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Optimized network based natural 
language processing approach 
to reveal disease comorbidities 
in COVID‑19
Emre Taylan Duman 1,2*, Gizem Tuna 3, Enes Ak 1, Gülben Avsar 1 & Pinar Pir 1

A novel virus emerged from Wuhan, China, at the end of 2019 and quickly evolved into a pandemic, 
significantly impacting various industries, especially healthcare. One critical lesson from COVID-
19 is the importance of understanding and predicting underlying comorbidities to better prioritize 
care and pharmacological therapies. Factors like age, race, and comorbidity history are crucial 
in determining disease mortality. While clinical data from hospitals and cohorts have led to the 
identification of these comorbidities, traditional approaches often lack a mechanistic understanding 
of the connections between them. In response, we utilized a deep learning approach to integrate 
COVID-19 data with data from other diseases, aiming to detect comorbidities with mechanistic 
insights. Our modified algorithm in the mpDisNet package, based on word-embedding deep learning 
techniques, incorporates miRNA expression profiles from SARS-CoV-2 infected cell lines and their 
target transcription factors. This approach is aligned with the emerging field of network medicine, 
which seeks to define diseases based on distinct pathomechanisms rather than just phenotypes. 
The main aim is discovery of possible unknown comorbidities by connecting the diseases by their 
miRNA mediated regulatory interactions. The algorithm can predict the majority of COVID-19’s 
known comorbidities, as well as several diseases that have yet to be discovered to be comorbid with 
COVID-19. These potentially comorbid diseases should be investigated further to raise awareness and 
prevention, as well as informing the comorbidity research for the next possible outbreak.

SARS-CoV-2 virus could infect many types of human cells, and also has the ability of rapid evolution. Even 
though numerous strains of the virus have been identified1,2, the virus’s infection process in all strains relies on 
the ACE2 receptor protein binding to spike proteins as reported by the early investigations of the infection3. The 
vascular effects of the ACE/ACE2 balance were also found to be influenced by viral binding, leading to several 
complications. These effects have serious consequences in patients with diseases that cause an inbalance in 
ACEs ratio, such as diabetes, heart disease, and blood tension-related disorders. This shared mechanism makes 
COVID-19 highly comorbid and rare comorbidities with unknown backgrounds could be still undiscovered. In 
this paper, possible comorbidities of COVID-19 examined by a network-based representation of miRNA-gene 
and disease interactions to reveal possibly co-altered mechanisms.

Mendelian and complex (multifactorial) are the two most common classifications for diseases. Mendelian dis-
orders are caused by a single gene mutation and may be identified by their inheritance patterns. Complex diseases 
also have a genetic component but exhibit complex genetic patterns, in addition, environmental parameters play 
a larger role in complex diseases than in the Mendelian diseases4. Next-generation sequencing applications have 
improved the quality and coverage of acquired data, by combining data from diverse omics techniques, it is pos-
sible to gain a deeper knowledge of both mendelian and complex disorders. Identifying multiple molecular and 
mechanistic signatures of etiology of the diseases via multi-scale approaches can offer us a more comprehensive 
understanding of mechanisms and may allow us to construct accurate disease linkages5. For example, integration 
of clinic next-generation sequencing and the human protein–protein interaction network (PPI)6 improved our 
understanding of the exact mechanisms of diseases7,8. Investigation of multiple layers, including gene regulation 
and miRNA profiles has the power to provide even more details on indirect effects of disease-associated genes.
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Jin et al. proposed a meta-path-based disease network identification method, which is a network-based 
approach for discovering disease comorbidities by incorporating miRNA-mediated network structure into the 
word2vec method8. MpDisNet uses four different biological networks to create a network structure that connects 
diseases that may be comorbid: disease-miRNA (miR2Disease), miRNA-gene9, disease-gene10, and human PPI. 
The word2vec is a Natural Language Processing (NLP) technique, that basically calculates word representations 
based on semantic similarity, which assumes that similar words have tendency to be in similar sentences. Using 
MpDisNET, disease similarities are obtained by representation of disease-miRNA-gene–gene-miRNA-disease 
meta-path as sentences. The algorithm begins with a random walk that selects the first disease from the set. The 
selection of the disease continues with one random selection of the miRNA that is possibly related with the 
previously selected disease and proceeds with the possible gene list that is related with the miRNA8. As a result, 
algorithm derives word-like representations to train a word embedding algorithm which leads to vector repre-
sentations of each disease. Similarities of these vectors are used as a metric for comorbidity between diseases.

