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Harnessing machine learning 
to find synergistic combinations 
for FDA‑approved cancer drugs
Tarek Abd El‑Hafeez 1,2*, Mahmoud Y. Shams 3,6, Yaseen A. M. M. Elshaier 5, 
Heba Mamdouh Farghaly 1 & Aboul Ella Hassanien 4,6*

Combination therapy is a fundamental strategy in cancer chemotherapy. It involves administering 
two or more anti-cancer agents to increase efficacy and overcome multidrug resistance compared 
to monotherapy. However, drug combinations can exhibit synergy, additivity, or antagonism. This 
study presents a machine learning framework to classify and predict cancer drug combinations. The 
framework utilizes several key steps including data collection and annotation from the O’Neil drug 
interaction dataset, data preprocessing, stratified splitting into training and test sets, construction 
and evaluation of classification models to categorize combinations as synergistic, additive, or 
antagonistic, application of regression models to predict combination sensitivity scores for enhanced 
predictions compared to prior work, and the last step is examination of drug features and mechanisms 
of action to understand synergy behaviors for optimal combinations. The models identified 
combination pairs most likely to synergize against different cancers. Kinase inhibitors combined with 
mTOR inhibitors, DNA damage-inducing drugs or HDAC inhibitors showed benefit, particularly for 
ovarian, melanoma, prostate, lung and colorectal carcinomas. Analysis highlighted Gemcitabine, 
MK-8776 and AZD1775 as frequently synergizing across cancer types. This machine learning 
framework provides a valuable approach to uncover more effective multi-drug regimens.

Abbreviations
CSS	� Combination sensitivity scores
DNA	� Deoxyribonucleic acid
FDA	� Food and Drug Administration
GCN	� Graph convolutional network
HDAC	� Histone deacetylase
IQR	� Inter-quartile range
KNN	� K-nearest neighbors
LR	� Logistic regression
ML	� Machine learning
MAE	� Mean absolute error
MSE	� Mean squared error
NB	� Naive Bayes
RF	� Random forest
ROCS	� Rapid overlay chemical similarity
R2	� (R-squared) coefficient of determination

As research into cancer cell abnormalities continues, an increasing number of anti-cancer medications are being 
developed and assessed. However, the efficacy of one medication or a single target drug as a monotherapy is 
limited due to innate or acquired resistance. To address this challenge, a more effective approach is drug combi-
nation treatment. The use of drug combinations has proven to be an effective strategy for treating diseases that 
are challenging to manage, including cancer and infectious infections1–4. The use of drug combination therapy 
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can inhibit multiple targets, thereby overcoming drug resistance in infectious fungal diseases5–7. The explana-
tion for this is that biological systems are less capable of correcting for the action of two or more medications 
at the same time2,6,8,9. Effective medication combinations have traditionally been established by evaluating all 
potential combinations of a pre-defined set of pharmaceuticals in an experimental setting6,10. The screening of 
drug combinations is a challenging task due to the vast number of available drugs, which makes the process 
time-consuming, labor-intensive, and expensive. With n medications, there are n(n−1)/2 possible pairwise drug 
combinations, as well as multiple higher-order combinations. Furthermore, the constant development of new 
pharmaceuticals results in an exponential growth in the number of potential pharmacological combinations that 
can be tested each year10. As a small number of compounds can yield a large number of combinations7 testing 
all possible pharmacological combinations would be a resource-intensive and time-consuming endeavor. Even 
with high-throughput screening, conducting limited drug combination trials would only scratch the surface of 
the vast number of potential drug combinations. Therefore, utilizing experimental screening as a means of iden-
tifying optimal medication combinations remains a challenging task11,12. Thus, it is not easy to identify optimal 
drug combinations using the experimental screen approach. There is a significant need to develop tools that can 
identify optimal drug pairs for more effective and synergistic cancer treatment. Recent technological advance-
ments have ushered in a new era of precision medicine that combines machine learning (ML) and biomedical 
science to provide data-driven assessments of diseases. Leveraging machine-learning algorithms is a powerful 
tool within the broader field of artificial intelligence. It can extract meaningful conclusions by leveraging big data, 
making it an increasingly popular tool for cancer detection and treatment. The ultimate goal of precision medi-
cine is to provide therapies that not only increase the chances of patient survival but also improve their quality 
of life by reducing unwanted side effects. This can be achieved by matching patients with appropriate therapies 
or therapeutic combinations. The main objective of this paper is to utilize a machine learning technology to 
predict effective drug synergy pairs for cancer treatment. The proposed approach involves several steps, including 
data collection and annotation, data preprocessing, partitioning the dataset into training and test sets, building 
classification and regression models, testing, and validating the most suitable models. Additionally, it examines 
the drug features and mechanisms of action to better understand the synergy behavior of the best combination 
therapy. The key contributions of this paper include annotating each drug combination by its generic name and 
mechanism of action. The ML is adapted to classify synergism, additive, and antagonism class labels, determin-
ing the best combination of CSS score among the same cancer cell line, classifying data by the type of cancer 
tissue based on six cancer types, and identifying the synergistic drug combinations for each cell line. This paper 
significantly advances cancer chemotherapy research by developing a machine learning to classify and predict 
effective drug combinations.

The main contributions of this paper are summarized as follows:

•	 We enhanced predictive modeling through ML-based classification/regression for identifying synergistic, 
additive, and antagonistic drug pairs.

•	 Integrating regression with classification models to quantify drug interactions that provides deeper insights 
compared to previous and related work.

•	 We leveraged the comprehensive O’Neil drug interaction dataset that ensuring robustness across cancer types 
and relying on curated data strengthens our findings.

•	 The proposed model successfully identified combination pairs that shows the highest likelihood of synergy 
against specific cancers. Notably, coupling kinase inhibitors with mTOR, DNA damage or HDAC inhibitors 
showed promise, highlighting strategies for effective multi-drug regimens.

•	 We examined drug features and mechanisms to understand why certain pairs synergize which focusing on 
consistently effective drugs like gemcitabine, MK-8776, and AZD1775 against various cancers added context.

Finally, systematically uncovering advantageous multi-drug options has potential to inform clinical decision 
making. The highlighted regimens for ovarian, melanoma, prostate, lung, and colorectal cancers could signifi-
cantly impact personalized cancer therapy development.

Therefore, the proposed innovative machine learning-based drug combination model for classifying, predict-
ing, and rationalizing synergistic drug combinations makes an important advance. We believe the findings offer 
potential to enhance combination therapy effectiveness and ultimately improve patient outcomes.

The structure of the rest of this paper is organized as follows. Section 2 reviews related work. Section 3 intro-
duces preliminary concepts. Section 4 details the methodology and the proposed model. Sections 5–6 present 
experimental results and discussion. Section 7 discusses the conclusion and future work.

