
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2606  | https://doi.org/10.1038/s41598-024-52821-x

www.nature.com/scientificreports

Wildfire spreading prediction using 
multimodal data and deep neural 
network approach
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Predicting wildfire spread behavior is an extremely important task for many countries. On a small 
scale, it is possible to ensure constant monitoring of the natural landscape through ground means. 
However, on the scale of large countries, this becomes practically impossible due to remote and vast 
forest territories. The most promising source of data in this case that can provide global monitoring 
is remote sensing data. Currently, the main challenge is the development of an effective pipeline that 
combines geospatial data collection and the application of advanced machine learning algorithms. 
Most approaches focus on short-term fire spreading prediction and utilize data from unmanned aerial 
vehicles (UAVs) for this purpose. In this study, we address the challenge of predicting fire spread on 
a large scale and consider a forecasting horizon ranging from 1 to 5 days. We train a neural network 
model based on the MA-Net architecture to predict wildfire spread based on environmental and 
climate data, taking into account spatial distribution features. Estimating the importance of features 
is another critical issue in fire behavior prediction, so we analyze their contribution to the model’s 
results. According to the experimental results, the most significant features are wind direction and 
land cover parameters. The F1-score for the predicted burned area varies from 0.64 to 0.68 depending 
on the day of prediction (from 1 to 5 days). The study was conducted in northern Russian regions 
and shows promise for further transfer and adaptation to other regions. This geospatial data-based 
artificial intelligence (AI) approach can be beneficial for supporting emergency systems and facilitating 
rapid decision-making.

Global climate change has led to an increase in temperature, which in turn has raised the frequency and overall 
risk of wildfires  worldwide1. Smoke exposure is among consequences of wildfires that have a significant impact 
on human  health2. Soil erosion and slow vegetation recovery have been thoroughly studied to evaluate the total 
damage to the environment caused by  wildfires3. Forest losses affect carbon balance on a global scale and these 
changes are often caused by human  activities4. Due to all these reasons, significant efforts are being made to 
predict wildfire spreading, prevent it and mitigate the damage.

Contemporary scholarly research emphasizes four main components of wildfire risk management: fire pre-
vention and mitigation, preparedness, response, and recovery  phases5. In this study, our focus is on predicting 
wildfire spread using multimodal data to assist in mitigating fire events after they have occurred. This prediction 
can be based on geo-spatial information, land cover characteristics, and weather conditions. The main differences 
in current studies lie in the choice of algorithms and data sources. Data sources can vary in spatial resolution 
(ranging from meters to kilometers) and temporal resolution (ranging from hours to days), addressing differ-
ent practical requirements. By combining satellite imagery with weather measurements, multimodal data can 
provide a more comprehensive understanding of fire behavior and aid in identifying high-risk areas prone to 
ignition and fire spread. While unmanned aerial vehicles are currently used for short-term and small-scale fire 
danger monitoring and  assessment6, satellite data is more preferable for long-term predictions spanning several 
days and covering large-scale areas.

The earliest algorithms for wildfire spreading prediction such as the Canadian forest fire behavior prediction 
system (CFFBPS) are based on empirical and theoretical techniques and rules to model the spreading  process7. 
However, in recent years, machine learning (ML) and deep learning (DL) approaches have been increasingly 
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used to solve hazard forecasting problems based on remote sensing  data8. These algorithms can be used both 
for wildfire ignition  probability9 and fire spreading prediction. For instance,  FireCast10 presented convolutional 
neural network (CNN) model trained on geospatial data, such as satellite imagery, elevation data, weather data, 
and historical fire perimeters to identify patterns associated with fire spread in certain environments to produce 
predictions of wildfire spread.

The quality of ML-based methods depends directly on the quality of the dataset. It is a challenging task to 
assemble a high-quality dataset to train a model for predicting the spread of fires. A number of studies are devoted 
to fuel characteristics estimation based on satellite observations for forest  areas11,12. Produced maps can be fur-
ther used as input features for predictive models development. Hout et al.13 presented an open data resource for 
further research in the field of forest fire forecasting. This dataset combines nearly a decade of remote sensing 
data, utilizing characteristics such as topography, weather, drought index, vegetation, and population density 
with historical fire records. Using this data set, the potential of deep learning approaches for predicting forest 
fires based on remote sensing data is shown.