The focus of this work is on fine-tuning the performance of miRNA-mediated disease interaction networks in 
detection of comorbidities. We propose two modifications to improve the algorithm. First, by removing cancer 
dominance from the training data, the performance of the present algorithm can be improved. Second, inclusion 
of regulatory information in the models also leads to better performance. To do so, we updated the algorithm 
by replacing the disease-miRNA-gene interaction network by a disease-miRNA-TF based network, hence by 
incorporating regulatory information into the system. We have also gathered a larger set of comorbidity data to 
improve the accuracy of performance measurements. Using the improved algorithm, miRNA and gene regulatory 
networks, comorbidities of COVID-19 was identified and validated using clinical data. This work shows how 
deep-learning technologies can be used to uncover comorbidities of a novel disease such as COVID-19. This 
method can be further improved to increase its predictive value by incorporating multi-omic data, expanding 
the network size, and using alternative word-embedding approaches.

Methods
COVID‑miRNA data implementation
The non-coding RNA expression data generated by Wyler et al. (GSE148729) was used to develop the disease-
disease interaction network for COVID-19 as a case study. Wyler et al. used lung-based carcinomic cell lines 
Calu-3, Caco-2, and H1299 to gather non-coding RNA, bulk RNA, and scRNA-seq data inSARS-CoV-2 infection. 
These cell lines activated their viral RNA receptor gene expressions with the exception of Caco-2. 11 miRNAs that 
have been identified to be upregulated in this dataset in SARS-COV-2 infection, these miRNAs were integrated 
to the default miRNA list in the mpDisNet algorithm (Supplementary Document: miRNA_list.pdf).

Integration of TF‑TF regulation network
One of the goals of this work was to improve prediction power of the algorithm by using network of direct 
regulation mechanism instead of a protein–protein interaction dataset, which does not particularly capture 
regulatory interactions between two proteins. PPI data from Intact, PINA, and HPRD were included by default in 
mpDisNet, which included all known protein interactions6,11,12. Even though this strategy enhances randomness 
in the algorithm, it may lead to the dominance of widely investigated diseases with many associated miRNAs 
in the model training, which produces large number of false positive discoveries and reduces the likelihood of 
clinically observed comorbidities being discovered. In this work, experimentally confirmed regulatory connec-
tions between transcription factors and genes have been gathered to reduce this dominance effect by increasing 
specificity of the gene–gene interactions. Use of TF interactions instead of human PPI, would reduce the effect 
of heterogenic distribution of the disease frequencies by removing non-regulatory gene–gene interactions. The 
TF-TF list was generated by integration of the data from 5 resources as shown in Table 1.

We were able to collect 1168 transcription factors that take part in over 3 million experimentally validated 
TF-gene interaction pairs at the end of the integration process. Marbach et al.13 has one of the most compre-
hensive TF-Gene interaction datasets with experimental evidence in the literature. Also, 3 datasets with same 
feature (ChEA, ENCODE and TRANSFAC) collected from Harmonizome14 database. Finally, when TRRUST v2 
was integrated, we obtained our final TF-Gene interaction network with removal of identical interactions. We 
hypothesize that this data can point to a more direct genetic link between two potentially comorbid disorders. 
Transcription factors that regulate another transcription factor are chosen from the entire list, yielding 28.000 
TF-TF interaction pairs (Supplementary Table: TF-TF_list.xlsx).

Table 1.   Number of transcription factors and their interactions in the corresponding databases implemented 
into the miRNA mediated disease-disease interaction network.