Related work
Synergistic effects between drugs, being rare and highly context-dependent, necessitated the development of 
novel approaches for patient stratification in optimal therapy regimens, especially in personalized combinato-
rial treatments. Computational methods played a crucial role in systematically screening combination effects 
in-silico, prioritizing potent combinations for further testing amid the vast number of potential options. A 
systematic literature review presented by Kong et al.13 encompassing 117 computational methods that classified 
these methods based on their combination prediction tasks and input data requirements to aid researchers in 
selecting appropriate prediction methods for diverse real-world applications. While most methods focused on 
predicting or classifying combination synergy, few considered the efficacy and potential toxicity, key determi-
nants of therapeutic success. There is a pressing need for the development of methods enabling dose-specific 
predictions across multiple doses, essential for clinical translation and model-based identification of biomarkers 
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predictive of heterogeneous drug combination responses. Despite the prevalent focus on anticancer applications 
in the reviewed methods, many modeling approaches are applicable to antiviral and other diseases or indications.

Cancer remains the leading cause of death globally, and the economic and financial burden of cancer 
research is increasing. Chemotherapy for cancer relies on using two or more therapeutic drugs in combination. 
By adopting a synergistic or additive approach, combining anti-cancer medications enhances the efficacy of a 
monotherapy strategy. This technique can mitigate drug resistance, minimize the cytotoxicity of administered 
drugs, and improve the survival rate of cancer patients14. Developing a novel anti-cancer medicine is expensive 
and time-consuming, involving in vitro and in vivo investigations and clinical trials before being approved by 
the FDA. In14–16, a newly developed medicine takes around 15 years to reach the pharmaceutical market. There-
fore, in17, Combination treatment is being studied because it gives efficient and effective results at a low cost. 
Pharmaceuticals exert their action by interacting with specific cell components called receptors or active sites, 
which are dictated by the drug’s chemical and physical properties. In a drug-drug combination, each medica-
tion interacts with its receptor or the same receptor. Prior research has primarily focused on defining synergy, 
quantitatively calculating dose–effect curves, and determining whether a specific drug combination can achieve 
a synergistic effect based on established synergy criteria and experimental findings. Since Loewe devised the 
Loewe additive model in 1926 to characterize synergistic drug combinations, other academics have worked on 
drug combination studies18–25. Loewe20 developed the Loewe additive equation to evaluate whether a certain 
medicine combination would synergistically impact. Chou and Talalay25–27 proposed the median-effect called CI-
Isobologram index as well as the dose-reduction index formula25 for drug-drug interactions. In their approach, 
CI1, = 1, and > 1 imply synergism, additive effect, and antagonism, respectively. Greco also created the universal 
response surface technique, a novel way to assess drug interactions (URSA)28. However, a few models can be used 
to predict whether or not a certain drug combination would have a synergistic impact. Some methods for reduc-
ing the number of drug combination experiments have been developed in recent years. Jansen et al.19 identified 
potential combinatorial drugs using chemogenomic profiles. First, they looked at data from sensitivity-based 
chemogenomic profiles found in the literature and profiling trials. Then, any drug pair with chemogenomic 
profiles similar to the known synergy pairings was deemed an antifungal synergy candidate. Chen et al.29 used 
a combination of fractional factorial design and stepwise regression to dramatically reduce the time required to 
uncover synergistic drug combinations.

On the other hand, both of these tactics rely heavily on the results of biological research. Li et al.30 created 
the topological and agent score parameters to analyze the synergistic connection for certain medication com-
binations. They created the NIMS algorithm to discover potential synergistic medication combinations on a 
wide scale. By combining molecular and pharmacological data, Zhao et al.31 represented pharmaceuticals using 
a set of attributes and created a revolutionary computational approach for prioritizing prospective medication 
combinations. Huang et al.32 used clinical side-effect data and the drug label to predict drug combinations. 
Three FDA-black-boxed major side effects were shown to have the greatest impact on prediction accuracy. Fur-
thermore, they developed DrugComboRanker, a computational method for prioritizing synergistic medication 
combinations based on the development and segmentation of functional drug networks. Yin et al.33 showed that 
pharmacological synergy or antagonism is a property of target-related network topology and investigated various 
basic synergistic and antagonistic patterns, implying that designing novel synergistic drug combinations based 
on network topology might be beneficial. To construct a sparsity-induced classifier for potential synergistic 
drug combination inference, Iwata et al.34 used drug-target interactions, drug anatomical therapeutic chemical 
categorization system codes, and known synergistic drug combinations from the Orange Book and KEGG DRUG 
databases. Chen et al.35 developed a unique network-based synergistic medication combination prediction model 
based on systematic pathway–pathway interactions. However, only computational models have been built, and 
none of the above research has found any experimental validation.

The current efforts for drug combinations are performed. Sun et al.36 demonstrate a ranking system of Anti-
Cancer Synergy (RACS) that integrates features of targeting networks and transcriptome profiles and validates 
it on three cancer types.

Even though the molecular mechanism driving specific interactions is unknown, RACS has the potential to 
greatly enhance drug synergy prediction and minimize experimental prescreening of current pharmaceuticals 
for repurposing to cancer treatment.

Li et al.37 used synergistic drug combinations to find new ways to treat cancer. However, precise prediction 
of synergistic drug combinations is challenging due to the unknown mechanisms of pharmaceutical synergism. 
A variety of factors, including drug response and target networks, can aid in predicting synergistic medicine 
combinations. The influence of drug chemical structural characteristics, drug target network features, and phar-
macogenomics features on discovering synergistic medication combinations were investigated.

Xia et al.38 used the National Cancer Institute’s (NCI-60) drug pair screening program against 60 well-char-
acterized human tumor cell lines offers a unique resource for modeling combinational drug action. They provide 
a computer model for predicting cell line response to selecting drug combinations in the NCI-ALMANAC 
database. They show that pharmacological descriptions have the most predictive value, and that deep learning 
can predict combinational drug responses with promising results.

Malyutina et al.39 stated that many computational methods only examine the synergy of drug combinations, 
not their sensitivity, leading to misleading positive results. They developed a novel cross design to medication 
combination sensitivity and synergy testing more cost-effective and simultaneous. They created a medication 
Combination Sensitivity Score (CSS) to measure a drug pair’s sensitivity. They demonstrated that the CSS is highly 
reproducible between replicates, indicating that it can be used as a reliable metric. They also demonstrated that 
CSS could be predicted using machine learning techniques that used top pharmacy features to cluster cancer 
cell lines based on their medication combination sensitivity profiles.
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Jiang et al.40 proposed a Graph Convolutional Network (GCN) model for predicting synergistic medication 
combinations in specific cancer cell lines. The GCN technique addressed a link prediction difficulty using a con-
volutional neural network model to conduct heterogeneous graph embedding. They looked at the most widely 
predicted pharmaceutical combinations in various cancer cell lines. They discovered that many had been proven 
to have synergistic anti-cancer action in vitro or in vivo against the same or different tumors. The findings imply 
that this study might be used to in silico identify and enhance synergistic drug combinations.