Another approach for predicting fire spread is to train a model on simulated data, the trained model can 
further predict the spread of a forest fire. This approach allows the generation of arbitrarily large datasets with 
diverse initial data and features. Alliare et al.14 proposed approach that consists of a trained DNN used for 
regression. The network has a hybrid architecture to deal with 2D fields of environmental parameters and with 
scalar inputs. Training was carried out with a large dataset of size 5× 106 and a complementary test sample of 
size 104 , the target model of fire propagation is obtained using the ForeFire numerical solver. The model showed 
satisfactory performance, explaining 94% of the variance of the output.

Bolt et al.15 presented an emulator based on deep neural network (DNN). It approximates the fire front and 
can be used in the future to more effectively characterize a wide range of fire scenarios simulated in various 
environmental conditions. Burge et al.16 demonstrated the efficacy of the ConvLSTM model on several corpuses 
of simulated data generated by an analogue model. This research shows that ConvLSTMs can capture local fire 
transmission events, as well as the overall fire dynamics, such as the rate at which the fire spreads.

The objective of this study is to propose the effective ML-based methodology for predicting fire spread that 
is able to cover vast territories taking into account the most important environmental parameters, that influence 
the direction and speed of fire spread. The forecasting horizon of 1 to 5 days in our study is purposefully selected 
to align with the availability of high-resolution meteorological data, which is crucial for accurate wildfire predic-
tion. Longer-term forecasts are constrained by the current resolution of meteorological inputs. Furthermore, 
the primary aim of this work is to support immediate wildfire response efforts, necessitating highly accurate 
short-term predictions. Accuracy tends to diminish over longer periods due to the cumulative nature of predic-
tion errors and the inherent unpredictability of environmental factors. One of the key questions addressed in 
the study is how to design an effective pipeline that combines proper data collection and neural network model 
training. The proposed study is mainly focused on large fires that spread on huge territories and may lead to seri-
ous ecological and economical consequences. We integrate and automatically process static features that describe 
the properties of the surface. In real-life monitoring systems, some data can be unavailable due to disruptions or 
noise in operational weather forecasts for some parameters. Therefore, it is crucial to estimate the importance of 
each input feature and the implications of its absence. Feature importance analysis is implemented in the study 
to better understand the process and further improve the model. The main advantage of the proposed ML-based 
approach in comparison with empirical approaches is its ability to be automatically scaled to vast territories by 
extended training dataset with new environmental examples. We validated the developed approach in three vast 
Russian regions to prove its effectiveness. The main contribution of the study is as follows:

• We designed a DL-based approach for fire spreading prediction.
• We analyzed geo-spatial features and their importance for model development.
• We shared the methodology of data collection and processing.

The paper is organized as follows: the section titled as “Methodology and data” section presents our proposed 
methodology and provides a description of the data utilized. The “Results” section showcases the outcomes 
obtained from our study, while the “Discussion” section focuses on analyzing and interpreting these findings. 
In the “Conclusion” section, we present our final remarks.

Methodology and data
Study area
The dataset for this study includes data for 2021–2022 years for the following regions of the Russian Federation: 
Krasnoyarsk Territory, Republic of Sakha (Yakutia), and Irkutsk Region (Fig. 1). In 2019, carbon emissions 
resulting from forest fires within these regions attained 82 million tons, and in the entire expanse of the Rus-
sian Federation—284 million  tons17. Furthermore, as demonstrated in the research conducted by Romanov 
et al.18, the Republic of Sakha emerged as the primary contributor to  PM2.5 emissions in Russia during the year 
2021, accounting for a substantial 6.1 Mt out of the total 8 Mt of  PM2.5 emissions within the country. This data 
underscores the significant contribution of these regions to the overall emissions from wildfires in the Russian 
Federation.

Krasnoyarsk Territory, Irkutsk Region, and the Republic of Sakha constitute significant portion of the East-
ern Siberian geographic expanse spanning an area of 6,225,166  km2. The prevailing vegetative landscape is 
emblematic of the taiga biome, characterized by the conspicuous prevalence of coniferous woodlands, primarily 
composed of boreal species such as spruce, fir, larch, and pine. Eastern Siberia’s geographic domain encompasses 
a range of distinct climatic zones: to the south, there is an extracontinental climate; towards the central areas, a 
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moderately continental climate prevails; and on the north the climate becomes strikingly continental, transition-
ing into subarctic and arctic climate regimes. Precipitation levels in Eastern Siberia are generally lower when 
compared to the western regions of Russia. The topographical attributes of the region of interest encompass vast 
plains, high plateaus, mountain ranges, and large river systems.