Database Number of TFs Number of interactions

Marbach et. al.12 643 13,05,782

ChEA6 199 3,86,625

ENCODE13 181 16,51,393

TRANSFAC14 201 1,00,560

TRRUST v215 795 8,428

Total 1168 31,25,927
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Training has been performed for four different setups. First (Reproduced), is the original meta-path which is 
exactly same setup used in the original mpDisNet implementation (Disease1-miRNA1-Gene1-Gene2-miRNA2-
Disease2). A second trial has been made on modified disease list which has cancer-related diseases removed and 
COVID-19 added (Covid_cancerless) with the same meta-path as the original data. Third and fourth setups use 
modified meta-path based on the TF-TF regulation network with and without cancer related terms (Covid_can-
cer_tf & Covid_cancerless_tf). Training of the models has been performed with the same amount of data (40 M 
representations/6 M sentences) and with the same training parameters as the original implementation (meta-
path2vec -train input < input.txt > -output < …/output.txt > -pp 1 size 128 -window 7 -negative -5 -threads 32), 
leading to similar sized corpus of sentences. Disease vector relations has been calculated with cosine similarity 
and performance comparison of all results has been made with extended clinical disease-disease comorbidity 
data to calculate AUROC.

Disease‑disease interaction mapping and ROC score tuning
Jin et al. used a relatively small collection of clinical comorbidity data for validation of mpDisNet, which consisted 
of a total of 81 unique interactions clinically documented disease comorbidities obtained through a semantic 
similarity study. We used a manual curation method to find accurate matching between diseases that were titled 
differently in databases to increase the number of clinically documented comorbid disorders.

Disease names used in the mpDisNet algorithm were gathered from the OMIM database, which includes 
broad terms for diseases without any specific variations. We aimed to merge this set with data from Ko et al.15 
which has extended clinical comorbidity data from US-Medicare (PMID:19360091)16. The dataset presents over 
100 k disease interactions and disease were represented by their ICD-9 codes, hence we systematically matched 
the names in two sources as follows:

•	 Disease names retrieved from OMIM database, have only 29 exact matches in Ko et. al. comorbidity list 
provided in their supplementary material. Exact-match diseases are directly transferred as ICD-9 codes into 
our dataset.

•	 For other diseases that could not been matched exactly, disease groups and ICD-9 code ranges of these dis-
eases are extracted from the ICD-9 Data (http://​www.​icd9d​ata.​com/​2015/​Volum​e1/​defau​lt.​htm)

•	 Some of the diseases have been assigned different names in Ko et. al. when compared to the OMIM disease 
name (i.e.: Esophagitis→Esophageal Reflux). To decrease the number of unmatched diseases, such alternative 
names were taken into consideration.

•	 Number of matched diseases are increased from 29 to 170 and when group similarities are also included, we 
were able to match the 251 of 305 disease names in our modified OMIM list (Supplementary Doc: ICD-9_list.
xlsx)

•	 All these disease interactions have been filtered by Relative Risk > 1.5 criteria which signifying that the patient 
has more than %50 chance to have the disease-2 if they already have disease-1. At the end, we have collected 
4099 unique disease-disease pairs that have a minimum of 1.5 relative risk of occurring together in each 
patient (Supplementary table: rev_over_15_RR.xlsx).

Results and discussion
Network based word‑embedding (mpDisNet)
The OMIM database was used to collect 394 disease types to be used in mpDisNet models. Results from the 
reproduced model show that, majority of the high-scoring disorders are cancer-related phrases, as can be 
observed in the reproduction score distribution (Fig. 1). The distribution indicates that, MpDisNet scores are 
highly biased towards the cancer related terms. (Supplementary doc: Similarity mpdisnet.xlsx), We discovered 
10,563 disease-disease associations with a score higher than 0.9, which is computed using vector cosine simi-
larities. 6838 out of 10,593 disease similarities contain at least one cancer related term, which constitutes nearly 
%65 of the scores higher than 0.9.

Scores of cancer-related phrases, as shown in Fig. 1a, are likewise the main reason for the higher score 
accumulation between 0.95 and 1. This has a significant impact on the overall distribution of scores for diseases 
other than cancer. Because of the large amount of cancer-related research and the disease’s complications, cancer 
is strongly linked to all other diseases, resulting in higher comorbidity ratings. Removal of the cancer-related 
elements from the disease similarity scores reduces the score accumulation on the high score range, as seen in 
Fig. 1c.