Liu and Xie41 reduced medication resistance while increasing therapeutic efficacy. Several new synergis-
tic medicine combinations have been predicted with high confidence for ovarian cancer, with few treatment 
options. Because of the growing number of anti-cancer drugs, assessing all therapeutic combinations is both 
costly and time-consuming. To address these problems, they developed TranSynergy as a knowledge-enabled 
and self-attention transformer augmented deep learning model that enhances medicine combination prediction 
performance and interpretability. This might aid researchers in the discovery of novel anti-cancer drugs and 
biomarkers for precision medicine. Table 1 briefly describes the current efforts for drug combination strategies.

Chen et al.47 explored the role of small molecules, low-weight organic compounds, in influencing diseases 
by inhibiting specific protein functions or disrupting protein–protein interactions. Focused on microRNAs 
(miRNAs) as crucial elements in cellular biology with potential as diagnostic and therapeutic targets. The review 
highlighted successful screenings of drug-like compounds against various miRNAs, demonstrating the feasibil-
ity of targeting miRNAs with small molecules. Covered five aspects of miRNA functions, summarized disease 
states linked to miRNA alterations, and introduced small molecules associated with key miRNAs. The study also 
discussed publicly accessible databases and web servers related to small molecule-miRNA associations, emphasiz-
ing their importance in biomedical research. Reviewed experimental techniques and computational models for 
identifying small molecule-miRNA associations, along with a discussion of limitations and future directions for 
computational model development. The urgent need for effective drugs to address complex human diseases led 
to a reevaluation of drug discovery strategies. Traditional approaches, which were time-consuming and costly, 
adhered to the one drug-one target paradigm. However, recent studies indicated that drugs typically influenced 
related pathways rather than single targets, prompting the introduction of a new strategy called pathway-based 

Table 1.   The comparative study of the current drug combination strategies and the applied dataset.

Author/year Dataset used Algorithm Problem statement Major contribution Pros Recommendation

Sun et al.36 DCDB 2.0 drug combi-
nation database42

Semi-supervised learn-
ing

It exhibits an Anti-
Cancer Synergy Ranking 
System (RACS)

They got a probability 
concordance of 0.78

Synergy prediction and 
significantly minimize 
experimental prescreen-
ing of current pharma-
ceuticals for repurposing 
to cancer treatment

One prediction is 
confirmed in vivo in a 
zebrafish MCF7 xeno-
graft model, suggesting 
great synergy and 
minimal toxicity. The 
approach was validated 
using A549 lung cancer 
cells

Li et al.37 Dream43 Random Forest
The goal of synergistic 
drug combinations is to 
find new ways to treat 
cancer

Drug chemical structure, 
drug target network, and 
pharmacogenomics fea-
tures all have an effect

Three of the 28 anti-
cancer drug combina-
tions identified by the 
prediction algorithm 
were effective

The use of a prediction 
model could assist in 
narrowing the search 
area and speed up the 
discovery of clinically 
effective synergistic 
medication combina-
tions

Xia et al.44 NCI-ALMANAC45 Deep Learning
Predicting the response 
of a selection of medica-
tion combinations in 
cell lines

Predicting tumor 
progression. While they 
achieve the greatest 
results using a combina-
tion of molecular feature 
types

Based on the model’s 
expected combination, 
they rate the medicine 
combos for each cell line

They demonstrate 
promising results in pre-
dicting combinational 
medication response 
using deep learning

Malyutina et al.39 O’Neil46
Elastic Net, Random 
Forest, Support Vector 
Machine

Combinations in cancer 
have been aided by 
high-throughput drug 
screening

Cross-design to 
medication combination 
sensitivity and synergy 
testing

S synergy score was cre-
ated by comparing the 
dose–response of a drug 
combination to a single 
drug dose–response

Overall, they proved the 
effectiveness of combin-
ing cross-design with 
CSS sensitivity and S 
synergy rating

Jiang et al.40 O’Neil46 Graph Convolutional 
Network

A combination of vari-
ous networks to predict 
synergistic medication 
combinations

The GCN model for 
predicting synergistic 
medication combina-
tions in specific cancer 
cell lines in this study. 
The GCN technique

Using a large het-
erogonous network, the 
GCN model was able 
to correctly predict cell 
line-specific synergistic 
drug combinations

Predicting and optimiz-
ing synergistic medica-
tion pairings in silico

Liu et al.41 O’Neil46 Transformer boosted 
Deep Learning

Drug combinations have 
shown considerable 
promise in the treatment 
of cancer

An improved deep 
learning model for 
drug combination 
prediction that enhances 
performance and 
interpretability. Through 
gene–gene interaction, 
cell-line gene reliance, 
and genome-wide drug-
target interaction

In comprehensive 
benchmark testing, 
TranSynergy beats the 
state-of-the-art approach

Identify biomarkers for 
precision medicine. For 
ovarian cancer, which 
has few therapy choices
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drug discovery. The review presented by Wang et al.48 outlined the importance of identifying associations between 
drugs and pathways They introduced the background of drugs and the concept of drug-pathway associations, 
listed publicly accessible databases and web servers, and categorized state-of-the-art computational methods into 
Bayesian spare factor-based, matrix decomposition-based, and other machine learning methods.

Consent statement
This article does not contain any studies with human participants or animals performed by any of the authors.

Preliminaries
This work employs classification techniques to assign a class to an unseen record properly. Furthermore, the 
Naive Bayes (NB), Random Forests (RF), K-Nearest Neighbor (KNN), and Logistic Regression (LR) classifiers are 
used to accurately find actual synergistic, additive, and antagonistic medication combinations. The mechanisms 
of action for these medication combinations are categorized into two groups using synergy scores within the 
ranges of [− 5, 5] and [− 10, 10] which yields the most accurate findings, helping identify the actual synergistic, 
additive, and antagonistic medication combinations.

Machine learning models
Classification models
Naïve Bayes (NB) model.  NB49,50 is a widely used method for classification and is particularly suitable when 
the input dimensionality is high. Despite its simplicity, NB can often outperform more complex classification 
techniques. It measures the probability of each input feature (attribute) for a predictable state. The Bayesian clas-
sifier uses the Bayes rule to calculate the posterior probability for each class ci. NB is based on the simplifying 
assumption that the features, y, are independent of the class. Therefore, the probability can be calculated by using 
the conditional probabilities of each feature given in the class. So, the posterior probability, P (Ci|y), is expressed 
as in Eqs. (1) and (2).

where

where n is the number of classes such that:

P (Ci): A priori likelihood of class Ci.
P(y): the likelihood density for feature y.
P (y|Ci): the class-conditional likelihood density of the feature y that belongs to the Ci class.
P (Ci|y): the posterior probability of the Ci class when observing y.