Reference data
A total of 947 fires representing the subsequent classifications were selected as reference data: uncontrolled fire, 
forest fire, natural fire, and peat fire. Specifically, within this dataset, there were 183 fires recorded in the Irkutsk 
Region, 205 fires in the Krasnoyarsk Territory, and 559 fires in the Republic of Sakha.

The duration of fires varies from one day to three months, with 50% burning for less than ten days and 75% 
burning for less than twenty days (Fig. 2). The majority of fires last 2 days.

Burning areas vary from 0.5 to 150  km2. About 50% of the fires burn in areas less than 30  km2 and more than 
75% do not exceed 50  km2 (Fig. 3). Especially large areas burn in the Republic of Sakha.

Figure 4 shows the distribution of fire areas for the first 5 days of burning. There is an obvious pattern in that 
most fires did not have areas more than 20  km2. Due to this empirical observation, the determination was made 
to assess predictive domains of approximately 20 × 20 km around ignition center.

Remote sensing and geospatial data
Each fire instance in the dataset was accompanied by precise ignition point coordinates and the corresponding 
fire initiation date. Utilizing these ignition point coordinates, the centroid of each fire was computed, and a 
bounding box was generated employing the geopandas.GeoDataFrame.buffer  function19. The buffer diameter 
was determined to be approximately 21 × 21 km.

For each acquired region of interest, data retrieval was performed from open data sources. Table 1 presents 
comprehensive details pertaining to the employed datasets, including their spatial resolution, the period of data 
acquisition, the format and units in which the data was obtained.

The acquired data underwent cropping based on the designated region of interest and was subsequently 
resized to dimensions of 128 × 128 pixels with a spatial resolution of 0.0059435° per pixel, employing bilinear 

Figure 1.  Study regions: Krasnoyarsk Territory, Irkutsk Region, Republic of Sakha. The map was generated with 
the QGIS v.3.14 software (https:// qgis. org/ en/ site/).

https://qgis.org/en/site/
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interpolation. Furthermore, the weather data sourced from the ERA5-Land dataset underwent aggregation 
operations, encompassing computations for minimum and maximum values.

Subsequently, for each fire instance, the downloaded data was utilized to generate compressed archives in 
NPZ format, incorporating the following fields: 

1. The “ignition” field was appended with an image with rasterized ignition points, denoting a value of “1” in 
pixels corresponding to ignition points and “0” in pixels representing the background.

2. Five images were integrated into the “static” field in the following sequence: 

(a) Land cover map for index “0”.
(b) Elevation map for index “1”.
(c) Aspect and slope maps, derived by applying the DEM (Digital Elevation Model) processing method 

from the GDAL  library28 to the elevation map, for index “2” and “3” respectively.
(d) Population density map for index “4”.

3. Furthermore, the “dynamic” field was enriched with 16 images for the fire initiation day, and 10 images were 
used for subsequent prediction days (refer to Table 2 for details).

Figures 5 and 6 contain examples of images in “static” and “dynamic” fields of the compressed archives.

Figure 2.  Distribution of fires duration.

Figure 3.  Distribution of burned areas.
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Data preprocessing
The model receives as an input arrays data for each day. They contain static, dynamic features and ignition points. 
The arrays then go through the following processing steps:

• Feature values are set to [0, 1] by Min–Max normalization, and unknown values are set to − 1. Thus the input 
interval is given to [− 1, 1].

• Vegetation types are converted into binary masks for each class;

Figure 4.  Distribution of burned areas for the first 5 days of burning.
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• Arrays with features have the size of 32 × 32 pixels (21 × 21 km).
• Arrays with features (layers) for all days are united in one multi-channel tensor.

As a result, we obtain a tensor with the following layers: 1 layer for ignition points on the first day, 21 static 
features, 6 vegetation features from MODIS, 10 dynamic weather features for each forecasting day. The total 
number of features for 5 days is 78. For a shorter forecasting period, we substitute 10 weather features for each 
day. Thereby, for 3 days, we have 58 features.

The dataset is divided into train and test sets in a ratio of 4:1. In the test set, fires for the Irkutsk region, the 
Krasnoyarsk region, and the Republic of Sakha were presented in the same ratio.

Methodology
The proposed approach aims to estimate the direction and speed of the wildfire using spatial data, operational 
information about the fire ignition point, and forecast weather data. The scheme of the proposed approach is 
presented in Fig. 7. The features used, which are submitted to the model input, can be divided into three cat-
egories: fire points, static features, and dynamic features. Historical data were used to create a training dataset. 
We included a preprocessing step to filter the target fire events and bring all data within the required range of 

Table 1.  Open data sources used for dataset preparation.