When cancer terms and their linked miRNAs are removed from the training data, significant changes in the 
score distribution is observed. This change in the distribution also indicates that, the number of highly connected 
elements such as cancer terms also leads to a reduction in the occurrence of other disease representations in 
the model. Since multiple pathway dysfunctions emerge in cancers, a larger number of related miRNAs were 
reported in literature. Indeed, as it shown in Table 2, number of discovered miRNAs for cancer terms are large 
in comparison to median number of miRNAs (Fig. 2) per disease used in this study. Cancer related miRNAs 
constitute the outlier points in Fig. 3a and lead to high number of occurrences of cancers in training data as 
shown in Fig. 3b–d. The imbalance in number of miRNAs in cancer and non-cancer diseases lead to dominant 
occurrence of cancer terms over other diseases, which increases the possibility of random selection of cancers 
in different sub-networks in the corpus and causes over-training of their vectors.

Further, unbalanced occurrence of words (diseases) causes instabilities such as vector update rate dispari-
ties between high and low frequency words (Fig. 3). The degree of learning for each condition will eventually 
be affected by differences in the number of updates of the individual disease vectors17. As a result, there will 
be differences between reliability of disease interaction scores for relatively rare disorders and high frequency 

http://www.icd9data.com/2015/Volume1/default.htm
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Figure 1.   Score distribution of the mpDisNet (reproduction model) that represents the effect of the cancer-
term dominance in the disease interaction scores. (a) Reproduced model score distribution of all disease scores 
from the mpDisNet trial. (b) Score distributions of cancer-terms in the range between 0.9 and 0.95. (c) Score 
distributions of the remaining (non-cancer) disease interactions.

Table 2.   Cancer related disease keywords and number of cancer related diseases involved into the training 
data.

Cancer keyword Num. of diseases in list Num. of miRNAs connected

Carcinoma 14 909

Neoplasms 34 2841

Tumor 5 35

Blastoma 5 495

Leukemia 10 464

Lymphoma 11 275

Sarcoma 7 268

Myeloma 1 80

Melanoma 1 229

Glioma 1 219

Total 89 5185
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disorders. In NLP models, this property can be used to classify the words by their semantic information impor-
tance. However, in disease representations, there is no difference between the diseases in terms of information 
values i.e., diseases cannot be classified as more important or less important in our context as in other NLP 
problems. This is the main difference between the real words and word-like representations. By removing highly 
connected diseases, we would like to increase the score reliability of the rest of the diseases and consequently 
increase the prediction performance.

Figure 2.   Comparison of the medians of the number of miRNA’s are related with cancer-type diseases and the 
rest of the OMIM disease dataset.

Figure 3.   Effects of variations of miRNA counts in diseases and the disease frequencies in the training data. (a) 
Boxplot of the number of the miRNAs of each diseases indicate a narrow IQR range (box) and high number of 
outliers (circles). (b) Occurrence frequencies of each disease in training data in non-modified version. c Scatter 
plot of mean score of each disease and its frequency in the training data. (d) Positive correlation between the 
disease frequencies and number of miRNAs.
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Prior to applying the approach to the COVID-19 disease to find possible comorbidities, we aimed to increase 
the disease interaction identification performance. Use of heterogeneous miRNA-gene-disease network approach 
is mostly conserved in our analysis, which is based on data from miR2Disease and HMDD miRNA-disease 
interactions9,18. The random walk method based on meta-paths has also been preserved. However, changes 
have been made to increase the accuracy of the network method. In contrast to the original architecture, we 
used a TF-TF interaction network rather than the PPI to be able to represent the regulatory mechanisms in a 
more precise manner. The cosine similarity of the disease vectors, which is one of the distance metrics used for 
quantifying the word similarities in NLP applications, was utilized to analyze disease similarities (comorbidities) 
for performance evaluation of the method.

Implementation of COVID miRNA data
miRNA expression profiles of SARS-CoV-2 infected cells have been collected from Wyler dataset19. 24-h mock-
infected samples were used as control samples. Infected Calu3 cell samples have been analyzed for identification 
of differentially expressed miRNAs (Calu3 4 h–12 h–24 h). 39 significant and differentially expressed miRNA’s 
have been identified (adj.p-value < 0.05) which includes hsa-mir-4485, hsa-mir-483 and has-mir-155.

