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Enhanced risk of record‑breaking 
regional temperatures 
during the 2023–24 El Niño
Ning Jiang 1, Congwen Zhu 1*, Zeng‑Zhen Hu 2, Michael J. McPhaden 3, Deliang Chen 4, 
Boqi Liu 1, Shuangmei Ma 1, Yuhan Yan 1, Tianjun Zhou 5,6, Weihong Qian 7,8, Jingjia Luo 9, 
Xiuqun Yang 10, Fei Liu 11 & Yuejian Zhu 12

In 2023, the development of El Niño is poised to drive a global upsurge in surface air temperatures 
(SAT), potentially resulting in unprecedented warming worldwide. Nevertheless, the regional patterns 
of SAT anomalies remain diverse, obscuring where historical warming records may be surpassed in 
the forthcoming year. Our study underscores the significant influence of El Niño and the persistence 
of climate signals on the inter‑annual variability of regional SAT, both in amplitude and spatial 
distribution. The likelihood of global mean SAT exceeding historical records, calculated from July 2023 
to June 2024, is estimated at 90%, contingent upon annual‑mean sea surface temperature anomalies 
in the eastern equatorial Pacific exceeding 0.6 °C. Regions particularly susceptible to recording record‑
high SAT include coastal and adjacent areas in Asia such as the Bay of Bengal and the South China Sea, 
as well as Alaska, the Caribbean Sea, and the Amazon. This impending warmth heightens the risk of 
year‑round marine heatwaves and escalates the threat of wildfires and other negative consequences 
in Alaska and the Amazon basin, necessitating strategic mitigation measures to minimize potential 
worst‑case impacts.

Changes in global surface air temperature (SAT) are influenced by external forcing (e.g., greenhouse gases) and 
internal climate  variations1,2. The El Niño–Southern Oscillation (ENSO) is the strongest year-to-year determinant 
of climate variation on the planet, affecting worldwide SAT anomalies during warm El Niño and cold La Niña 
 phases3. During neutral and La Niña conditions, the subsurface ocean heat accumulates in the tropical western 
 Pacific4. While, during El Niño events, the ocean releases heat to the atmosphere, primarily due to increased air-
sea heat fluxes driven by elevated sea surface temperatures (SST)5. Accordingly, during El Niño phase, enhanced 
atmospheric heating in the tropics accelerates a rise in global annual mean surface temperature (GMST), con-
tributing to record-breaking warming (e.g., 2015–2016)6,7. Conversely, persistent cooling in the eastern Pacific or 
weak El Niño activity may contribute to a global warming slowdown or hiatus as occurred during 1998–20136,8. 

Global warming exhibits distinct regional  patterns9. Even during the most recent hiatus period, the record 
high SATs still occurred in certain  regions7,10 and it is recognized that a slight elevation in GMST can lead to 
significant amplification of regional extreme  events11. Following a rare 3-year 2020–23 La Niña12,13, the evolving 
2023 El Niño is expected to elevate SATs driven by human-caused climate  change14,15, and make it more likely 
that SAT record will be broken worldwide. In fact, during the early stages of the current El Niño development, 
record-breaking SATs in the boreal summer of 2023 have already led to life-threatening marine and terrestrial 
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heat waves. This study aims to address the prospect of exceptionally high SATs in the upcoming year, in con-
nection with the further progression of the 2023–24 El Niño, and to pinpoint the specific regions where such 
extremes are expected to occur.

