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Added value of dynamic 
contrast‑enhanced MR imaging 
in deep learning‑based prediction 
of local recurrence in grade 4 
adult‑type diffuse gliomas patients
Jungbin Yoon 1,10, Nayeon Baek 1,10, Roh‑Eul Yoo 1,2*, Seung Hong Choi 1,2,3,4*, Tae Min Kim 5, 
Chul‑Kee Park 6, Sung‑Hye Park 7, Jae‑Kyung Won 7, Joo Ho Lee 8, Soon Tae Lee 9, 
Kyu Sung Choi 2, Ji Ye Lee 2, Inpyeong Hwang 2, Koung Mi Kang 2 & Tae Jin Yun 2

Local recurrences in patients with grade 4 adult‑type diffuse gliomas mostly occur within residual 
non‑enhancing T2 hyperintensity areas after surgical resection. Unfortunately, it is challenging to 
distinguish non‑enhancing tumors from edema in the non‑enhancing T2 hyperintensity areas using 
conventional MRI alone. Quantitative DCE MRI parameters such as  Ktrans and  Ve convey permeability 
information of glioblastomas that cannot be provided by conventional MRI. We used the publicly 
available nnU‑Net to train a deep learning model that incorporated both conventional and DCE MRI to 
detect the subtle difference in vessel leakiness due to neoangiogenesis between the non‑recurrence 
area and the local recurrence area, which contains a higher proportion of high‑grade glioma cells. We 
found that the addition of  Ve doubled the sensitivity while nonsignificantly decreasing the specificity 
for prediction of local recurrence in glioblastomas, which implies that the combined model may result 
in fewer missed cases of local recurrence. The deep learning model predictive of local recurrence may 
enable risk‑adapted radiotherapy planning in patients with grade 4 adult‑type diffuse gliomas.

Grade 4 adult-type diffuse glioma is an aggressive malignant brain tumor that has a high recurrence rate, and 
the median survival remains at only 15  months1,2. The standard treatment for grade 4 adult-type diffuse glioma 
is a multimodality strategy including maximal surgical resection followed by radiation therapy with concurrent 
temozolomide (TMZ) and adjuvant  TMZ2. Given that the goal of glioma surgery is to maximally remove the 
tumor while preserving the patient’s functional integrity, the main target for surgical resection is often limited 
to contrast-enhancing tumor components on contrast-enhanced T1-weighted images (CE T1WIs), and non-
enhancing tumor components intermingled with peritumoral edema inevitably remain after surgical  resection1,3,4. 
It has been recognized that local recurrence occurs at residual non-enhancing lesions and affects the prognosis 
of grade 4 adult-type diffuse glioma  patients5. Unfortunately, it is challenging to distinguish the non-enhancing 
tumor infiltration from edema because they are similarly presented as lesions with high signal intensity on 
T2-weighted or T2 fluid-attenuated inversion recovery (FLAIR) images on conventional MR  imaging6,7.

Therefore, much effort has been focused on the use of advanced MR imaging for identification of non-
enhancing tumor cells that are not distinguishable on conventional MR imaging. Dynamic contrast-enhanced 
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(DCE) MR imaging has emerged as a promising method for quantifying microvascular  permeability8–12. The 
important pharmacokinetic parameters of DCE MR imaging are the volume transfer constant  (Ktrans), extravas-
cular extracellular space per unit volume of tissue map  (Ve), and blood plasma volume per unit volume of tissue 
map  (Vp)8–12. Prior studies have recognized that baseline and posttreatment DCE MR imaging parameters of 
non-enhancing T2 high signal intensity lesions have prognostic values and predict the recurrence in grade 4 
adult-type diffuse glioma patients undergoing the standard  treatment7,13–15.

Recently, several studies have built machine learning or deep learning based local recurrence and survival 
prediction models that use radiomic features of conventional and advanced MR imaging parameters such as 
apparent diffusion coefficient (ADC), diffusion tensor imaging, and cerebral blood volume (CBV)16–22. However, 
to our knowledge, there have been no reports on the use of deep learning of multiparametric MR imaging, includ-
ing conventional and DCE MR imaging, for predicting local recurrence in grade 4 adult-type diffuse gliomas. 
Deep learning techniques, when used in conjunction with multiparametric MR imaging, may be helpful for 
predicting local recurrence in grade 4 adult-type diffuse glioma patients, given its clear advantage in process-
ing complex imaging  data23. Hence, the purpose of our study was to develop a multiparametric deep learning 
model based on DCE and conventional MR imaging for prediction of local recurrence in patients with grade 4 
adult-type diffuse gliomas.