Updated disease‑disease relationship scores
The score distribution in the reproduced version and in our version with improvements in the disease list and 
transcription-factor implementation has been shown as a heatmap for all disease scores (Fig. 4).

Excluding cancer terms and their related miRNAs from the heatmap data resulted in higher scores on non-
cancer disease relationships. Figure 4a depicts the reproduction score distribution, with cancer-related phrases 
gathered in the top-right side of the graph, which also has the highest scores. It was transformed into Fig. 4b 
by deleting cancer-related rows and columns from the heatmap, resulting in a clear distinction between the 
effect of cancer-related terms on the score distribution. Figure 4e, on the other hand, was produced by retrain-
ing disease pair scores after removing cancer diseases and their corresponding miRNA set from the training 
dataset of the model, it can be seen that the overall score profile for non-cancer diseases has improved. Figure 4c 
demonstrates the distribution of disease similarity scores including cancer terms when TF-TF interaction data 

Figure 4.   Heatmaps representing the similarity scores in reproduction and TF integrated network. All diseases 
are placed into x and y axis and they are colored based on their similarity scores as green (1) and blue (0). (a) 
Heatmap of the reproduction scores. (b) Scores after cancer-associated diseases are removed (sub-frame of 
part A that matches with diseases in part E). (c) Scores of Transcription-factor integrated model instead of 
Human PPI with cancer terms. (d) TF model without cancer terms (sub-frame of part B that matches with 
diseases in part F). (e) Updated training without cancer terms, with Human PPI, and (f) updated training 
with TF interaction network without cancer terms. Black color represents the zero score that indicates that no 
association between diseases was found. The region between the black ticks on the x and y axes in (a) and (c) 
indicate the cancer (right) and non-cancer (left) diseases.
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is utilized instead of Human-PPI. In this case, some disease relationships were lost, and the majority of disease 
scores were reduced. However, scores of the some of the rare disease interactions were increased that may be of 
significance. Figure 4f demonstrates that when cancer terms are omitted from the TF-TF included trials, the effect 
on the scores is similar with the upper row, again demonstrating the cancer domination in models where cancer 
interactions were included. Score distribution differences between the TF-TF regulatory map implementation 
and PPI can be seen when Fig. 4c and f are compared. Although the scores of the TF network models are lower 
than the PPI network models, the training time of the models has been greatly decreased due to the smaller 
vocabulary when TF network is used.

Several diseases were found to have no comorbidity with the rest of the diseases (Table 3). All of these diseases 
have quite a limited number of miRNA connections in the disease-miRNA data in the network. In the Reproduc-
tion and Cancerless models, most of them only have one miRNA interaction. When the TF-TF interaction data 
was used, the non-comorbid disease list was expanded to include some of two miRNA-connected disorders that 
are not linked to the transcription factor interactions in the network.

ROC score tuning results
ROC (Receiver Operator Characteristic) curves are often used to evaluate the performances of prediction algo-
rithms by presenting true positive rate and false positive rate of predictions as a curve. For this evaluation, 
information on true positives and true negatives is needed. Compilation of True Positives (comorbidities) from 
literature is relatively easy despite the scarcity of verified disease-disease interactions in the literature. However, 
finding the True Negatives is far more challenging as there is no literature data that directly reports non-comorbid 
pairs of diseases. One way is designating disease pairs with a low RR score or no interaction information as 
‘non-comorbid’. This technique classifies comorbidities not yet reported in the literature as False Positives (FP) 
in ROC curve calculations. As a result, True-positive (TP) scores are hampered when each disease has a small 
number of known comorbidities. To address this negative bias on AUROC, more comorbidity data is needed to 
increase the TP/FP ratio. We expanded the amount of clinical data in the validation set to be used in mpDisNet., 
as a result, the AUROC performance was greatly improved over the original implementation.