Results
A simple model for predicting GMST
On inter-annual timescales, ENSO plays a prominent role in the energy redistribution of the climate system, 
driven by its strength and extensive global  impact3,5. The statistical relationship between SST anomalies in the 
central-eastern tropical Pacific and the unusual heating rate of the tropical atmosphere is nearly  linear6. As a 
result, ENSO tightly influences the rate of change in GMST. There are various indices or thresholds to classify the 
ENSO type (i.e., Central Pacific and Eastern Pacific events) and intensity (i.e., moderate and strong) of  ENSO16–19. 
To capture different types of ENSO flavors, an ENSO index (TNINO) is defined by averaging SST anomalies in 
160°E–90°W and 5°S–5°N6. This index incorporates both the Niño3 and Niño4 region. The high correlation 
(exceeding 0.9) between the annual-mean TNINO and the net atmospheric heating anomalies within the tropical 
Pacific has been confirmed,  previously6. The intensity levels of El Niño are classified by the annual-mean values 
of TNINO. ENSO events typically peak in November–January20, therefore all annual means in this study are defined 
from July to June. For instance, the annual-mean SST for 2024 refers to the average of July 2023 through June 
2024. According to the standard deviation of yearly TNINO, 14 moderate ( 0.9◦C > TNINO ≥ 0.6◦C ), and 10 strong 
( TNINO ≥ 0.9◦C ) El Niño years are defined. Those recognized moderate and strong events, such as 1973/74, 
1982/83, 1997/98, and 2015/16, can be well distinguished in this way (see Method and Fig. S1).

A simplified yet effective, physically-based forecast model of GMST variations, originally developed by Hu 
and  Fedorov6, has been adapted and applied in this study. This model is based on a first-order differential equa-
tion that effectively describes the rate of change of annual-mean GMST (ΔGMST). It considers various factors, 
including greenhouse gas emissions, ENSO influences, stratospheric sulfate aerosols produced by volcanoes, and 
the damping rate of the climate system (see Eq. (1) in the Methods). The coefficients in the model, representing 
the impacts of the forcing factors on △GMST, are estimated by multiple linear regression. For instance, a regres-
sion coefficient of 0.127  year−1 for ENSO implies that each 1 ℃ of SST warming in the central-eastern tropical 
Pacific leads to a 0.127 °C increase in GMST. To ensure the robustness of results and enable ensemble prediction, 
random re-sampling is also employed to expand the sample size (see Methods and Supplementary Fig. S2).

Next, we evaluated the model’s performance. The model incorporates the term of the damping rate. The 
effect of the damping rate depends on the previous year’s GMST. When using the observed GMST in the previ-
ous year, this straightforward model accurately replicates ΔGMST, with a root-mean-square error (RMSE) of 
approximately 0.07 ℃ over the instrumental record (Supplementary Fig. S3). While, using an initial GMST value, 
we can simulate the long-term variations in GMST through model integration. Starting from the second step, 
the simulated ΔGMST is influenced by the error of the simulated previous year’s GMST. Therefore, the results 
from the model integration are subject to cumulative errors (Supplementary Fig. S4). Even though, the model 
can effectively capture the evolution of GMST since 1881 (see Fig. 1).

Furthermore, we conducted forward-rolling predictions for inter-annual forecasting. Taking the hindcast 
initialized in 1999 as an example, we trained the model using data from 1881 to 1999 and then predicted the 
GMST in 2000 (as indicated by the blue line in Fig. 1). These results affirm that this simple model is effective in 
forecasting inter-annual variation of GMST.