Results
Patient characteristics
The clinical characteristics of the recurrence and non-recurrence groups in the total study population are sum-
marized in Supplementary Table 1. There were no differences between the two groups with regard to age and 
sex (P = 1.44 and P = 0.13, respectively). The incidence of IDH wildtype was significantly higher in the recur-
rence group (97% [75 of 77]) than in the non-recurrence group (89% [91 of 102]) (P = 0.04). The incidence of 
promoter methylation of MGMT was significantly higher in the non-recurrence group (71% [77 of 102]) than 
in the recurrence group (27% [21 of 77]) (P < 0.001). The clinical characteristics of the patients in the training 
and test sets are summarized in Table 1.

Diagnostic performance of deep learning models
In the training set, the sensitivity for predicting local recurrence was higher in the combined MR model than in 
the conventional MR model (69% [42 of 61; 95% CI 56, 80] vs. 59% [36 of 61; 95% CI 46, 71]; P = 0.33), although 
statistical significance was not reached. There was no statistically significant difference in the specificity for 
predicting local recurrence between the combined MR model and conventional MR model (34% [29 of 85; 95% 
CI 24, 45] vs. 31% [26 of 85; 95% CI 21, 42], respectively; P = 0.69). In the test set, the combined MR model 
showed a significantly higher sensitivity (80% [12 of 15; 95% CI 52, 96]) than the model based on conventional 
MR imaging alone (40% [6 of 15; 95% CI 16, 68]) (P = 0.03) for prediction of local recurrence. The specificity was 
not significantly different between the combined MR model and the conventional MR model (44% [8 of 18; 95% 
CI 22, 69] vs. 50% [9 of 18; 95% CI 26, 74], respectively; P = 1.00). The representative cases of local recurrence 
prediction in the training and test sets are shown in Figs. 1, 2.

Discussion
In this study, we explored the potential of two nnU-Net based deep learning models for prediction of local recur-
rence in patients with grade 4 adult-type diffuse gliomas. The model based on the combination of conventional 
MR imaging and  Ve map from DCE MR imaging had a higher sensitivity than that based on conventional MR 
imaging alone at a similar specificity for prediction of local recurrence in grade 4 adult-type diffuse gliomas.

Table 1.  Clinical characteristics of the training and test sets. Unless otherwise indicated, data represent the 
number of patients (percentages). MGMT =  O6-methylguanine-DNA methyltransferase, IDH = isocitrate 
dehydrogenase. *Data are means ± SD. † Calculated with the independent samples t-test. ‡ Calculated with 
Fisher’s exact test.

Characteristics Total (n = 179) Training set (n = 146) Test set (n = 33) P value

Mean age (years)* 57.7 ± 13.4 57.1 ± 13.7 60.5 ± 11.9 0.19†

Sex 1.00‡

 Male 92 (51) 75 (51) 17 (52)

 Female 87 (49) 71 (49) 16 (48)

Methylated MGMT promoter 0.85‡

 Positive 98 (55) 79 (54) 19 (58)

 Negative 81 (45) 67 (46) 14 (42)

IDH1/2 mutation 0.57‡

 Positive 13 (7) 12 (8) 1 (3)

 Negative 165 (92) 133 (91) 32 (97)