The performance of original implementation of mpDisNet in terms of AUROC (Area Under ROC) was 0.65, 
which was higher when compared to the AUROC of the overlap method (0.58), a simpler methodology that 
finds comorbidities by comparing shared miRNA ratios between two disorders, The key drawback of the ROC 
analysis in the original implementation is the high number of predicted Disease-Disease interactions, which is 
around 90.000 [n * (n−1)], compared to a small number of known disease interactions which is 81. To be able to 
expand this list, the disease pairs with RR higher than 1.5 in MediCare dataset and the comorbid disease list of 
81 pairs were merged, after all disease names were converted to ICD-9. Generated final Disease-Disease scores 
(Supplementary file: rev_over_15.xlsx) were converted to pivot table by using pandas python package20. The 
compiled data visualized as heatmap (Fig. 5) with matplotlib v3.4 seaborn python package21. Disease similarity 
scores were used to calculate TP and FP rates when compared to compiled list of comorbidities and ROC curves 
were drawn for all cases (Fig. 6). The main objective of this improvement is to maximize TPR to better under-
stand the algorithm’s true discovery performance. However, since the algorithm’s False Discovery Rate cannot 
be changed, as previously stated, and all disease interactions that have not yet been documented in the literature 
ought to be labeled as 0, leading to false positives.

To determine whether the implementation of the TF-TF regulation mechanism has a beneficial effect on the 
discovery of comorbidities, a comparison between the PPI network and the transcription factor-implemented 
network was made.

Figure 6a presents the reproduction of the original implementation, and the same AUROC is reproduced as 
expected. The modifications on the model (removal of cancer terms and using TF-TF instead of PPI) did not 
improve the results as seen in Fig. 6b and c, when they were evaluated using limited clinical data. However, in 
the second row of Fig. 6, use of extended clinical data significantly improves the AUROC when compared to its 
counterpart on the first row.

We further hypothesized that correlation between scores of disease pairs may be a more accurate measure 
of similarity or comorbidity between them. A high positive correlation of scores indicates that the pair of dis-
eases have similar scores with other diseases, hence has a common profile of similarities in their mechanisms. 
This approach also mitigates the impact of low-frequency disorders having low scores due to lack of miRNA 
connections.

We tested two alternative correlation metrics; Pearson and Spearman correlations are calculated between 
similarity scores of each disease pair using our mpDisNet results as shown in Fig. 7. Although both metrics 
produced similar results, to reduce the effect of possible methodological bias, both Pearson and Spearman 

Table 3.   Zero scored diseases which do not have any connection with any of the other diseases.

Model Diseases

Reproduction ’Mitochondrial Encephalomyopathies’, ’Prostatic Diseases’, ’Tauopathies’, ’Cystadenocarcinoma, Serous’

Covid_cancerless ’Mitochondrial Encephalomyopathies’, ’Prostatic Diseases’, ’Tauopathies’

Covid_cancer_tf ’Anodontia’, ’Chagas Disease’, ’Dyspepsia’, ’Frontotemporal Lobar Degeneration’, ’Guillain–Barre Syndrome’, ’Heart 
Defects, Congenital’, ’Lymphedema’, ’Myopia’, ’Pemphigus’, ’Prostatic Diseases’, ’Tauopathies’

Covid_cancerless_tf ’Anodontia’, ’Chagas Disease’, ’Dyspepsia’, ’Frontotemporal Lobar Degeneration’, ’Guillain–Barre Syndrome’, ’Heart 
Defects, Congenital’, ’Lymphedema’, ’Myopia’, ’Pemphigus’, ’Prostatic Diseases’, ’Tauopathies’
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Figure 5.   Diseases that have at least 1.5 Relative-Risk (RR) score from US Medicare data visualized as heatmap 
with matplotlib seaborn python package v3.4. Full sized heatmap can be found in Supplementary Fig. 1 
(disease_heatmap.pdf) and full list of disease comorbidity scores from MediCare data can be found in material 
rev_over_15.xlsx).