Random forests (RF) model.  The RF51 is defined as an ensemble learning method for classification and regres-
sion. Ensemble learning techniques (such as boosting, bagging, and RF) have great interest since they are robust 
to noise and more accurate than single classifiers. RF is a collection of tree structure classifiers. Each tree is 
trained with a subset of the training data that are randomly selected (i.e. bootstrapped), with the same distribu-
tion of samples for all the trees in the forest. The final classification is then built based on the majority of trees in 
the forest. In other words, RF tries to build several decision trees with initial variables and various data samples 
and then combine predictions to make the final decision. For an RF that consists of N trees, the prediction of the 
class label c of case x by majority voting is made using Eq. (3).

where hn is the nth tree of the RF, and I is the indicator function.

Logistic Regression (LR) Model.  The LR52 is a linear model used for classification problems. LR measures the 
relationship between the response (dependent) variable and one or more explanatory (independent) variables 
for a given dataset that indicates the significance and strength of the impact of the explanatory variables on the 
response variable. The response variable is a class label that we are trying to predict. However, the explanatory 
variables are the features or attributes used to predict the class label. The output of LR is the probability that given 
input points belong to a certain class. Typically, LR estimates probabilities using the logistic function, also known 
as the sigmoid function, which is given in Eq. (4).

where e denotes the natural logarithm base, L denotes the curve’s maximum value, y0 denotes the sigmoid mid-
point’s y value, and k denotes the curve’s logistic growth rate or steepness.

(1)P(Ci|y) = P(y|Ci)P(Ci)/P(y).

(2)P
(
y
)
=

n∑

i=1

(
y|Ci

)
Ci

(3)l(x) = argmaxc

(
N∑

n=1

Ihn(X) = c

)
.

(4)f (y) =
l

1+ e−k(y−y0)
.
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K‑nearest neighbor (KNN) model.  The KNN classifier is an instance-based non-parametric classifier53. This 
approach is based on estimating the nearest neighbor. The new instances are categorized using a distance metric 
to measure similarity. The K in KNN stands for the number of nearest neighbors’ data items. The main concept of 
the KNN model is that a new instance’s prediction is formed by scanning the whole training set for comparable 
K neighbor examples and classifying them according to the class with the most occurrences. To discover a com-
parable situation, the Euclidean distance formula is employed. As shown in Eq. 5, Euclidean distance is equal to 
the square root of the sum of squared differences between the new instance (Ai) and the current instance (Bj)54.

Regression models
We provide state-of-the-art machine learning algorithms for forecasting the sensitivity of a medication combina-
tion based on the massive quantity of drug combination data gathered in the O’Neil dataset. We investigated three 
basic machine-learning prediction techniques: linear regression, random forest regression, and ridge regression.

Linear regression model.  Regression models are statistical models for estimating or forecasting the target or 
dependent variable using independent variables. Linear regression55 is a regression model that estimate or fore-
cast the target or dependent variable using independent variables.

Equation (6) shows the relationship between dependent and independent variables. Each univariate analysis 
in the linear regression model is used to how much the dependent variable will predict each independent variable.

where Y  is the total number of new cases and X1, X2,…, and Xp are p independent. β0 , β1 , β2 , …, and βp are the 
intercept and coefficients of the variables, respectively. ǫ is the error term in the model.

Random forest regression model.  Random forest regression51 has become a popular technique in a variety of 
prediction scenarios39,41,56 due to its high accuracy and ability to handle a large number of features. A regression 
tree is a nonlinear regression model in which samples are partitioned at each binary tree node depending on the 
value of a single input variable. By generating a set of regression trees in which the training set for each tree is 
chosen using Bootstrap sampling from the original sample set. Then, the features considered for partitioning at 
each node is a random subset of the original set of features. Random forest combines the two concepts of bagging 
and random feature selection. The random selection of variables assessed for partitioning at each node and the 
bootstrap sampling for each regression tree creation lower the correlation between the constructed regression 
trees. It is meaning that averaging their prediction responses will minimize error variance.

Ridge regression model.  The ridge regression technique was first discussed in 197057. Ridge regression is used 
to reduce the impact of collinearity in linear regression when the independent variables have a substantial cor-
relation. The regression coefficients in the generic regression model are described in Eq. (7).

where b is the coefficients vector, X denotes the (n*p) data matrix with p independent variables (each with 
n observations), XT signifies the transpose of X, and Y denotes the (n*1) matrix containing the regression’s 
dependent variable.

The proposed synergistic combinations for FDA‑approved cancer drugs model
Drug combinations are of great interest for cancer treatment. We designed a machine-learning framework to 
identify effective drug synergy pairs out of all possible combinations. Figure 1 investigates the general structure 
of the proposed model for drug combination, which includes three main parts. Part (1) is the preprocessing of 
the enrolled data. Part (2) is the classification of the combined drugs in terms of Synergism, Antagonism, and 
Additive. Part (3) demonstrates the prediction of the best combination drugs.

The proposed model is utilizing for predicting the best combination of drugs based on O’Neil data sets. It 
uses a combination of classification and regression models. The classification part takes pre-processed data and 
classifies the interaction between two drugs as synergism, antagonism, or additive. This is done using a training 
set that makes up 70% of the data, and then validated on a 20% validation set. The remaining 10% is used for 
testing the final model.

The regression part uses the same training and validation sets, but instead of predicting the class (synergism, 
antagonism, additive.). It predicts a numerical value for the best combination drug.

The classification and regression parts are essential for the proposed model. The classification part helps to 
identify promising drug combinations. By knowing whether two drugs are likely to have a synergistic, antago-
nistic, or additive effect, as we focus on the most promising combinations. While the regression part provides a 
more precise estimate of the interaction effect. This can be used to rank different drug combinations and select 
the most effective ones.

(5)Euclideani, =

√√√√
n∑

k=1

(
Aik − Bjk

)2

(6)Y = β0 + β1X1 + β2X2 + · · · βpXp + ǫ

(7)b =

(
XTX

)−1
XTY
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The analysis of the two major tasks of the current drug combination study, including both classification and 
prediction outcomes shown in Fig. 2. We investigate the prediction steps to determine the sensitivity score for a 
drug combination model in Fig. 1. We utilized the O’Neil dataset and annotated the enrolled data to classify each 
drug combination’s synergism, additive, and antagonism. The three-class labels use different synergy scores from 
[− 5 to 5] and [− 10 to 10] intervals. The Figure investigated the classification and annotation to determine the 
best combination score CSS among the same cancer cell line. In the following subsection, detailed descriptions 
of the utilized dataset are investigated.

Drug dataset characteristics
The data set illustrated the effect of drug combination against different cell lines with calculations of synergy 
scores as follows:

•	 Drug 1 generic name of the first drug
•	 Drug 2 generic name of the second drug
•	 Cell line cancer cell lines
•	 Synergy scores

•	 S-HSA is the single drug’s maximum impact,

Figure 1.   The general architecture model of the proposed drug combination.