Data source Acquisition period Spatial resolution Units Format Description

MODIS MCD12Q1  v06120 2021 year 500 m Classes GeoTIFF
Land cover: annual International 
Geosphere–Biosphere Programme clas-
sification

Copernicus GLO-30 digital elevation 
 model21 2011–2015 years 30 m m GeoTIFF Elevation

WorldPop population  density22 2020 year 30 arc-seconds Number of people per  km2 GeoTIFF Population density

MODIS MOD15A2H  v06123 8 days before fire initiation 500 m
%

GeoTIFF
Fraction of photosynthetically active 
radiation

m2/m2 Leaf area index

MODIS MOD13A1  v06124 16 days before fire initiation 500 m – GeoTIFF Normalized difference and enhanced 
vegetation index

MODIS MOD16A2  v00625 8 days before fire initiation 500 m kg/m2 GeoTIFF Evapotranspiration and potential evapo-
transpiration

MODIS MOD11A1  v06126 For every prediction day 1 km K GeoTIFF Daytime and nighttime land surface 
temperature

ERA5-Land27 For every prediction day 9 km

m/s

NetCDF

Eastward and northward components of 
the 10 m wind

K Temperature in the atmosphere

m
Accumulated liquid and frozen water, 
comprising rain and snow, that falls to the 
Earth’s surface

Table 2.  “Dynamic” field structure of an archive.

Image data Field index in archives related to the fire initiation day
Field index in archives related to other 
prediction days

Fraction of photosynthetically active radiation 0 –

Leaf area index 1 –

Daytime land surface temperature 2 0

Nighttime land surface temperature 3 1

Normalized difference vegetation index 4 –

Enhanced vegetation index 5 –

Evapotranspiration 6 –

Potential evapotranspiration 7 –

Max value of eastward component of the 10 m wind 8 2

Max value of northward component of the 10 m wind 9 3

Max atmospheric temperature 10 4

Max precipitation 11 5

Min value of eastward component of the 10 m wind 12 6

Min value of northward component of the 10 m wind 13 7

Min atmospheric temperature 14 8

Min precipitation 15 9
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values for neural network training. The collected and preprocessed training examples were then used to tune the 
hyperparameters of the CNN. The model outputs a forecast of the burned area by fire on a given day (a mask of 
burned or burning area). Additionally, at the post-processing stage, the direction and speed of the wildfire spread 
were analyzed. The prediction horizon is 5 days, with a prediction step of 1 day. The forecasting horizon of 1 to 
5 days in our study is purposefully selected to align with the availability of high-resolution meteorological data, 
which is crucial for accurate wildfire prediction. Longer-term forecasts are constrained by the current resolution 
of meteorological inputs. Furthermore, the primary aim of this work is to support immediate wildfire response 
efforts, necessitating highly accurate short-term predictions. Accuracy tends to diminish over longer periods 
due to the cumulative nature of prediction errors and the inherent unpredictability of environmental factors. 
The model estimates the spread of the fire on a grid with a spatial resolution of 650 m for each cell. The forecast 
area was set to 21 × 21 km, with the ignition point located in the center of this area. This modeling area size was 
chosen based on statistical analysis of the average burned area in 5 days. In general, wildfires do not spread more 
than 10 km in 5 days in the considered northern areas.

Algorithms
In the experiment, popular architectures for segmentation task were utilized: U-Net29, U-Net++, MA-Net30, 
 DeepLabV331. The hyperparameters were uniformly defined for all models as follows: encoder backbone is 
ResNet18, number of stages used in encoder equals to 3, number of channels in decoder is (64, 32, 16) (except for 
DeepLab architectures), with default values for the other hyperparameters. The same dataset was used for training 
and validation across all experiments. Upon completion of training, metrics such as F1-score, Precision, Recall, 
IoU were compared, and a visual analysis of predictions was conducted. The conducted experiments included 
a comparative evaluation of mentioned architectures, along with an array of loss functions such as BCE loss, 
Dice loss, Focal loss, the combination of Dice and Focal loss, General Dice loss, and Tversky loss. The F1-score 
metric used to assess each model’s performance reveals variances in effectiveness with scores from 0.62 to 0.67, 
indicating no singularly superior loss function for all architectures.