Figure 1.  Observed, model-simulated, and predicted GMST variations during the period of 1881–2024. GMST 
variations are derived from observations, computed from the model, and predicted through forward-rolling 
experiments (a). Black dots (red open circles) in (a) indicate the years of record-breaking GMST (moderate 
and strong El Niño) since 1980. The boxplot illustrates the range of ensemble predictions for 2024. In (b), 
the explained variance of observed GMST changes by all forcing terms  (R2) and individual forcing terms are 
displayed.
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The explained variance by individual factors provides insight into GMST changes (see Methods). The coef-
ficient of determination  (R2), a common measure of the goodness of fit to a linear regression, can be interpreted 
as the proportion of the variance accounted for by the predictands. Approximately 68.4% of the variance in 
ΔGMST can be accounted for by this simple model (Fig. 1b). We further examined the relative importance of 
individual forcing factors in contributing to the  R2 (see Methods). Our results reveal that ENSO (43.7%) and 
the damping rate (14.2%) contribute a combined 57.9% to the total  R2 value (see Fig. 1b). However, ENSO has 
limited cumulative influence on the long-term trend of GMST due to its frequent oscillation between cold and 
warm  phases6 (see Supplementary Fig. S1). Conversely,  CO2 significantly affects the long-term trend in GMST 
(see Supplementary Fig. S1) but has a limited impact on the inter-annual variability of ΔGMST. It is worth not-
ing that the damping rate, as a measure of climate sensitivity, exerts a substantial effect on both the long-term 
 trend6 and inter-annual variability of GMST (see Fig. 1b). This rate is characterized by an e-folding time scale 
(see Eq. (1) in Methods) that represents the memory or the persistence of the climate system. In short, year-to-
year variations in △GMST are primarily determined by ENSO and the damping rate.

Finally, we can predict GMST in 2024 with this model. Historically, the  CO2 concentration grows steadily, 
while stratospheric aerosol optical depth (SAOD) exhibits a small variation in recent decades, whose high val-
ues in history are closely associated with episodic volcanic eruptions (see Supplementary Fig. S1). Accordingly, 
 CO2 concentration is set to 421.6 ppm, which is estimated by projecting the 2.2 ppm increase during 2022–2023 
into 2024; The SAOD in 2024 is set to the same value as in 2023. Considering their limited impact on the inter-
annual variability of ΔGMST (Fig. 1b), different assumptions of  CO2 concentration and SAOD have little effect 
on the range of the ensemble projections. An El Niño event is expected to persist in 2024, and the observed SST 
anomalies in the eastern equatorial Pacific in September were greater than 1.5 °C, an intensity comparable to 
strong historical  events14,15,21(https:// origin. cpc. ncep. noaa. gov/ produ cts/ precip/ CWlink/ MJO/ enso. shtml# curre 
nt ). Accordingly, we estimate the probability distribution of El Niño-related atmospheric heating rate from 
historical observations (Methods and Supplementary Fig. S5). Model outputs suggest that under a moderate or 
strong El Niño scenario, the GMST averaged from July 2023 to June 2024 will likely break the historical record 
with 90% chance (Fig. 1). The GMST is projected to range from 1.028 ℃ to 1.097 ℃ under a moderate El Niño 
scenario, while under a strong El Nino scenario, the GMST is projected to range from 1.064 to 1.195 ℃ (Sup-
plementary Fig. S6).

Outlook for the spatial distribution of record‑breaking SAT in 2024
The timescale of inter-annual prediction (i.e. at lead times of 1–2 years), falling between seasonal and decadal 
prediction, has received relatively limited attention in previous  research22,23. Inter-annual prediction skills using 
initialized numerical coupled climate models with large ensembles appear to be notably lower over continental 
land regions, such as Asia, and this skill diminishes further when trends linked to global warming are factored 
 out23. This suggests that state-of-the-art climate models may have constraints in forecasting year-to-year changes 
and predicting the spatial patterns that lead to record-breaking events. To predict the spatial distribution of 
surface air temperature (SAT) on a global scale, we have extended our GMST forecast model to encompass 
each 2° × 2° grid point across the globe. The rate of SAT change (ΔSAT) for each grid is determined through a 
first-order differential equation, with coefficients estimated using multiple linear regression (see Eq. (1) in the 
Methods section). This model operates as a patchwork, independently simulating SAT for each grid point and 
then amalgamating them to create a spatial distribution.

The model effectively reproduces ΔSAT at most grid points worldwide, except for polar and sub-polar regions 
(see Fig. 2). Additionally, we perform a forward-rolling prediction experiment, where ΔSAT, as an inter-annual 
increment, served as the direct predictive target (see Methods). The final predictions for the SAT distribution were 
derived from the current state plus the increments. Remarkably, even with a linear model comprising only four 
factors, the pattern correlation between the predicted ΔSAT and observed values stands at approximately 0.63, 
while the pattern correlation for the SAT distribution reaches around 0.86 (see Fig. 2b). A skill map is illustrated 
in the supplement (see Supplement Fig. S7).