 Not available 1 (1) 1 (1) 0 (0)
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Non-enhancing T2 hyperintense lesions of grade 4 adult-type diffuse gliomas are a mixture of infiltrative 
tumor cells and peritumoral edema. The interface between contrast-enhancing tumors and non-enhancing 
tumors is of clinical significance considering that most of the local recurrence occurs at the resection margin. 
DCE MR imaging depicts the permeability characteristics of the tumor that cannot be provided by conventional 
MR imaging, with quantitative parameters such as  Ktrans and  Ve reflecting the exchange between the vasculature 
in the tissue and interstitium and leakage  space15. Active neoangiogenesis and vessel leakiness are the hallmarks 
of high-grade gliomas and  Ktrans and  Ve values have been reported to be higher in high-grade gliomas than in 
low-grade  gliomas24. Specifically, the structural basis of the unusual leakiness in vessels of high-grade tumors has 
been attributed to openings between defective endothelial cells characterized by disorganized, loosely connected, 
branched, overlapping or sprouting  configurations25. We speculated that the local recurrence area would have 
a higher proportion of high-grade tumor component among the non-enhancing T2 hyperintense lesion, which 
could be reflected on  Ve maps, but not on conventional MR images including T2 FLAIR and CE T1WI. Our 
results are in agreement with those of the previous study, in which  Ve was increased in recurring voxels within 
the white matter and gray matter of the gross tumor volume delineated on RT-MRI, as compared with non-
recurring  voxels26. Pak et al. also reported that the radiomics risk score calculated from 16 features, including 9 
features from the  Ve map of the non-enhancing T2 high signal intensity region, was associated with progression-
free survival independent of IDH mutation  status15. Unlike the previous study, we focused on the small local 
recurrence area among the non-enhancing T2 hyperintense lesion. Since local recurrence first occurs in small 
clusters of high-grade glioma cells with most representative high-grade features, we speculated that using a small 
label confined to a small local recurrence area in the earliest possible time would have a higher analytic value 
than using a mask encompassing the entire non-enhancing T2 hyperintense lesion or a larger local recurrence 
area at the later time.

Enhancing tumor components of grade 4 adult-type diffuse gliomas with high cell densities are likely to 
cause overt changes in relative CBV and  permeability10,27. In contrast, changes in the perfusion and permeability 
parameters attributable to infiltrative high-grade tumors hidden among non-enhancing T2 hyperintense lesions 
are relatively subtle such that it is often challenging to distinguish infiltrative high-grade tumors with mildly 
increased  Ve from peritumoral edema with our human eyes. Machine or deep learning algorithms capable of 

Figure 1.  A 60-year-old woman with GBM in the training set. (A,B) Preoperative T2 FLAIR and CE T1W 
images show a heterogeneously enhancing mass at the septum pellucidum and corpus callosum with a small 
surrounding area of non-enhancing T2 hyperintensity. (C) The  Ve map depicts a mild increase at the anterior 
aspect of the enhancing tumor (arrow) along with an overt increase at the enhancing portion of the tumor 
(arrowheads). (D) The combined MR model predicted local recurrence to occur at the non-enhancing T2 
hyperintense lesion anterior to the enhancing tumor (red area). (E,F) At the 7-month follow-up, a measurable 
enhancing lesion appeared at the corpus callosum (genu). GBM glioblastoma, FLAIR fluid-attenuated inversion 
recovery, CE T1W contrast-enhanced T1-weighted.
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processing hidden information have been suggested as powerful assistive tools for otherwise very challenging 
or impossible classification or prediction tasks to the unassisted  eyes28–31. Based on radiomics features extracted 
from diffusion tensor imaging and relative CBV maps, Rathore et al. used a machine learning algorithm, a sup-
port vector machine classifier, to develop a model predictive of local recurrence, by identifying the relatively 
more-infiltrated regions with higher cellularity and perfusion among non-enhancing T2 high signal intensity 
 regions21. In this study, we were able to build a prediction model based on the difference in permeability charac-
teristics between the local recurrence and non-recurrence areas using the nnU-Net algorithm.

At present, clinical tumor volume in radiotherapy planning often encompasses the non-enhancing T2 hyper-
intense lesion, given that the non-enhancing T2 hyperintense lesion includes not only peritumoral edema but also 
non-enhancing tumor components due to the infiltrative nature of grade 4 adult-type diffuse gliomas. In terms 
of clinical implications, we speculate that the deep learning model may have a potential role in risk-adapted RT 
planning in the future, because a higher radiation dose may be delivered to a broader area in patients predicted 
to have local recurrence by the model to achieve better local control. Regarding the diagnostic performance of 
deep learning models, the addition of  Ve doubled the sensitivity while decreasing the specificity nonsignificantly, 
which implies that the combined model would result in fewer cases of missed local recurrence and more cases 
of non-recurrence receiving unnecessarily high radiation dose. Although unnecessarily high radiation dose can 
lead to increased radiation-induced complications, we speculate that the clinical consequence of missing local 
recurrence in patients who could potentially have survival gain from higher radiation dose would be greater in 
the clinical setting. Furthermore, considering the high incidence of early local recurrence in adult-type diffuse 
glioma (grade 4), we anticipate that employing a deep learning algorithm characterized by increased sensitivity 
(albeit reduced specificity) would yield greater clinical advantages.