Outcomes

Classifica�on 

Predic�on 

Classification and 
Annotation

Best combina�on CSS score 
among same cancer cell line

Classifica�on of the data based 
on type of cancer �ssue (6 

cancer types)

Annota�on of each drug as 
generic name and mechanism 

of ac�on.

Correlation and 
cheminformatics study

For each cancer type:
•Correla�on between the different

mechanisms of ac�ons for each
combina�on according to the type
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Figure 2.   Analysis of generated results based on drug mechanism of action and type of cancer tissue.
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•	 S-Bliss is the predicted result of two drugs acting independently,
•	 S-Loewe is the predicted result of a drug combined with itself,
•	 S-ZIP is the predicted interaction between two drugs that do not potentiate each other,
•	 CSS is a drug combination sensitivity score (CSS) used to determine the sensitivity of a drug pair.

The O’Neil drug combination data
The drug combination sensitivity (CSS) grading was used for the O’Neil medication combination data39,58, which 
contains 22,737 medication combinations including 38 different treatments in 39 cancer cell lines covering seven 
different tissue types. The O’Neil data is thought to be of good quality46, as it contains multiple replicates and 
has been utilized in previous machine learning development39,59–61 In the first phase, single-drug screening was 
performed using six replicates and eight concentrations to calculate the IC50 value for each medication. In the 
second stage, a four-by-four dose matrix was utilized to cover the range of IC50 concentrations for a drug pair 
with four replicates, utilizing a four-by-four dose matrix. To employ the cross design, just the row and column 
corresponding to the concentrations closest to the IC50 of the individual drugs were chosen. The CSS1 and 
CSS2 values were shown to be closely associated (Pearson correlation = 0.82) when the IC50 concentrations of 
each drug were utilized. The CSS1 and CSS2 values varied from 0 to 50, with a 5.62 difference in absolute value. 
A CSS score may be interpreted right away as a normalized average percent inhibition of the pharmaceutical 
combination response, as illustrated in Eq. (8).

The CSS1 and CSS2 correlations are generated to assess the CSS values’ stability further. The correlations 
are close to zero (Pearson correlation = 0.075), showing that the substantial association is attributable to CSS’s 
resiliency in real-world pharmaceutical combinations. There was a strong association between the CSS value and 
the values produced from individual replicates (minimum Pearson correlation = 0.97). Because the CSS1 and 
CSS2 values in the medicine combination sensitivity score are often constant, averaging them as a summary for 
the medicine combination sensitivity score is recommended.

The O’Neil dataset’s numerical variable correlation is shown in Fig. 3. Each row and column in the correlation 
matrix represents a continuous variable, and each value indicates the correlation coefficient (Pearson’s R-value) 
between the variables represented by that row and column. Most attributes are highly correlated, according to 
our observations.

Table 2 presents the Pearson correlation coefficients between different variables in the dataset. The Pearson 
correlation coefficient measures the linear relationship between two variables, ranging from − 1 to + 1. A positive 

(8)CSS =
(CSS1+ CSS2)

2

Figure 3.   The correlation heat map of the proposed drug combination model.
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correlation coefficient indicates a positive linear relationship, while a negative correlation coefficient indicates 
a negative linear relationship.

From Table 2, we observe several strong positive correlations between various variables. For instance, in 
rows 1 and 2, the CSS and CSS2 have a correlation coefficient of + 0.983 and + 0.982, respectively, indicating a 
very strong positive linear relationship between these two variables. Similarly, in rows 3 and 4, the S_max and 
S_mean exhibit a correlation coefficient of + 0.967 and + 0.965, respectively, suggesting a strong positive linear 
relationship between these variables.

Furthermore, rows 5 and 6 show a correlation coefficient of + 0.950 and + 0.945, respectively, indicating a 
relatively strong positive linear relationship between CSS2 and S_mean, as well as between CSS1 and S_mean.

Other notable correlations include the positive relationships between CSS1 and CSS2 in row 7 with a cor-
relation coefficient of + 0.931, and between S_max and S_sum in row 8 with a correlation coefficient of + 0.930.

On the other hand, some correlations are relatively weaker such as the correlation coefficients between CSS, 
S_max, CSS2, and S_sum in rows 10, 11, 12, 13, 14, and 15, ranging from + 0.901 to + 0.749.

Since our models require existing drug combinations for training, we retrieve the mechanism of action of 
these drugs in combination therapy using synergy scores. The synergy scores can be interpreted as the average 
excess response due to drug interactions. There is no threshold to define a good synergy score. Therefore, we made 
annotation for the dataset according to four synergy scores determined for each drug combination as follow:

First, we are using a synergy score of [− 5, 5] range as follows39:

•	 Less than − 5 indicates that the interaction between two drugs will most likely be antagonistic.
•	 Between − 5 and 5 the interaction between two drugs is most likely additive.
•	 If the number is more than 5 the interaction between two drugs is likely to be synergistic.

Second, we are using a synergy score of [− 10, 10] range as follows59:

•	 Less than − 10: indicates that the interaction between two drugs will most likely be antagonistic.
•	 From − 10 to 10: the interaction between two drugs is likely to be additive.
•	 Larger than 10 the interaction between two drugs is likely to be synergistic.

Data preprocessing phase
Data preprocessing is the first step in the proposed system to identify and process some attributes’ noisy, incom-
plete, irreverent, and inconsistent values. For the O’Neil dataset, data cleaning is performed by removing any 
missing values. Moreover, many outliers need to be handled properly, and the dataset is not properly distributed.

Outlier classification is a critical issue in machine learning because certain data samples may have consider-
ably different features than others in the same class, and so get isolated from the rest of the data in that class. 
As a result, we used the Interquartile Range (IQR) technique to find outliers in this study62. IQR can eliminate 
outliers by dividing a rank-ordered sample into four equal halves, known as quartiles, and evaluating dispersion. 
Q1 and Q3 denote the middle value in the first and second halves of the rank-ordered dataset, respectively, while 
Q2 is the median value for the whole set. Q3 minus Q1 gives the IQR. Outliers are data points that fall outside 
the Q1 1.5 IQR or the Q3 + 1.5 IQR.

A random under-sampling algorithm ensures that the data is more evenly distributed and does not cause 
bias. The O’Neil dataset has an unbalanced class distribution. The random under-sampling algorithm can be 
applied to the dataset to overcome this. Using a random under-sampling algorithm, all of the data points from 

Table 2.   Pearson correlation.