Comparing the relative importance of the different factors (see Methods), we note that ENSO and the damp-
ing rate are the primary drivers of SAT variations across the globe (see Fig. 2), consistent with the GMST model. 
ENSO exerts a significant influence on SAT variability in the tropics (see Fig. 2c), while the damping rate domi-
nates in the subtropics, particularly over continental regions (Fig. 2d). The distribution of regression coefficients 
for ENSO (see Fig. 2d) and the damping rate (see Fig. 2f) illustrate their regional impacts on SAT. Unlike the 
impacts of the radiative forcing factors, which exhibit minimal spatial variations (see Supplement Fig. S8), ENSO 
and damping rates show significant spatial structures that affect SAT variations.

These ENSO-related teleconnections have been extensively studied and are consistent with previous 
 publications3,5. In contrast, the role of the damping rate, particularly its regional impacts, is more intricate 
and demands further investigation. The damping rate, described by an e-folding time scale (as per Eq. (1) in 
Methods), represents the memory or the persistence of the climate anomalies from one year to the next. Climate 
persistence spans a range of timescales, from months to  decades24–26. The multi-year to decadal memory of the 
climate system, resulting from complex interactions across various climate subsystems, has been a focal point 
in the study of global climate  change9,27.

In the context of the ENSO timescale, our results indicate that inter-annual climate memory is associated 
with local intrinsic characteristics, such as heat capacity. Notably, a prominent feature of the distribution of inter-
annual climate persistence is the distinction between land and sea (see Fig. 2f). The ocean’s higher persistence 
primarily results from its thermal inertia and slower variation modes. Consequently, regions with a maritime 
influence exhibit considerably stronger climate memory than inland areas. Oceanic areas with significant persis-
tence are primarily concentrated in the tropical Pacific and Atlantic warm pools, characterized by deep oceanic 

https://origin.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml#current
https://origin.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml#current
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thermoclines that store substantial amounts of warm water. On the other hand, the far northwestern Atlantic 
SST influenced by AMO shows strong year-to-year persistence but lacks a clear warming  trend28. Over the con-
tinents, temperature changes in East Asia exhibit stronger persistence compared to North America (see Fig. 2f). 
Owing to the stronger persistence, the warming rate of SAT over China is significantly (1/3–1/2) higher than 
that over the United  States9. In summary, the year-to-year persistence of climatic conditions means that present 
anomalies strongly influence the following year’s climate state, and the spatial structure of persisted anomalies 
plays a crucial role in distinct regional SAT variations.

Finally, the model generates global SAT distribution for 2024 under varied El Niño strength scenarios (Fig. 3). 
These results reveal substantial SAT anomalies that are primarily centered in extratropical continental regions. 
Record-breaking SAT, on the other hand, are primarily anticipated in coastal and adjacent seas, encompassing 
regions in Southeast Asia, South Africa, Alaska, northern South America, and the tropical Atlantic.

Implications of the results
Firstly, our results point to the likelihood of record-breaking GMST between July 2023 and June 2024, primarily 
driven by a developing moderate to strong El Niño event. Additionally, we offer insight into the spatial distribu-
tion of surface air temperature (SAT) and the regions where record-breaking temperatures may occur. Elevated 