In the subsequent stage, a list of loss functions was identified for comparison in various experiments with 
the MA-Net architecture. This list included primary loss functions used in segmentation tasks: BCEWithLogits 
Loss, Dice and Focal Loss, Focal  Loss32, Generalized Dice Loss, and  TverskyLoss33. We tested different hyper-
parameters of the MA-Net model, such as learning rate, batch size, special attention was given to compare loss 
functions: the speed of loss convergence, uniformity of training, final metrics on the validation set, and visual 
assessment of predictions.

MA-Net is a U-Net similar model to solve the image segmentation problem that includes two main com-
ponents: positional attention block (PAB) and multiscale attention block (MFAB). Positional Attention Block 
(PAB) records spatial relationships between pixels in the global view, this block applies to the output of the 
Encoder model and allows the decoder to focus on specific areas of the feature map. The Multiscale Attention 

Figure 5.  Example of ignition points and images in “static” field for them.
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Block (MFAB) fixes channel dependencies between any object map by means of a multiscale semantic union of 
objects, this block is applied at each stage of decoder.

The MA-Net model has the depth of three (three blocks of Encoder–Decoder) pretrained on Imagenet dataset. 
The number of input channels of corresponding decoder layers are (64, 32, 16), number of channels for PAB 
unit in decoder equals to 64.

We used Adam optimizer with L2 = 1e−5 and learning rate equal to 3e−3. The learning rate was decreased 
during training according to the  OneCycleLR34 rule. The model was trained for 35 epochs, with a batch size of 
32. Early stopping was applied to prevent model overfitting.

We utilized a combination of Dice and Focal loss functions as our loss function. The weights assigned to the 
loss function were adjusted to penalize fire pixels that were further away from the points of ignition more heavily, 
while giving less penalty to fire pixels concentrated near the points of ignition. This approach promotes greater 
diversity in model predictions and enhances the model’s ability to accurately predict large fires.

Evaluation metrics
To evaluate model performance, we use F1-score and Intersection Over Union (IoU) with micro-imagewise 
averaging. The metrics are computed for each image and then averaged for all samples in the test set.

Mean absolute error (MAE) and mean absolute percentage error (MAPE) metrics are considered both for area 
values and for propagation velocities in four directions (north, south, west, east). To calculate the propagation 

Figure 6.  Example of images in “dynamic” field.
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rate, the distance from the center of the ignition points to the edge of the projection mask in four directions is 
taken, multiplied by the pixel size and divided by the number of forecast days. To calculate the approximate area, 
the number of pixels of the projection mask is summed and multiplied by the area of one pixel.

For MAE and MAPE metrics, the number of pixels corresponding to the burnt area for the predicted and 
true masks, as well as their intersection, are calculated. Metrics are calculated using the following formulas:

For MAE and MAPE metrics, let’s define Dgt and Dpred as ground truth and predicted velocity of propagation 
in each direction, respectively:

Results
We compared different neural network architectures in the task of fire spreading forecasting for 3 days. The 
obtained results for six various loss functions are shown in Table 3. The highest F1-score is achieved for the 
MA-Net architecture with Dice + Focal loss. The next experiments are conducted with the MA-Net architecture.

The achieved results for the MA-Net model with the best configuration is presented in Table 4. For each 
forecasting horizon, we trained a separate model and calculated a number of metrics to analyze the quality of 
fire spreading prediction. For each forecasting horizon, we defined the best loss function based on F1-score on 
validation subset. Achieved results are presented in Table 5. The best F1-score (0.68) has been achieved for the 
first day of the prediction using the Tversky loss function. For the third day, it slightly decreases and equals to 
0.67. For the fifth day, the quality equals to 0.65. While F1-score and IoU are one of the most commonly used 
metrics for remote sensing semantic segmentation tasks, we also considered MAE and MAPE metrics. They 
provide us better understanding and interpretable values for burned area. The absolute error of the predicted 
burned area is increased from 9.54 to 28.2 sq km for the first and the fifth day, respectively. Such an increase 
in MAE is connected with wider burned area for later days. Therefore, we should notice that the MAPE metric 
provides more intuitive measurements of model’s performance. MAPE for the first day equals to 22.8, while the 
metric for the fifth day is 24.1. Therefore, the achieved metrics show perspective for future integration of the 
model in a natural disasters monitoring system.

For visual assessment, Fig. 8 shows model’s prediction for the third day for some test wildfire events. The 
model tries to fill the burned area. Predictions for other days are presented in Fig. 9. Although we did not set a 
goal to train model to predict the velocity of wild fire spreading in each direction, we computed it as a part of 
the post-processing. The achieved results are presented in Table 6. For the first day the average value for the four 
directions (north, south, west, east) equals to 0.74 km/day. It is suggested to add wild fire spreading direction as 
an additional component in loss function to adjust both the direction and area quality of the developed CNN 
model.