Our study has several limitations. First, this was a retrospective study based on a relatively small study 
population, and thus, the results could have been influenced by selection bias. Nonetheless, by using randomly 
generating patches with various data augmentation techniques such as cropping and rotation for learning, the 
model was trained to prepare for various inputs even with a small dataset. Second, the model was validated in 
patients sampled at a later time point to provide some information on the generalizability as well as the reproduc-
ibility of our prediction model without external validation. A future prospective multicenter study is warranted 
to provide stronger evidence for the generalizability of the model. Third, not all patients from the study period 
had  Ve maps available for analysis due to incomplete datasets or suboptimal image quality of DCE MR imaging. 
Fourth, to simplify the deep learning prediction models as in a previous  study32, local recurrence was analyzed as 

Figure 2.  A 71-year-old woman with GBM in the test set. (A,B) Preoperative T2 FLAIR and CE T1W 
images demonstrate a heterogeneously enhancing mass at the left parietal lobe with extensive perilesional 
T2 hyperintensity. (C) The  Ve map depicts an overt increase at the enhancing portion of the tumor with no 
discernible change at the non-enhancing T2 hyperintense portion. (D) The combined MR model predicted 
local recurrence to occur at the anterior aspect of the enhancing tumor (red area). On the other hand, recurring 
voxels were predicted to be ‘absent’ according to the conventional model. (E) At the 7-month follow-up, a 
measurable enhancing lesion appeared at the anterior aspect of the surgical cavity. GBM glioblastoma, FLAIR 
fluid-attenuated inversion recovery, CE T1W contrast-enhanced T1-weighted.
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a binary measure (the presence of local recurrence at 1 year) without considering time information such as time 
to progression. Given the time-dependent nature of recurrence data, the deep learning prediction model may 
be refined by incorporating the time information in the future. Fifth, the exact localization of local recurrence 
areas on the preoperative FLAIR images was challenging in some cases due to anatomical distortion after surgery. 
We made efforts to minimize the mismatch between annotated labels on preoperative FLAIR images and true 
local recurrence areas on follow-up MR images by taking into account anatomical relationships with surround-
ing structures and by cross-checking the labels with expert radiologists with more than 12 years of experience. 
Sixth, although the prognosis varies among ‘grade 4 adult-type diffuse gliomas’ according to the IDH mutation 
 status33–38, we grouped them together to develop the deep learning models in this study. Grade 4 adult-type dif-
fuse gliomas are characterized by their infiltrative growth, and therefore, have infiltrative tumor cells within the 
non-enhancing T2 hyperintensity regardless of the IDH mutation  status39. Moreover, the standard treatment 
strategies are also the same for both ‘glioblastoma, IDH-wildtype, grade 4’ and ‘astrocytoma, IDH-mutant, grade 
4’ at  present40. Seventh, the sensitivity of the combined model was higher in the test set, as compared with the 
training set. The inconsistent sensitivity results between the two datasets may be possibly attributed to several 
factors including the following: 1) The possibility exists that the test data happened to be drawn more favorably 
for the combined MR model by chance; 2) The test data consisted of more recent data with relatively higher 
spatial and temporal solutions for DCE MR imaging. A future prospective study based on a larger dataset is 
needed to validate the added value of  Ve information for deep learning-based prediction of local recurrence in 
grade 4 adult-type diffuse gliomas.

In conclusion, a multiparametric nnU-Net deep learning model based on the combination of DCE and 
conventional MR imaging outperformed the nnU-Net model based on conventional imaging alone in terms 
of sensitivity for prediction of local recurrence in patients with grade 4 adult-type diffuse gliomas. The model 
output may be used to modulate the radiation dose to achieve better local control and ultimately improve the 
median survival in patients with grade 4 adult-type diffuse gliomas.

Methods
The institutional review board of Seoul National University Hospital approved this retrospective study and waived 
the requirement for informed consent (IRB No. 2111-191-1277). The study protocol is performed in accordance 
with with the Declaration of Helsinki.

Patient selection
From September 2010 to February 2022, 318 patients who were initially diagnosed with GBM, isocitrate dehy-
drogenase (IDH)-wildtype, grade 4 or astrocytoma, IDH-mutant, grade 4 at Seoul National University Hospital 
were consecutively enrolled (Fig. 3).