Figure 2.  Model forecast performance and dominant forcing factors. (a). The explained variances of observed 
ΔSAT by the model  (R2). (b). The ΔSAT and SAT pattern correlations between forward-rolling predictions 
and observations since 2000. c. and e. the explained variances contributed by ENSO and the damping rate, 
respectively, similar to the map in (a). Regression coefficients for ENSO and damping rate are shown in (d) and 
(f). The black box denotes the region used for the ENSO index.
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temperatures can lead to a significant increase in the likelihood of extreme events and risks from a range of 
natural  hazards29,30. For instance, the possibility of record-breaking SST in the Bay of Bengal, the South China 
Sea, and the Caribbean Sea would potentially lead to year-round marine heatwaves (see Fig. 4a–c), resulting in 
negative ecological, economic, and social  consequences31–33. The warming in Alaska (see Fig. 4d) would result in 
a series of negative responses or feedbacks, including glacier and permafrost melting, coastal erosion, and other 
negative climate  impacts34. The record-breaking SAT in the Amazon may worsen extreme weather (see Fig. 4e), 
increasing wildfire risk. In fact, severe wildfires and drought have already hit the Amazon this past September 
and October 2023 (https:// earth obser vatory. nasa. gov/ images/ 151965/ droug ht- fuels- wildfi res- in- the- amazon).

Secondly, we found that, compared to greenhouse gas forcing, ENSO can lead to appreciable year-to-year 
fluctuations in GMST. Strong El Niño events can cause GMST to rise rapidly, potentially exceeding the preferred 
ambitious 1.5 ℃ target of the Paris  Agreement35 for a short period; multi-year La Niñas can slow down global 
 warming36. Thus, the impacts of ENSO variability on GMST are a more urgent concern for inter-annual varia-
tions in  GMST37.

Figure 3.  Predicted global SAT variation for 2024 (color shaded) under (a) a moderate El Niño scenario and 
(b) a strong El Niño scenario In both (a) and (b), the regions with record-breaking heating are marked by blue 
dots. Black boxes in (b) note the regions: the Bay of Bengal (5°N–25°N, 75°E–105°E), the South China Sea 
(5°N–25°N, 105°E–125°E), the Caribbean Sea (10°N–25°N, 55°W–90°W), Alaska (55°N–70°N, 105°W–165°W), 
and the Amazon (20°S–10°N, 60°W–80°W).

https://earthobservatory.nasa.gov/images/151965/drought-fuels-wildfires-in-the-amazon
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While climate persistence remains a complex and not easily modeled  factor9, it plays a pivotal role in the 
inter-annual variability in SAT. The greater persistence of the oceans would accelerate the risk of coastal zones, 
including more intense heat waves and tropical  cyclones38–41. Combined with anthropogenic global sea level 
 rise41, densely populated coastal areas are facing an enormous and urgent climate crisis that challenges our cur-
rent capacity for adaptation, mitigation, and risk management.

Methods
Surface air temperature data
For global temperatures spanning the period of 1880–2023, we use monthly Goddard Institute for Space Studies 
(GISS) Surface Temperature Analysis with a 1200 km smoothing (2° × 2° grid) to calculate the GMST [GISTEMP 
Team, 2023: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space 
Studies. Dataset accessed 2023-07-30 at https:// data. giss. nasa. gov/ giste mp/]42. To evaluate ENSO variations, we 
use Extended Reconstructed Sea Surface Temperature v5 SST product (https:// psl. noaa. gov/ data/ gridd ed/ data. 
noaa. ersst. v5. html)43. The anomalies of the variables are deviations from the corresponding 1951–1980 means. 
To calculate marine heatwaves, we use daily SSTs with 1/4 resolution for 1982–2023 from the National Oceanic 
and Atmospheric Administration optimum interpolation SST (OISST v2)  dataset44 (https:// psl. noaa. gov/ data/ 
gridd ed/ data. noaa. oisst. v2. html). To calculate the annual maxima of daily maximum SAT (TXx) over the con-
tinents, we use the Climate Prediction Center (CPC) 0.5° × 0.5° Global Daily Gridded Temperature Dataset for 
1979–2023 (https:// psl. noaa. gov/ data/ gridd ed/ data. cpc. globa ltemp. html).