Row # Correlation Second feature First feature

1  + 0.983 CSS CSS2

2  + 0.982 CSS CSS1

3  + 0.967 S_max S_mean

4  + 0.965 CSS S_mean

5  + 0.950 CSS2 S_mean

6  + 0.945 CSS1 S_mean

7  + 0.931 CSS1 CSS2

8  + 0.930 S_max S_sum

9  + 0.910 S_mean S_sum

10  + 0.901 CSS S_max

11  + 0.890 CSS2 S_max

12  + 0.879 CSS1 S_max

13  + 0.768 CSS S_sum

14  + 0.760 CSS2 S_sum

15  + 0.749 CSS1 S_sum
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the minority class are used. Instances are randomly removed from the majority training set until the desired 
balance is achieved.

Because raw data has such a broad range of values, a normalization approach (also known as feature scaling) 
is used to adjust the values of numeric columns in the dataset to achieve a common scale, allowing the related 
objective functions to function effectively63. In this study, we use the min–max normalization technique.

Machine learning classifiers phase
Classification approaches are used to accurately detect actual synergistic, additive, and antagonistic medication 
combinations with great accuracy. The mechanism of action of these pharmacological combinations is catego-
rized into two categories based on synergy scores: a [− 5, 5] range and a [− 10, 10] range, as previously noted. The 
classifiers Naive Bayes (NB), Random Forests (RF), K Nearest Neighbor (KNN), and Logistic Regression (LR) 
are used to evaluate which synergy scores range delivers correct results. There were two techniques employed. 
Without balancing the data and eliminating outliers, one can use the data straight to machine learning algorithms. 
The results obtained were not encouraging. As a result, we eliminate outliers and balance data before examining 
the impact of data preparation on classification model performance.

Regression phase
We use state-of-the-art machine learning methods to estimate the sensitivity of a medicine combination based 
on the vast volume of drug combination data compiled in the O’Neil dataset. We looked at three important 
machine-learning methods for predictions: linear regression, random forest regression, and ridge regression. 
After analyzing the results, we then identify the synergy score that is more correlated to the prediction of the 
CSS score for the drug combination mechanism, identify the synergistic drug combinations for each cell line, 
and determine the best CSS score range for each drug combination mechanism.

Model evaluation metrices
The quality of the models was gauged based on well-known evaluation metrics such as the accuracy of the 
classification, precision, recall, and F1-scores for classification and the Mean Absolute Error (MAE), R squared 
score(R2), and Mean Squared Error (MSE) for regression.

Evaluation metrics for classification models
Equations (9), (10), (11), and (12) are determined by the confusion matrix performance that represents the 
accuracy, precision, recall, and F1-score, respectively.

These metrics are based on a “confusion matrix” that includes true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN)64.

Evaluation metrics for regression models
The determination coefficient R-square is one of the most common performances used to evaluate the regression 
model as shown in Eq. (13). On the other hand, the Minimum Acceptable Error (MAE) is shown in Eq. (14), 
while the Mean Square Error (MSE) is investigated in Eq. (15).

where y is the actual value, ˙̂y is the corresponding predicted value, ẏ is the mean of the actual values in the set, 
and n is the total number of test objects65.

(9)Accuracy =
TP+ TN

TP+ FP+ TN+ FN

(10)Precision =
TP

TP+ FP

(11)Recall =
TP

TP+ FN

(12)F1− score = 2 ∗
(Precision× Recall)

(Precision+ Recall)

(13)R2 =

∑(
y − ˙̂y

)2

∑(
y − ẏ

)2

(14)MAE =

∑n
i=1

∣∣ŷi − y
∣∣

n

(15)MSE =

∑n
i=1

∣∣ŷi − yi
∣∣

n
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Experimental results and analysis
In this section, we have conducted experiments to assess the performance of the machine learning framework for 
identifying effective synergetic drug combinations. As mentioned before, the O’Neil drug combination dataset is 
used for machine learning framework construction. We are conducting our experiments on a 3 GHz i5 computer 
with a 4 GB main memory and 64-bit Windows 10 operating system. The experiment is carried out using the 
Python programming language.

Initially, the focus of the first part of this section is on using classification techniques to correctly detect the 
mechanisms of action of the drug combinations that are synergistic, additive, and antagonistic with high accuracy. 
Then check the influence of data preprocessing on the performance of the classification models. In the second 
part, we focus on applying regression models to predict the sensitivity of a drug combination. Then identify the 
synergy score that correlate to the prediction of the CSS score for the drug combination mechanism, identify the 
synergistic drug combinations for each cell line, and determine the best CSS score range for each drug combina-
tion mechanism. Finally, we illustrated the mechanism of action for each drug and the name of the cancer type. 
Then, drug features were calculated based on the Rapid Overlay Chemical Similarity (ROCS) analysis technique.

Building classification and regression models
Many classification and regression models were created utilizing various machine-learning approaches to find 
successful synergistic medication combinations.

Identifying the mode of action of the drug combinations
Drug combinations were generally overlooked in terms of effectiveness, synergy, and mechanisms of action. As 
a result, we attempt to categorize medications as synergistic, additive, or antagonistic drugs using machine kinds 
in this investigation. Well-known classification approaches are used to identify actual synergistic, additive, and 
antagonistic medication combinations with high accuracy. Synergy scores of [− 5, 5] and [− 10, 10] are used to 
classify the mechanisms of action of certain medication combinations. Then the evaluation metrics listed in Sec. 
4.5.1 are used to measure the performance of classification techniques and determine which synergy scores range 
gives accurate results. The default parameters for each classification technique were used. The experiments were 
done by using a 10 cross-validation method. Table 3 and Table 4 show the performance results for all classifiers 
to classify drugs according to the mechanism types using two ranges of synergy scores [− 10, 10] and [− 5, 5], 
respectively.

Tables 3 and 4 show that the performance of classification techniques when using a synergy score of [− 10, 
10] range to identify the mechanism types of the drugs consistently produced the best accuracy. Figure 4 shows 
comparative results of classification techniques using two synergy score ranges in accuracy. When utilizing 
the synergy score [− 10, 10] range to apply classification approaches, it can be shown that RF provided the best 
accuracy of the four classifiers evaluated, while LR produced the worst. It’s worth noting, however, that even the 
worst-performing LR model outperformed a synergy score in the [− 5, 5] range in terms of accuracy. Therefore, 
in this study, using the synergy score [− 10, 10] range was the best option for identifying the mechanism types 
of the drugs, as shown in Fig. 4.

Influence of data preprocessing on the performance of the classification models
The performance machine learning model depends significantly on the quality of the data and the strategy of 
using the data66. Therefore, the assessment of the influence of data preprocessing on machine-learning models’ 
performance has a high significance. We first removed the null values from the O’Neil dataset to optimize the 

Table 3.   Comparison of different classifiers using a synergy score of [− 10, 10] range. Significant values are in 
[bold].

Method Accuracy Precision Recall F1-score

NB 96.196 73.308 97.575 81.765

RF 99.927 99.676 98.633 98.571

KNN 98.715 93.224 93.004 92.633

LR 92.548 73.559 93.675 79.771

Table 4.   Comparison of different classifiers using a synergy score [− 5, 5] range. Significant values are in 
[bold].

