clustering of the intervention groups longitudinally and at each time point, similar to the Jaccard distance 
metric-based diversity, revealing the significant effect of exercise. Our data showed significant differences in the 
beta diversity of the gut microbiota among the intervention groups, based on the unweighted UniFrac metric; 
however, the PCoA results based on weighted UniFrac were insignificant. This indicated that, although the 
presence or absence of bacterial features were significantly different among the groups (unweighted UniFrac, 
Fig. 2), most of the common taxa and features constituting the microbial community structure were not different 

Figure 6.   Heatmap representing hierarchical clustering analysis at the genus/species level. The analysis was 
performed with normalized data and autoscale feature standardization. Cluster organization was performed 
based on intervention group, using the Minkowski distance measure and Ward’s algorithm.
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between the groups (weighted UniFrac). The significance in unweighted UniFrac beta diversity highlights that 
the intervention groups significantly influence the phylogenetic diversity of the gut microbiome in a qualitative 
manner. The difference in beta diversity results is supported by a recent systematic review that showed higher 
beta diversity in athletes than in nonathletes35. The temporal trends were observed in the volatility plots in 
which the samples were segregated according to axis 1, which contributed maximally to the explained variation; 
this finding implies that diet is the major factor modulating gut microbiota changes (Fig. S2). Adonis, a form 
of one-way PERMANOVA based on unweighted UniFrac metrics, showed that, after adjusting for diet, which 
explained ~ 21% of the variability, age and exercise still retained a significant effect in explaining the variance by 
11.8% and 4.3%, respectively (Table 1). The age of the mice, 5 weeks at the initial time point and 17 weeks at the 
final time point, explained 11.8% of the variance in the microbial beta diversity. Likewise, exercise duration of 
12 weeks significantly explained 4.3% of the variability in the gut microbiota’s beta diversity.

As we have shown previously, diet is an important contributing factor to the changes in the gut microbiota, 
and significant differences can be observed in the beta-diversity of the gut microbiota in mice after eight weeks 
of intervention36. The interaction of diet with host and the gut microbiome can modulate the energy balance in 
humans, change beta-diversity, increase fermentation products, and affect the host enteroendocrine system56.

The B/F ratio is a broad term that defines any measurable difference in a single bacterial taxon to the dis-
ruption of an entire microbial community57 and is widely accepted to influence the maintenance of intestinal 
microbial homeostasis58. Bacteroidetes proportions have been known to decrease in people with obesity com-
pared to those in lean people59. Similarly, compared to lean mice, the B/F ratio decreased in obese mice, where 
Bacteroidetes are reduced by 50% with a proportional increase in Firmicutes60. Our results corroborate those of 
earlier studies and showed a significant reduction in the B/F ratio (~ fivefold) in HFD compared to that in CHD 
after 12 weeks of intervention (Fig. 3B). A meta-analysis showed that consumption of anthocyanin rich diets 
improved rodent gut health by reducing obesity induced gut dysbiosis, impacting SCFA levels, and decreasing 
the F/B ratio61. In addition to diet, exercise has a positive impact on the gut microbial diversity62. A study showed 
that elite rugby players had higher gut microbial diversity than controls, and this positively correlated with the 
extreme exercise marker creatine kinase and a reduction in inflammatory markers63. Moreover, the B/F ratio was 
found to be inversely correlated with the total distance run, demonstrating that exercise can generate a microbial 
composition similar to that in lean mice and prevent diet-induced obesity in mice64. Furthermore, compared to 
adults, juvenile exercise can increase the B/F ratio, influence more genera, and increase lean body mass, revealing 
that host metabolism can be adaptively altered by stimulating the development of gut bacteria65. Similarly, our 
data showed a significant longitudinal effect of exercise (EXE, p < 0.0005) in enhancing the B/F ratio. Firmicutes 
taxa such as Lactobacillaceae, Ruminococcaceae and Lachnospiraceae can produce SCFA including butyrate66. 
Although majority of the SCFA producers are beneficial bacteria, butyrate can be produced by both commensal 
and the pathogenic bacteria through distinct and divergent pathways resulting in beneficial and/or harmful 
byproducts (eg. ammonia) depending upon the utilized substrates67.

Moreover, the substantial increase of Proteobacteria in the high-fat diet-fed groups compared to that in 
the chow-diet intervention corroborates earlier reports36,68. The B/F ratio was not changed between the HFD 
and HFX groups at the final time point, revealing no effect of exercise in the high-fat diet intervention groups 
(Fig. 3B).