Figure 4.  Changes in regional extremes as function of annual SAT. (a–c) The annual marine heatwave (MHW) 
days (see Methods) for the Bay of Bengal, the South China Sea, and the Caribbean Sea. (d) The number of annual 
days with daily mean SAT greater than 0 ℃ in Alaska. (e) The annual maxima of daily maximum SAT (TXx) for 
the Amazon. The regions are marked by black boxes in Fig. 3b. The black dots are the raw values; the red lines 
are the regression lines. The blue lines are the reference lines, corresponding to 1951–1980 means. The dashed 
diagonal lines in (d) and (e) are reference lines with slopes equal to 1. Columns in light pink represent the 
ranges of the predicted regional SATs between the moderate and strong El Niño scenarios in Fig. 3.

https://data.giss.nasa.gov/gistemp/
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
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Radiation forcing data
For  CO2 concentrations, we use Mauna Loa in situ measurements downloaded from the NOAA Earth System 
Research Laboratory (ESRL) website (www. esrl. noaa. gov/ gmd/ ccgg/ trends/) available after 1959, combined with 
ice core reconstructions from Law Dome DE08 and DE08-2 (http:// cdiac. ornl. gov/ ftp/ trends/ co2/ lawdo me. 
smoot hed. yr20) before  that6.

To account for volcanic eruptions, we employ a stratospheric aerosol optical depth (SAOD) data set from 
NASA GISS (https:// data. giss. nasa. gov/ model force/ strat aer/ tau. line_ 2012. 12. txt) during 1850–201245. To extend 
the period of the data set to present, we have also used the datasets from a combined SAOD time series dur-
ing 1850–2019 (https:// doi. org/ 10. 5281/ zenodo. 43007 80)46 and the afterward observation from MODIS Aqua 
(https:// giova nni. gsfc. nasa. gov/ giova nni). The relationship between SAOD and the latter two was established 
by linear regression during the overlapping periods. Based on these relationships, we construct a time series of 
SAOD during the period of 1850-present (Supplement Fig. S1).

ENSO index
Following the study of Hu and  Fedorov6, an ENSO index, TNINO, is defined by averaging SST anomalies 
within a large equatorial Pacific domain between 5°S–5°N and 160°E–90°W. This index incorporates both the 
Niño3 and Niño4 regions (the black box in Fig. 2a). All annual means in this study are defined for July–June, 
rather than the calendar January– December. The impacts of the radiative forcing on ENSO are first linearly 
removed from the TNINO index before using in the regression equation (Supplement Fig. S1c). Further, 21 weak 
( 1.0σ > TNINO ≥ 0.5σ ), 14 moderate ( 1.5σ > TNINO ≥ 1.0σ ), and 10 strong ( TNINO ≥ 1.5σ ) El Niño years are 
defined. The standard deviation ( σ ) of TNINO in Fig. S1c is 0.6.

Modeling of GMST and SAT distribution
The model incorporates the main factors affecting GMST and is based on a first-order differential equation 
describing the rate of change of annual mean GMST:

The particular terms on the right-hand side of the equation describe (i) linear damping with an e-folding time 
scale τ, (ii) longwave radiative forcing due to greenhouse gases (mainly carbon dioxide,  CO2, ref = 320 ppm.), (iii) 
atmospheric heating anomalies associated with ENSO (positive into the atmosphere and assumed proportional 
to TNINO), (iv) shortwave scattering by stratospheric sulfate aerosols induced by volcanic eruptions, and (v) a 
residual term, respectively. 1 year is used as the time step. Tg stands for annual mean GMST or each grid’s SAT.

Random re‑sampling for regression
The regression coefficients in Eq. (1) may depend on the period chosen. To estimate the ranges of the coefficients, 
we employed random sampling to expand the sample size, ensuring the robustness of results and enabling ensem-
ble predictions. We performed 50 randomized re-sampling experiments, each time dividing the dataset for the 
entire period into random training and testing subsets. The proportion of the dataset to include in the train split 
is set to 80%. As a result, we constructed 50 models with different regression coefficients. When combined with 
the historical probability distribution of TNINO (24 above moderate events: 14 moderate and 10 strong events), 
this led to an ensemble prediction consisting of 1200 members, as shown in the boxplot in Fig. 1). The distribu-
tions of the regression coefficients and their changes associated with different test-train split proportions are 
illustrated in Supplementary Fig. S2.