The inclusion criteria were as follows: patients (a) who had a histopathologic diagnosis of GBM, IDH-
wildtype, grade 4 or astrocytoma, IDH-mutant, grade 4 based on the 2021 World Health Organization (WHO) 

Figure 3.  Flow diagram of patient selection and classification. The training set consisted of 62 recurrence and 
84 non-recurrence cases, and the test set consisted of 15 recurrence and 18 non-recurrence cases.
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 criteria41; (b) who underwent the standard treatment of surgery followed by radiation therapy with concurrent 
TMZ and adjuvant TMZ medication; (c) who underwent preoperative 3 T MR imaging including three-dimen-
sional (3D) CE T1WI, T2 FLAIR, and DCE MR imaging; and (d) who had a follow-up period ≥ 1 year after 
surgery or who were considered to have disease progression within 1 year of the postoperative follow-up period.

The exclusion criteria were as follows: patients (a) who had incomplete imaging data or suboptimal image 
quality (n = 55); (b) who underwent subtotal resection or biopsy (n = 42); (c) who were lost to follow-up within 
1 year without diagnosis of disease progression (n = 39); (d) who died within 1 year for reasons other than tumor 
(n = 2); and (e) who were under the age of 18 (n = 1).

As a result, a total of 179 patients who received gross total resection of contrast-enhancing lesions (i.e., no 
residual contrast-enhancing lesions other than postoperative change on immediate postoperative MR imaging) 
were finally included in our study. Of the 179 total study participants, 146 patients who were diagnosed between 
2010 and 2019 were allocated to a training set to develop a model. This model was further evaluated on a test set 
consisting of 33 patients who were diagnosed between 2020 and 2022.

Furthermore, our dataset was divided into a recurrence group (n = 77) and a non-recurrence group (n = 102). 
The training set consisted of 62 recurrence and 84 non-recurrence cases, and the test set consisted of 15 recur-
rence and 18 non-recurrence cases. In this study, we defined the ‘local recurrence’ within 1 year after surgery as 
the appearance of a measurable enhancing lesion located within non-enhancing T2 hyperintense area around 
the surgical  cavity42. The flow diagram of patient selection and classification is shown in Fig. 3. For all patients, 
clinical characteristics were recorded, including age, sex, methylation status of O6-methylguanine-DNA meth-
yltransferase (MGMT) promoter, and IDH mutation status.

MR image acquisition
All preoperative MR images were obtained using a 3 T imaging unit with a 32-channel head coil (Magnetom 
Verio [n = 100], Siemens Healthineers; Magnetom Skyra [n = 63], Siemens Healthineers; Ingenia CX 3.0 T [n = 15], 
Philips Healthcare; Discovery MR 750w [n = 1], GE Healthcare). The MR imaging protocol for the tumor evalu-
ation included the following sequences: pre- and postcontrast T1WI (T1-weighted 3D magnetization-prepared 
rapid acquisition gradient-echo [MPRAGE] sequence), axial T2 FLAIR imaging, and DCE MR imaging.

For DCE MR imaging, 3D T1-weighted spoiled gradient-echo imaging was performed. Gadobutrol (Gadovist; 
Bayer Schering Pharma, Berlin, Germany) (0.1 mmoL/kg of body weight) and a 30 mL saline bolus were injected 
at a rate of 4 mL/s, using a power injector (Spectris; MedRad, Indianola, Pennsylvania). For each phase, 40 
images were acquired at intervals of repetition time (TR) with a temporal resolution of 4.8 to 6 s. The specific 
parameters were as follows: TR = 2.8–4.2 ms; echo time (TE) = 1.0–2.1 ms; flip angle = 10°; matrix = 192 × 192 or 
128 × 128; field of view (FOV) = 240 × 240  mm2; section thickness = 3.0 mm; voxel size = 1.25 × 1.25 × 3  mm3 or 
1.87 × 1.87 × 3  mm3; pixel bandwidth = 543–790 Hz; phase = 60; and total acquisition time = 4 min 58 s or 5 min 
5 s. The MR scan parameters of all sequences are summarized in Supplementary Table 2.

Image analysis of DCE MR imaging
Postprocessing of DCE MR imaging was performed with commercial software (Nordic ICE, v4.1.2; Nordic-
NeuroLab, Bergen, Norway). The two-compartment pharmacokinetic model proposed by Tofts and Kermode 
was used to calculate the extravascular extracellular space volume per unit volume of tissue  (Ve) from DCE MR 
 imaging43. To generate DCE parameter maps, vascular deconvolution with the arterial input function (AIF) was 
carried out. For each tumor, one experienced neuroradiologist (R.E.Y. with 12 years of neuro-oncology imaging 
experience), who was blinded to the prognosis information, determined the AIF at the M1 segments of the mid-
dle cerebral arteries (at the level of the Circle of Willis). The final AIF curve was made using the cluster analysis 
technique. The baseline T1 was fixed at 1000 ms in this  study44.