The relative abundance of Oscillospira was found to be significantly enhanced in the HFD groups (Figs. 4, 5A, 
6). Oscillospira and interleukin (IL)-10 levels have been linked to gut pathophysiology and microbiota altera-
tions in diet-induced obesity, along with intestinal paracellular permeability as potential early dysfunctions in 
the gut that might lead to metabolic disorders and obesity69. Higher Oscillospira and Ruminococcus abundances 
and lower Barnesiellaceae and Christensenellaceae abundances are considered predictors of physical frailty and 
sarcopenia70. Candidatus arthromitus are segmented filamentous bacteria (SFB), also designated as Candidatus 
Savagella. This commensal bacterium was originally described in the rodent intestinal tract71, and a genetically 
distinct SFB variant exists in humans72. SFB have implications for host immunomodulation by stimulating the 
differentiation and enhancement of the Th-17 cell lineage that produces IL-17 and protects the host against bac-
terial and fungal infections, primarily at the mucosal surface73,74. This bacterium was differentially abundant in 
the chow-fed groups (Fig. 5A). The decrease in the relative abundance of Odoribacteraceae in the EXE group, as 
shown in the phylogenetic tree analysis (Fig. S3), is supported by an earlier study in an older population, where 
individuals with overweight who exercised frequently showed significantly reduced proportions of the bacterial 
family Odoribacteraceae75. In our analysis, the Porphyromonadaceae family, which is placed close to Odoribac-
teraceae in the phylogenetic tree, was found to be increased in the EXE group at the final time point (Fig. S3). A 
gut microbiota biomarker study in Italian adults associated decreased proportions of Porphyromonadaceae (Bac-
teroidetes) to people with overweight or patients with obesity compared to normal weight controls76, explaining 
the apparent beneficial increase of the bacterial family in the EXE group in the current study.

Bilophila was associated with the high-fat diet group in the LEfSe analysis, and clustering analysis revealed 
that it was abundant only at the initial time point, while its relative abundance was low at the final time point 
(Figs. 5A, 6). A study of the gut microbiota composition of athletes reported a greater abundance of Bilophila in 
high-performing individuals77; this is partially contrasting with our data where Bilophila appears to be abundant 
in the HFD group. Bilophila wadsworthia has been reported to synergize with HFD to enhance inflammation, 
intestinal barrier dysfunction, and disrupted metabolism of bile acid, leading to glucose dysmetabolism and 
hepatic steatosis78. The exercise-related study described the genus, but not the species name, likely explaining 
the disparity in results.

The data analyzed using taxonomic ranks and a random forest supervised machine learning algorithm, 
showed that Oscillospira, R. gnavus, Helicobacter sp. flexispira taxa, Lactococcus, Butyricimonas, Streptococcus, 
and members of Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, and Rikenellaceae were highly abundant 
in the high-fat diet-fed groups (Fig. S4). Interestingly, 12 weeks of exercise significantly reduced Oscillospira 
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proportions in HFX. These findings are supported by a recent study where Oscillospira, Ruminococcus, and mem-
bers of Lachnospiraceae and Ruminococcaceae have been reported to be associated with high-fat diet-induced 
obesity, implying gut microbiota dysbiosis79. Another study corroborating our data showed an increased relative 
abundance of Firmicutes, such as R. gnavus and Streptococcus sp., in Italian adults with obesity, confirming that 
body fat is positively associated with Firmicutes and negatively associated with muscle weight and/or physical 
activity76.

R. gnavus and other bacterial spp. have been linked to gut dysbiosis, BMI, cognitive decline, and inflam-
matory conditions, including IBD, eczema, coronary artery, and other obesity-related diseases80–87. Moreover, 
a pilot investigation showed that Butyricimonas and R. gnavus are likely to be involved in the development of 
chronic metabolic disorders such as T2D88. Ruminococcus has also been negatively associated with metabolites 
involved in glutamate and tryptophan metabolism, as well as branched-chain amino acid (BCAA), fatty acids 
and purines, all of which are associated with amino acid and the lipid pathways. Furthermore, Parabacteroides 
(another biomarker taxa of HFD group) has been negatively associated with metabolites involved in the arginine-
proline and dihydroxy fatty acid pathways. These taxa were found relatively high in abundance in mice with 
higher liver triglycerides, glucose and higher adiposity89, which is in concordance with our data. Additionally, 
Desulfovibrionaceae and Rikenellaceae have been reported to be relatively abundant in HFD90. The Rikenellaceae 
bacterial family has been strongly and positively connected with tryptophan and tyrosine metabolism, whereas 
it showed a negative association with BCAA metabolism. The abundance of this family has been associated with 
diets exhibiting worse metabolic outcomes in mice89.