Relative importance analysis of the forcing factors
The coefficient of determination ( R2 ), a common measure for the goodness of the fit for linear regression, can be 
interpreted as the proportion of the variation of the predictand. A better predictor has R2 closer to 1.

Suppose there is a multiple linear regression equation as follows:

aj are the regression coefficients and e stands for the residual. y is the true value of the predictand and ŷ  is the 
predicted or explained value by the explanatory variable xj . R2 can be expressed as:

RSS is the regression sum of squares, and TSS is the total sum of squares.
When dealing with multiple predictors, a fundamental question arises: which of these predictors is most 

crucial or effective in predicting the outcome variable? It is evident that when no correlation exists among the 
explanatory variables, a straightforward method to gauge the significance of each predictor is by calculating its 
covariance with the explained variable and then dividing this value by the variance of the explained variable. 
This approach provides a clear measure of each variable’s contribution.

(1)
dTg

dt
= −

Tg

τ
+ a · ln(CO2/CO2,ref )+ b · TNINO + c · SAOD + d

(2)y =

∑J

j=1
ajxj + e = ŷ + e

(3)R2
=

RSS

TSS
=

Var(ŷ)

Var(y)
= 1−

Var(e)

Var(y)

http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://cdiac.ornl.gov/ftp/trends/co2/lawdome.smoothed.yr20
http://cdiac.ornl.gov/ftp/trends/co2/lawdome.smoothed.yr20
https://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt
https://doi.org/10.5281/zenodo.4300780
https://giovanni.gsfc.nasa.gov/giovanni
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Definition of marine heatwaves
We identified MHWs from daily SST time series following ref.47 as a discrete prolonged anomalously warm 
water event. ‘Discrete’ was defined quantitatively as an identifiable event with recognizable start and end dates, 
‘prolonged’ meant a duration of at least 5 days, and ‘anomalously warm’ was defined by reference to a baseline, 
seasonally varying threshold. Heatwave events were found by identifying periods when daily temperatures were 
above the seasonally varying 90th percentile (threshold) for at least five consecutive days. The 90th percentile 
was calculated for each calendar day using daily SSTs within an 11-day window centered on the date across all 
years within the climatology period and smoothed by applying a 31-days moving average. A seasonally varying 
threshold allows the identification of anomalously warm events at any time of the year. The days within the start 
and end dates of an event were defined as MHW days. Accordingly, the total number of MHW days in each year 
was calculated. The MHW definition as used in this manuscript is available as software modules in Python (http:// 
github. com/ ecjol iver/ marin eHeat Waves) and R (https:// github. com/ ajsmit/ Rmari neHea tWaves).

Data availability
The data supporting the findings of this study are available online (https:// data. giss. nasa. gov/ giste mp/; https:// 
psl. noaa. gov/ data/ gridd ed/ data. noaa. ersst. v5. html; https:// psl. noaa. gov/ data/ gridd ed/ data. noaa. oisst. v2. html; 
https:// psl. noaa. gov/ data/ gridd ed/ data. cpc. globa ltemp. html; www. esrl. noaa. gov/ gmd/ ccgg/ trends/; http:// cdiac. 
ornl. gov/ ftp/ trends/ co2/ lawdo me. smoot hed. yr20; https:// data. giss. nasa. gov/ model force/ strat aer/ tau. line_ 2012. 
12. txt; https:// doi. org/ 10. 5281/ zenodo. 43007 80; https:// giova nni. gsfc. nasa. gov/ giova nni).

Code availability
The codes used in this study can be download here: http:// github. com/ ecjol iver/ marin eHeat Waves.
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