Method Accuracy Precision Recall F1-score

NB 92.537 77.874 89.727 82.157

RF 99.916 99.693 98.785 99.600

KNN 96.758 95.000 92.001 93.225

LR 91.085 84.426 82.161 81.785
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classifier performance. Then we analyzed the entire data distribution to check the class distribution. The impacts 
of outliers and data imbalance on classification performance were then investigated. As we inferred, the synergy 
score [− 10, 10] range was the best option for identifying the mechanism types of the drugs.

Checking the distribution of the data The data distribution plays an important role when the prediction or 
classification of a problem is to be done. After removing the null values, the O’Neil dataset has 1119 synergisms, 
16764 additives, and 99 antagonisms out of all drug combinations as shown in Fig. 5. Therefore, we need to bal-
ance the dataset, or otherwise, it might get overfit.

Removing outliers and data balancing.
One of the most difficult problems for machine learning classifiers is learning from outliers and unbalanced data. 
The O’Neil dataset has two flaws: it is imbalanced and has outliers, as we discovered. We handle these issues: 
Using the IQR technique, we first eliminated the outliers. We used the random under-sampling approach to get a 
balanced dataset in the second stage. Table 5 shows the results after removing outliers and balancing the dataset 
when using a synergy score of [− 10, 10] range.

NB RF KNN LR
[-10 ,10] 96.196 99.927 98.715 92.548
[ –5, 5 ] 92.537 99.916 96.758 91.085
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Figure 4.   Comparative results of classification techniques using two synergy score ranges in terms of accuracy.
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Figure 5.   The class distribution of the three classes Synergism, Additive, and Antagonism.

Table 5.   Performance comparison of different classifiers after applying data preprocessing techniques.

Method Accuracy Precision Recall F1-score

Naïve 98.80 96.667 96.11 96.363

RF 98.80 95.00 91.281 86.266

KNN 99.60 95.0 94.80 94.897

LR 94.80 86.167 83.998 84.948
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From Table 5, it is evident that when the data preprocessing method is applied, it can improve the performance 
of classifiers in terms of F1 scores, precision.

Recall and accuracy. These results also showed that the KNN classifier had the best performance while LR 
produced the least. Moreover, we noticed that the NB, KNN, and LR trained with preprocessed data produce 
better precision than when trained with original data.

According to these findings, the RF also performed poorly in all performance criteria and did not respond 
well to the applied selective data preparation process.

Figure 6 compares the performance of machine learning models with a synergy score in the [− 10, 10] range 
before and after eliminating outliers and balancing data in terms of accuracy. It can be observed that, in most 
cases, classification algorithms perform better when they are trained with preprocessed data.

Predicting the drug combination sensitivity score (CSS) using regression model
We wanted to see how accurate various machine-learning approaches were in predicting the CSS for each drug 
combination after discovering the CSS. Linear regressions, random forest regressions, and ridge regressions 
were examined as three state-of-the-art machine-learning algorithms for CSS prediction. We randomly chose 
70% of the medication combinations to train different machine-learning models. The performance of the regres-
sion model is then measured using the evaluation metrics specified in Sect. 4.5.2. for the remaining 30% of the 
unique medication combinations utilized as testing data, the model with the lowest MSE and MAE was chosen 
to predict the CSS values.

Figure 7 shows the comparative results of prediction methods to predict the CSS score of the drug combina-
tion. We observed that the random forest regression model achieved the best performance to predict the CSS, 
with an MAE of 0.09 and MSE of 0.013.

To determine the synergy score that is more correlated to the prediction of the CSS score for each class, we 
use Pearson’s correlation method. Table 6 shows the Pearson correlations of the S synergy scores with the CSS 
score for each drug combination mechanism. We investigated that the most feature correlated to CSS prediction 
is the HSA score for the additive and synergistic drug combinations, whereas the Loewe score for the antagonistic 
drug combinations.

Naïve RF KNN LR
Before 96.196181 99.927704 98.7154 92.548091
A�er 98.8 98.8 99.6 94.8

88
90
92
94
96
98

100

Ac
cu
ra
cy

Figure 6.   Comparison of different classifiers with and without applying data preprocessing techniques.

MAE R^2 MSE
Linear regression 0.102 0.50105 0.016
Ridge regression 0.103 0.49399 0.016
Random forest regression 0.09 0.59157 0.013
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Figure 7.   Performance comparison of different prediction methods in terms of MAE, R2, and MSE.
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Statistical analysis
An Analysis of Variance (ANOVA)67,68 was conducted to investigate the presence of statistically significant 
differences among different machine-learning algorithms. ANOVA is a parametric statistical test suitable for 
comparing means across different groups. It evaluates the variation in a dataset to determine if it is attributable 
to genuine differences in group means or if it could occur by chance. The null hypothesis posits that there is no 
significant difference in the population means of the groups, while the alternative hypothesis suggests unequal 
means. The chosen significance level was 0.05. The results are summarized in Table 7.

As shown in Table 6, the F-statistic is 4.900, and the associated p value is 0.019. Since the p value is less than 
the conventional significance level of 0.05, there is evidence to reject the null hypothesis, suggesting that there 
are significant differences among the group means.

Comprehensive insights into the key hyperparameters of the regression models
Tables 8 and 9, present a comprehensive insight into the key hyperparameters governing the behavior of regres-
sion models and classifiers employed in our analysis. Understanding these hyperparameters is fundamental to 
optimizing the performance and interpretability of machine learning models.

Comparative analysis
In this section, we perform a comparative study between other recent approaches with the proposed method 
using the same dataset utilized in this study as shown in Table 10. The SNRMPACDC model presented by Li 
et al.69 introduced a fusion of various neural network components. It employed a Siamese convolutional network 
to analyze individual drug features, capturing potential interactions between them. Additionally, the model 
utilized random matrix projection to reduce the dimensionality of drug features while preserving pertinent infor-
mation. The convolutional network processes cancer cell line features, extracting relevant information. Lastly, a 
multi-layer perceptron integrates all the processed features and produces a predicted score indicating the synergy 
of drug combinations. The evaluation of their model is based on both regression and classification prediction.

Firstly, in regression prediction they achieved Root mean-squared error (RMSE) of 15.01 and Pearson cor-
relation coefficient of 0.75. While in classification prediction they achieved Area under the receiver operating 
characteristic curve (AUC) of 0.91 ± 0.03 and area under the precision-recall curve (AUPR) of 0.62 ± 0.05. Huang 
et al.70 proposed Kaplan–Meier method and univariate Cox regression analysis for predictive accuracy and 

Table 6.   Pearson’s correlation of the S synergy scores with the CSS Score for each drug combination 
mechanism. Significant values are in [bold].