Another bacterium, M. schaedleri (family Deferribacteraceae), belonging to the Deferribacteres phylum with 
low abundance, has been suggested to be a pathobiont. In the current study, it was significantly enhanced in the 
HFD group longitudinally (over 12 weeks) (Figs. 4, 5A, 6). This gut commensal is an inhabitant of the intestinal 
mucus layer and has been associated with inflammation91. A recent report causatively associated M. schaedleri 
to the development of Crohn’s disease-like colitis in immunocompromised mice92. HFD is known to induce 
low-grade chronic inflammation93,94, and the possible association of M. schaedleri with HFD lies in its capacity 
to deal with inflammation. M. schaedleri handles oxidative stress by utilizing specialized scavenging systems for 
reactive oxygen species (ROS) and oxygen and by expressing secretion systems (type IV) and effector proteins. 
It can alter mucosal gene expression in the host, leading to bacterial expansion during inflammation95. These 
host–bacteria interactions may contribute to the susceptibility of the host and influence a disease phenotype. 
Our data revealed a negative association between exercise and R. gnavus, Butyricimonas, and M. schaedleri, 
which is encouraging and supported by an earlier study that showed a significantly lower relative abundance of 
R. gnavus in exercise-trained mice96.

The study has the limitation of the small sample size which poses difficulty to account for the inter-mice 
inherent variability and determining significance. Moreover, the running velocity of the final 20 m/min is a 
critical speed for the C57BL/6 J mice and is also challenging for the wider human population. The study involved 
female mice to reduce data variability, even though females seems less vulnerable than males to the effect of 
HFD-induced obesity on weight gain, metabolic alterations and neuronal plasticity97. We were able to identify 
genus level variations as a result of the interventions, and studies can be designed in future to study the effects 
of the taxa on the metabolic signature and immune response of the host in correlation with the microbiome.

Quantifying temporal variations in the gut microbiota is pivotal for determining the association between 
bacterial taxa/species and an underlying metabolic condition that cannot be identified otherwise. This can lead to 
the application of microbiome evaluations in diagnostics by benchmarking the host microbiota against signature 
bacterial taxa. Moreover, mechanistic studies related to microbes of importance can yield an understanding of 
the molecular players and identification of the signaling pathways involved in the development of a disease or 
disorder. However, we believe that identifying causative relationships between gut commensals and various high-
fat diet-induced metabolic conditions can suitably foster the development of targeted microbiome therapeutics 
to manage chronic diseases in the future.

In conclusion, the longitudinal study revealed the exercise and diet induced variations in the gut bacterial 
community structure, diversity, and local stability. B/F ratio, alpha diversity and richness were significantly 
decreased in the high-fat diet groups regardless of exercise activity. Moreover, the community structure showed 
significant clustering into the intervention groups, illustrating an effect of exercise, in addition to diet. The 
alpha diversity and evenness of the exercise group was significantly enhanced over time. Moreover, the majority 
of variance in unweighted UniFrac and Jaccard distances was explained by diet, followed by age (time dura-
tion), and exercise factors. Moreover, Oscillospira was significantly higher in high-fat diet groups. Interestingly, 
12 weeks of exercise temporally reduced the relative abundance of Oscillospira in HFX. In addition, the biomarker 
taxa in groups fed high-fat diet, included Lactococcus, Helicobacter sp. flexispira taxa, Bacteroides, R. gnavus, 
M. schaedleri, Parabacteroides, Butyricimonas, E. haemoperoxidus, Bilophila, Dehalobacterium, Desulfovibrio, 
Streptococcus, and C. cocleatum. Among these taxa, exercise significantly decreased the relative proportions of 
Butyricimonas, R. gnavus, and M. schaedleri.

Data availability
The data generated during this study are available from NCBI, in the Sequence Read Archive repository, under 
the BioProject PRJNA971356.
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