Development of the deep learning models
Annotation of local recurrence on preoperative MR imaging
All preoperative MR images in the training and test data were manually labelled by investigators supervised by 
two expert radiologists (R.E.Y. and S.H.C. with 12 and 19 years of neuro-oncology imaging experience) using 
the ITK-SNAP software tool (v3.8.0; http:// www. itksn ap. org)45. Using the follow-up CE T1WIs at the time of 
recurrence as the reference standard, two investigators, by consensus, carefully defined the regions of interest 
(ROIs), the local recurrence areas, within every section of a non-enhancing T2 hyperintense lesion on the pre-
operative FLAIR images (Supplementary Fig. 1A). The investigators were blinded to DCE MR imaging when 
they performed manual labeling of local recurrence on preoperative FLAIR images.

Image processing
3D CE T1WIs were resampled to a 1 mm isovoxel with linear interpolation. Subsequently, the following images 
were coregistered and resampled to the corresponding 3D 1 mm isovoxel CE T1WIs using BRAINSFit of 3D 
Slicer: preoperative 2D FLAIR images, manual annotation labels on the FLAIR images, and 2D DCE parameter 
 (Ve) maps (Supplementary Fig. 1A). Among various DCE parameters, we chose to focus on  Ve map for our deep 
learning model development based on a previous  study15, which reported that  Ve related radiomics features from 
non-enhancing T2 high SI region contributed the most to the radiomics risk score for predicting the progression-
free survival in GBM patients. All coregistration results were manually checked and confirmed by two expert 
radiologists (R.E.Y. and S.H.C. with 12 and 19 years of neuro-oncology imaging experience).

http://www.itksnap.org
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Deep learning model development
The local recurrence prediction models were developed using nnU-Net (Supplementary Fig. 1B)46. As the name 
implies, nnU-Net uses the same neural network design as U-Net, but nnU-Net focuses on pre/post data process-
ing and hyperparameter setting for higher performance and practicability. A recent investigation has shown that 
nnU-Net exhibited superior performance, as compared with the majority of existing methods, across various 
tasks on 23 publicly available datasets in international biomedical segmentation  competitions46. Notably, nnU-
Net has several advantages: (a) it autonomously adapts to new tasks, encompassing preprocessing, network 
architecture, training, and post-processing; (b) it accommodates a diverse range of biomedical imaging datasets; 
(c) it operates without the need for user intervention; and (d) it is computationally viable.

In the model training, 3D CE T1WI and FLAIR pairs were fed as input to build the conventional MR model 
while 3D CE T1WI, FLAIR, and  Ve map datasets were fed as input to build the combined MR model. Subse-
quently, nnU-Net automatically determined the hyperparameters related to the model training in consideration 
of the core characteristics of the dataset (dataset fingerprint), including the class ratio image size and the voxel 
spacing information (details are provided in ‘Supplementary Materials’, Supplementary Table 3, and Supple-
mentary Fig. 2).

We trained full resolution 3D models rather than using 2D models or cascade approaches because 3D models 
are expected to perform better than 2D models, which have been shown to predict outcomes based on limited 
information as compared with 3D models. It was easier to obtain working deep learning models since nnU-Net 
covered data augmentation, patch generation, and patch stitching to yield final prediction results.

Statistical analysis
All statistical analyses were performed using statistical software (MedCalc, version 11.1.1.0, Mariakerke, Bel-
gium). The data for each parameter were assessed for normality with the Kolmogorov–Smirnov test. The clinical 
characteristics of the recurrence and non-recurrence groups were compared using the independent samples t-test 
for non-categorical variables and the Fisher’s exact test for categorical variables. The McNemar test was used 
to compare the sensitivity and specificity between the conventional MR model and the combined MR model 
based on both conventional and DCE MR imaging  (Ve map). The model output included voxels with the prob-
ability of ‘0.5’. For calculation of the sensitivity and specificity at the patient level, cases with at least one voxel in 
the predicted results were categorized as ‘local recurrence’. In all tests, P values less than 0.05 were considered 
statistically significant.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Code availability
To train the deep learning model in this study, we used the publicly available nnU-Net architecture available at 
https:// github. com/ MIC- DKFZ/ nnUNet.
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