MAE(Npred,Ngt) =
∣

∣Npred − Ngt

∣

∣ ∗ pixel_size2,

MAPE(Npred,Ngt) =

∣

∣Npred − Ngt

∣

∣

Ngt
× 100%.

MAE(Dpred,Dgt) =
∣

∣Dpred − Dgt

∣

∣

MAPE(Dpred,Dgt) =

∣

∣Dpred − Dgt

∣

∣

(Dgt + {0, if Dgt > 0, else Dpred})
× 100%.

Figure 7.  Study workflow. The map was generated with the QGIS v.3.14 software (https:// qgis. org/ en/ site/), fire 
spreading example, and RGB satellite composite from Google Maps layers available in QGIS.

https://qgis.org/en/site/
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Figure 8.  Example of model predictions for three days on the test set (MA-Net model). The red boundary is for 
ground truth fire perimeter, the red area is for model’s prediction. The map was generated with the QGIS v.3.14 
software (https:// qgis. org/ en/ site/) and RGB satellite composite from Google Maps layers available in QGIS.

Figure 9.  Example of model predictions for different days on the test set (MA-Net model). The red boundary 
is for ground truth fire perimeter, the red area is for model’s prediction. The map was generated with the QGIS 
v.3.14 software (https:// qgis. org/ en/ site/) and RGB satellite composite from Google Maps layers available in 
QGIS.

https://qgis.org/en/site/
https://qgis.org/en/site/
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Feature importance
The input of the model consists of a multichannel tensor with a spatial resolution of 21 × 21 km. It includes 11 
static features, such as the vegetation map, represented by 17 binary arrays, as well as 10 dynamic features for 
each of the 5 days. While some attributes may have clear relevance, the significance of others may be uncertain. 
Therefore, evaluating the importance of features can aid in reducing the feature space and gaining a deeper 
understanding of the model’s functioning.

One possible approach to assessing significance is by learning a model on different sub-samples of traits and 
observing changes in basic metrics. Although this approach is meaningful, it can be computationally inefficient. 
Our approach to assessing significance involved inferring the model on different sub-samples of validation fea-
tures. More precisely, we zeroed out the values of the selected feature in all validation sample examples. Then, we 
used the trained model to make predictions on the modified data and compared the resulting metrics with the 
reference. This approach enables us to estimate the model’s dependence on specific features without requiring 
retraining of the model.

Table 3.  The F1-score for different architectures depending on loss functions (Day 3).

U-Net U-Net++ MA-Net DeepLabV3

BCE loss 0.63± 0.007 0.63± 0.004 0.63± 0.006 0.64± 0.005

Dice loss 0.65± 0.005 0.66± 0.007 0.65± 0.007 0.66± 0.006

Focal loss 0.62± 0.006 0.64± 0.004 0.63± 0.004 0.63± 0.006

Dice + focal loss 0.66± 0.004 0.65± 0.004 0.67± 0.003 0.65± 0.005

General dice loss 0.65± 0.007 0.66± 0.005 0.66± 0.005 0.66± 0.004

Tversky 0.65± 0.005 0.66± 0.006 0.66± 0.006 0.66± 0.005

Table 4.  Metrics for different days to evaluate area (MA-Net model). The MAE metric is in sq km.

Day 1 Day 2 Day 3 Day 4 Day 5

F1-score 0.68 0.66 0.67 0.64 0.65

IoU 0.54 0.52 0.52 0.5 0.52

MAE 9.54 15.8 19.7 27.16 28.2

MAPE 22.8 25.3 25.9 24.6 24.1

Table 5.  The F1-score metrics for different forecasting horizon depending on loss function (MA-Net model).

Day 1 Day 2 Day 3 Day 4 Day 5

BCE loss 0.64 0.58 0.63 0.65 0.57

Dice + focal loss 0.65 0.65 0.67 0.64 0.62

General dice loss 0.66 0.66 0.66 0.62 0.64

Tversky 0.68 0.64 0.66 0.65 0.65

Table 6.  Metrics for different days to evaluate fire spreading direction. The MAE metric is in km/day (MA-Net 
model).