Figure 6.   Receiver-Operator Curve (ROC) curve of all models. (a) ROC score for reproduced model with same 
setup in the original MpDisNet implementation. (b) ROC curve of cancer removed model scored compared to 
limited known disease interactions (81 pairs). (c) TF-TF substituted model scores compared to limited disease 
data. (d) Reproduction of the original model with extended known disease pairs. (e) Cancer removed model 
with extended disease pairs. (f) Cancer removed and TF integrated model with extended disease pairs.
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correlation score-based performances were kept in the ROC curves. When correlations are used for evaluation of 
performances, we find that cancer-term included model scores also have slightly improved AUROC performance. 
There is more obvious improvement in Cancerless model than other models. We could say that the similarity 
between diseases is more prominent when we keep PPI and remove cancer terms as seen in Fig. 7b. In addition, 
concordance of the Spearman and Person correlations in Cancerless model could be evidence of improved score 
reliability when compared to the other models. But in order to keep taking into consideration the non-normal 
distribution of the similarity scores between disease pairs, the non-parametric Spearman correlation coefficients 
may be more appropriate to keep. Therefore, only Spearman correlation of vector similarity scores were used to 
determine possible COVID comorbidities in the following section.

Disease interactions and possible COVID comorbidities
Although our modifications on the algorithm reduced the scores in general, we have observed that low scores 
of some disease pairs in reproduction model are increased in the modified models. For example, there is an 
increase in Rheumatoid Arthritis and Depression comorbidity score from 0.79 to 0.90, which is one of the known 
comorbidities in the literature22. Another elevated score is between epilepsy and chronic hepatitis, clinical evi-
dence suggests that these two disorders are strongly comorbid and should be further examined23. The algorithm 
cannot provide any direction information between disease comorbidities, therefore it is not possible to assume 
causality such as one disease being the cause of another disease, since the direction of the comorbidities cannot 
be implemented into the network structure yet. However, these findings could indicate that, patients with one 
disease could have a higher genetic and regulatory inclination to another disease which have high similarity 
score to the first disease24.

We have used our results to investigate comorbidity of COVID-19 with other diseases as a case study. Highly 
scored diseases that are potentially comorbid with COVID-19 have been retrieved from cancer-removed network 
training results with Spearman correlation of scores. The threshold has been chosen as 0.9 since it was found 
as the optimum threshold for the Cancerless model in the ROC curve performance analysis. The algorithm 
found 156 diseases (Supplementary table: COVID_comorbs.xlsx) with a similarity score of more than 0.9 and 
correlation of more than 0.95, indicating a strong link to COVID-19 with associated genes and miRNAs. There 
are also 57 disorders with a score of 0.8 to 0.9, it can be suggested that a moderate link between these diseases 
and COVID-19 exists. We have identified high-scored associations with disorders that had clinical evidence of 
increased risk with COVID-19 on the CDC website, such as Diabetes (0.996), Heart Diseases (0.989), Schizo-
phrenia (0.994), and Hypertension (0.994) (https://​www.​cdc.​gov/​coron​avirus/​2019-​ncov/​scien​ce/​scien​ce-​briefs/​
under​lying-​evide​nce-​table.​html) (Supplementary Dat: CDC_Diseases.xlsx). When the Spearman correlation is 
applied to the result file, the number of probable COVID disease interactions (Scores over 0.95) increases (From 
97 to 210). Also, the overall score of CDC diseases increased from 0.92 (stdev ± 0.054) to 0.98 (stdev ± 0.012).

Encouragingly, we have further found that there are strong links between immune response and infection in 
diseases such as Hepatitis, Infectious Disorders, and several lung-related diseases. High-scores were also found for 
vessel and artery-related disorders, such as coronary artery disease, aortic aneurysm, and renal-related diseases. 
Additionally, various neurological and psychological disorders, such as Alzheimer’s, Parkinson’s, Depression, 
and Schizophrenia, may raise the impact of COVID-19 according to our results. Indeed, recently this link was 
shown for Parkinson’s Disease in the literature25.