Day 1 Day 2 Day 3 Day 4 Day 5

MAE

 North 0.55 0.34 0.29 0.25 0.2

 South 0.49 0.29 0.32 0.26 0.19

 West 1.01 0.82 0.55 0.49 0.35

 East 0.91 0.70 0.51 0.48 0.34

MAPE

 North 54.9 60.6 69.2 69.7 62.6

 South 48.5 46.07 57.9 62.3 54.9

 West 47.5 52.25 53.1 64.2 51.5

 East 59.7 69.9 61.8 87.9 60.3
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Results of feature importance analysis is presented in Table 7. It is worth noting that there is a correlation 
between some features (NDVI and EVI, north- and east-components of wind, elevation, slope, aspect) so that 
groups of features were evaluated separately. When we exclude the group of features representing land cover 
properties, the F1-score decreases from 0.66 to 0.589. Exclusion of wind characteristics leads to the F1-score of 
0.51. Figure 10 shows model’s prediction when particular features are excluded. We can see the importance of 
proper wind measurements for the trained model. When this information is absent, the model fails to provide 
an accurate prediction of fire spreading.

Discussion
The task of forecasting fire spread has undergone numerous changes and improvements over the past decades. 
This evolution has been driven by the variety of approaches, methods, and technologies employed by researchers 
in the field. It is worth noting that different approaches can vary from the collection and processing of data to 
the final post-processing of predictions.

The primary focus in this section of the discussion is to compare our approach with other methods pre-
sented in academic literature. We will consider the specificity of data usage, architectural decisions, as well as 
the peculiarities of the training process to identify key differences and potential advantages of our methodology 
in comparison with others.

Radke et al.10 set the primary goal that was accurate prediction of the spreading of the fire perimeter in the 
near future, utilizing a high-resolution visual data (30 m resolution) and weather data (3 km resolution) for the 
next 24 h following a given burn perimeter. The model makes pixel-wise predictions based on data for a square 
area of 30 pixels around the concerned pixel. Our work aimed at forecasting the spread several days ahead using 
lower resolution data (650 m per pixel).

Hout et al.13 adjusted data to a 1 km resolution. Comparing features like topography, vegetation, and weather 
at 1 km and 650 m resolution, they show no significant difference. However, significant variation is seen when 
comparing fire masks at these resolutions, particularly for fires less than 5 km2 . Given the prevalence of ’small’ 
fires ( < 5 km2 ) in the dataset, training an accurate prediction model becomes more complex. The data pre-
processing suggestion is to use the previous day’s fire mask as an input feature, which could lead the model to 
consistently predict a similar perimeter to the previous day’s, due to the often uneven spread of fires, when the 
fire perimeter remains unchanged for several days.

The main characteristic of these  studies14–16 is the employment of fire simulations under defined conditions, 
making use of various mathematical analog models to generate fire scenarios. This approach has a twofold 
benefit. On the one hand, it facilitates the creation of a comprehensive dataset, encapsulating a wide range of 
feature combinations that could be instrumental in understanding and predicting fire behaviors under different 
circumstances. This enriched dataset can be a valuable asset for training and testing predictive models, offering 
a broad spectrum of scenarios for analysis. On the other hand, there is a significant drawback as this method 
tends to overlook the inherent noise and unpredictability present in real-world data. Real fires are influenced by 
a myriad of factors, some of which can be highly unpredictable or not well understood, thus they might not be 
well-represented in a simulated environment. The discrepancy between mathematically simulated fires and real 
fires could potentially lead to models that are theoretically sound but might perform poorly when confronted 
with real-world, noisy data. Therefore, real-world datasets with verified wildfire events are highly valuable and 
can be further combined with simulated data. Moreover, the focus in most studies is predominantly on short-
term predictions, extending up to a few hours that is crucial for fire-risk management near human  settlements35. 
While the objective of our work was to forecast fires spreading over several days for long-term planning on a 
large-scale. The primary aim of our study was to forecast fire spread over several days for long-term planning 
on a large scale in contrast to the common focus of most studies on short-term predictions of up to a few hours, 
which are crucial for immediate fire-risk management near human  settlements35.

Table 7.  Feature importance estimation based on feature groups. Certain feature groups are exclude and 
model’s performance is estimated for the third fire spreading day.