Considerations and limitations in applying NLP approaches to disease similarity modeling
While application of disease similarity networks to the NLP models is a promising approach, there are some 
challenges that should be tackled. The first of them is biases in data, as stated in the first part of the Results 
and Discussion, over-representation of diseases such as cancer and subtypes can substantially skew the disease 
representations as shown in Fig. 1. The choice of network also has an impact on the outcome. Since the final 
goal is to trace back the disease similarities and identify the potential genes/metabolic activities that mediate 
the similarities, it is important to keep only the interactions that are mechanistically meaningful. The original 
reliance on human PPI may not have offered the mechanistic precision that TF-TF interaction network could. 
While the benefits of integrating TF-TF were not immediately obvious, exploring specific subtypes of regulatory 
mechanisms in future models could augment performance further. A critical limitation in the initial approach 

Figure 7.   Updated ROC representations of three main approaches (a) Reproduction data with No correction 
(blue), Pearson correlated scores (gold), Spearman correlation (green), (b) cancer removed, and correlation 
implemented. (c) Cancer removed and TF integrated network with correlation tunings.

https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html


10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2325  | https://doi.org/10.1038/s41598-024-52819-5

www.nature.com/scientificreports/

was the scant validation data, confining the model’s evaluative robustness. Diseases, influenced by factors like 
genetics and environment, require a model that captures this complexity. Word2vec and similar embeddings, 
while powerful, have the risk of oversimplifying these complexities. A holistic view, potentially achievable by 
assimilating diverse data sources like clinical records and genomic databases, is desirable. While the introduc-
tion of correlation metrics illuminates aspects of disease similarity, it is paramount to distinguish between mere 
correlation and actual causation. Lastly, presented model could provide a quick and broad perspective on disease 
comorbidities by offering easy implementation. However, while this quick glimpse is valuable in such cases as 
pandemics, a deeper dive into the underlying causes and intricacies of these disease connections is essential. As 
we forge ahead, it becomes evident that continuous refinement and validation are not just beneficial but crucial 
on these applications.

Conclusion
Vectorization of diseases using a meta-path based on gene regulatory perspective is a simple and promising 
method for revealing mechanistic similarities between diseases. This strategy has many benefits, such as ease 
of implementation and availability of a range of meta-path alternatives to increase resolution of mechanistic 
information represented by the models. A similar approach could be applied to other disease-disease interaction 
prediction algorithms and the effect of the underlying mechanisms could be identified by expression profiles 
with integration of relevant meta-paths.

One of the key limitations of such algorithms is the lack of a statistical method that could reliably compare 
the results. Raw scores can be biased by several factors such as variable representation of each disease in training 
data, making the comparison even more challenging. However, use of correlation to further relate the disease 
scores may eliminate some of the bias and provide a significant impact on the general performance. One other 
drawback of such models is the selection of a gold standard dataset for verification of identified mechanistic 
similarities. Further, due to scarcity of gene expression profiles from comorbid patients, the validation may rely 
on only one or two datasets. Design of new studies to collect the data for model validation in comorbid patients 
could greatly enhance construction and validation of such predictive models of disease comorbidity.

We aimed to overcome some of the mentioned limitations in this work by using alternative meta-paths and 
evaluation metrics. In addition, increasing the volume of clinical comorbidity data to enhance true positive rates 
lead to the expected improvement on the algorithm’s ROC performance. However, collection and curation of 
more disease pairs had two major challenges: lack of thorough clinical comorbidity data in the literature and 
inconsistencies in disease names across databases and literature, which necessitates manual processing of the 
information. These shortcomings not only make mapping disease-disease linkages more challenging, but they 
also lead to the conclusion that algorithmically determined disease comorbidities less significant than they are. 
Nevertheless, by addressing these limitations on performance evaluation criteria and the algorithm’s capabilities, 
newly discovered potential comorbidities of COVID-19 were proposed for novel clinical comorbidity studies.

Detecting potential comorbidities could be a first step toward reducing the number of computational and 
experimental trials needed in future disease interaction cases. It may also be effective in revealing the mechanis-
tic background of disease interactions. mpDisNet is an innovative and promising strategy for discovering new 
disease-disease interactions and gaining a better understanding of the mechanical foundation of both novel and 
also previously known comorbidities. We have addressed some of the limitations in the original algorithm in 
order to broaden its application to a wider range of scenarios. In a future pandemic, this approach can be rapidly 
applied to reveal potential comorbidities and allow the national health institutions to prepare for effective care 
of patients with existing health conditions.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplemen-
tary information files]. Public RNAseq data were collected from GEO database with the accession number of 
GSE148729.
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