IoU F1-score MAE

All features are included (forecast for the third day) 0.529 0.664 19.7 sq km

Land cover, NDVI, EVI − 10% − 6.3% + 33.3%

Fraction of PA radiation absorbed by green vegetation, LAI − 8.3% − 5.3% + 16.9%

DEM, average aspect and slope − 4.3% − 1.8% + 4.1%

Daytime and nighttime land surface temperature − 3% − 1.1% + 8.2%

Daytime and nighttime land surface temperature, air temperature at a height of 2 meters (min, max) − 5.1% − 2.8% + 9.5%

Actual and potential evapotranspiration − 3.8% − 1.7% + 11.5%

The eastern component of the wind (min, max) − 43.9% − 36.6% + 401.2%

North wind component (min, max) − 42.7% − 35.7% + 73.7%

Total precipitation (min, max) − 1.3% + 0.3% − 0.6%

Actual and potential evapotranspiration, total precipitation (min, max) − 3.6% − 1.5% + 11%
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Water objects
Model’s ability to take into account water bodies is another important issue for discussion. We analyzed its 
behavior near large lakes and rivers, and the experimental results are presented in Fig. 11. In Fig. 11, the target 
fire masks are overlaid with the land cover map that contains the water mask. It is interesting to note that ground 
truth masks with fire spreading have a specific characteristic that can be explained by the nature of the process. 
The burned area is defined based on the temperature anomaly of the surface. At a short distance from the bank 
of a river or lake, the temperature might be significantly higher due to sparks and hot wind spread from the fire 
towards the water body. Thus, we occasionally observe rare ground truth masks that cover the water surface. 
However, due to a statistically sufficient amount of training examples of fire events, the model has learned the fire 
behavior near water bodies and produces predictions that do not cover the water surface. Currently, water body 
masks are derived from MODIS products. Such masks can be also produced with higher spatial resolution based 
on Sentinel-1 and Sentinel-2  images36. However, it assumes that other spatial features should be also brought to 
higher spatial resolution. The main limitation in this case is the weather forecast.

Limitations and future work
We additionally checked the developed approach for other regions. Figure 12 depicts a compression between 
wildfire in Rostov oblast and Irkutsk region for the third day of fire events. Although this test sample for Irkutsk 
region was not in the training subset, the model’s prediction is rather accurate. The F1-score is 0.85, the IoU 
is 0.74. The area metrics such as MAE and MAPE are also high and equal to 3.9 sq km and 20%, respectively. 
However, for the fire event in Rostov region metrics are lower and equal to 0.65 and 0.48 for F1-score and IoU, 
respectively. MAE and MAPE are 19 sq km and 54%. One of the reasons in the prediction quality degradation is 

Figure 10.  Example of feature importance: exclusion of the east wind component (a) and the north wind 
component (b). The red boundary is for ground truth fire perimeter, the red area is for model’s prediction. The 
map was generated with the QGIS v.3.14 software (https:// qgis. org/ en/ site/) and RGB satellite composite from 
Google Maps layers available in QGIS.

https://qgis.org/en/site/
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new environmental conditions for this south region. The model has been trained for north regions and learned 
patterns in landcover and weather properties. Therefore, we suggest additional model training for new regions 
with principle differences in environmental states.

It is widely recognized that detailed fuel maps play a significant role in predicting the occurrence and spread 
of  wildfires37. Therefore, an encouraging direction for future research would be to integrate land cover and land 
use maps with higher spatial  resolution38 into the fire spreading prediction pipeline. The spatial resolution of 
weather forecasting data is a limitation in the presented approach when more detailed fire spreading maps are 

Figure 11.  Fire spreading predictions near water bodies. Study area (a), reference masks with burned area (b), 
model predictions (c). Red points depict ignition points. Yellow areas in sub-figures (b,c) referee to water bodies 
class from the MODIS product.
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required. However, there are studies that have proposed methods for weather forecast super-resolution39, which 
could be considered to achieve more precise results.

Conclusion
Forecasting the spread of wildfires is an important task in fire management and mitigation. Satellite data has 
emerged as a promising source of information for this purpose. However, utilizing Earth remote sensing data 
effectively requires the development of new algorithms and machine learning approaches for spatial data pro-
cessing and analysis. In this study, a unique dataset comprising Earth cover characteristics and meteorological 
measurements was collected and processed. The dataset encompasses several regions of the Russian Federation 
and includes verified fire data spanning multiple years. Additional variables were derived from satellite monitor-
ing data, and a training dataset was created. A methodology was proposed to train a neural network algorithm 
based on the MA-Net architecture, enabling the prediction of fire spread up to 5 days in advance. Furthermore, 
additional characteristics such as the speed and direction of the fire front were determined. Analysis of the 
feature’s significance revealed that meteorological measurements are the most crucial factor in predicting fire 
spread. The model achieved an accuracy of F1-score 0.67 during testing for three days. The developed approach 
shows promise for further implementation in emergency monitoring systems, facilitating rapid analysis and 
faster decision-making to combat fires.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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