S_HSA S_Bliss S_Loewe S_ZIP

Synergism 0.369212 0.282605 0.278984 − 0.005884

Additive 0.287297 0.266139 0.113107 0.015478

Antagonism 0.525654 0.496790 0.535932 0.234947

Table 7.   ANOVA test results for the machine learning models.

Sum of squares Df Mean Square F-statistics P value

Between groups 221.502 3 73.834 4.900 .019

Within groups 180.819 12 15.068

Total 402.321 15

Table 8.   Overview of hyperparameters for regression models.

Model Hyperparameter Description Value

LinearRegression No hyperparameters specified in the code

Lasso alpha Regularization parameter 1.0

RandomForestRegressor n_jobs Number of parallel jobs (− 1 for all CPUs) − 1

RandomForestRegressor random_state Random seed for reproducibility 42

BayesianRidge No hyperparameters specified in the code

DecisionTreeRegressor max_depth Maximum depth of the decision tree 3

Ridge No hyperparameters specified in the code

KNeighborsRegressor n_neighbors Number of neighbors to consider 5

KNeighborsRegressor weights Weighting function for predictions ‘uniform’
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clinical utility of the nomogram through a calibration curve. They used ROC curve, and decision curve analysis 
(DCA). The ROC curves for all independent prognostic factors were plotted to confirm the superior predictive 
validity of the nomogram compared to a single independent prognostic factor. Results from the calibration 
curve, ROC analysis, and DCA collectively demonstrated the nomogram’s performance and suitability for clinical 
application, with areas under the ROC curve exceeding 0.800 for 3-, 5-, and 10-year intervals.

Zhang et al.71 presented the progression of five models is detailed sequentially, starting with label informa-
tion that involves categorical encoding of both drugs and cell lines. Subsequent steps include incorporating the 
chemical structure of drugs encoded by molecular fingerprints and cell line cancer gene expression. Further 
enhancements involve the addition of monotherapy efficacy, followed by the incorporation of dose–response 
curve baseline features and imputation features. The performance metrics for all models are documented as 
M13–M20. The confidence for evaluation metrics, expressed as a 95% confidence interval, is established by 
employing bootstrapping techniques on predictions derived from the complete datasets.

A model presented by Kuru et al.72 used MatchMaker, to predict drug synergy scores by incorporating both 
drug chemical structure information and cell line gene expression profiles within a deep learning architecture. 
The model utilized the most extensive drug combination dataset to date, DrugComb. Through MatchMaker 
their model achieved 15% correlation and 33% lower mean squared error (MSE). Zagidullin et al.73 presented a 
categorization of drugs and cell lines, along with their respective proportions in DrugComb, involved classifying 
drugs based on mechanism types. Notably, 33.3% of the drugs (n = 756) lacked well-documented mechanisms 
of action according to major databases.

A biologically motivated deep learning strategy to extract pathway-level features from molecular data of drugs 
and cell lines presented by Tang and Gottlieb74. They aiming to predict drug synergy and quantify interactions 
in synergistic drug pairs and their approach yielded a mean squared error (MSE) of 70.6 ± 6.4. Additionally, 
their findings suggest that drug combinations exhibit greater synergy when their top contributing pathways are 
closely interconnected on a protein interaction network, implying a potential strategy for combination therapy 
involving topologically interacting pathways. El Khili et al.75 introduced a deep-learning multitask model named 
MARSY (Multitask drug pAiR SynergY), incorporating information from the gene expression profiles of cancer 

Table 9.   Overview of hyperparameters for classification Models.

Classifier Hyperparameters Description Value

Naive Bayes (Naive) No hyperparameters No hyperparameters are specified for Naive Bayes N/A

Random Forest (RF)

- n_estimators Number of trees in the forest 100

- max_depth Maximum depth of the tree None (i.e., nodes are expanded until containing less than min_sam-
ples_split samples)

- min_samples_split Minimum samples required to split a node 2

- min_samples_leaf Minimum samples required to be at a leaf node 1

K-Nearest Neighbors (KNN)

- n_neighbors Number of neighbors to use for classification 5

- weights Weight function used in prediction ‘uniform’

- algorithm Algorithm used to compute nearest neighbors ‘auto’

Logistic Regression (LR)
- C Inverse of regularization strength 1.0

- penalty Type of regularization ‘l2’

Table 10.   The comparative study between recent approaches and the proposed model using the same dataset 
in this study.

Author Method Results Comment

Li et al.69 SNRMPACDC: Siamese CNN, Random Matrix 
Projection, MLP

RMSE: 15.01, Pearson correlation: 0.75 (regres-
sion)

Good regression & classification (AUC 0.91, 
AUPR 0.62)

Huang et al.70 Kaplan–Meier, Cox Regression, Nomogram AUC > 0.800 for 3-, 5-, and 10-year intervals Well-calibrated nomogram for clinical use

Zhang et al.71 Sequential model with various feature encodings M13-M20 performance metrics documented Comprehensive feature analysis, confidence 
intervals included

Kuru et al.72 MatchMaker: Deep learning with drug structure & 
gene expression DrugComb: 15% correlation, 33% lower MSE Deep learning with large dataset and good 

performance

Zagidullin et al.73 Drug and cell line categorization in DrugComb 33.3% of drugs lacked documented mechanisms Highlighted data limitations in DrugComb

Tang and Gottlieb74 Biologically motivated deep learning for pathway 
features

MSE: 70.6 ± 6.4, topologically interacting pathways 
for synergy

Considered pathway interactions for improved 
prediction

El Khili et al., 2023 75 MARSY: Deep learning multitask model for 
synergy prediction RMSE: 9.06 (± 0.45) for drug-pair combinations Efficient prediction for large datasets with multi-

task learning

Proposed model

Classification (NB, RF, KNN, and LR) Average Accuracy: 89% After applying data preprocessing

Regression (Linear, Ridge, and RF regressors)
Average
MAE: 0.0984
R2: 0.5290
MSE:0.015

Prediction methods were employed to forecast the 
CSS score of drug combinations
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cell lines. MARSY was employed to predict synergy scores for 133,722 drug-pair cell line combinations. The 
performance evaluation, conducted through a fivefold leave-pair-out approach, resulted in a root mean square 
error (RMSE) of 9.06 (± 0.45) for MARSY and baseline methods.

Determination of the best CSS score range for each drug combination mechanism
Upon the previous experimental results, when filtering out the drug combinations, we found that the true 
synergistic ones are those with a CSS score consistently higher than 28, true antagonistic ones are those with a 
CSS score consistently lower than 8, and the true additive drug combinations those with the CSS score consist-
ently between [− 8, 28] range. Each cell line was chosen based on the drug pairings with the greatest predicted 
CSS scores to identify the synergistic drug combinations for each cell line. For the A2058 cancer cell line, the 
combination of GEMCITABINE and MK-8776 was the most effective. Table 11 shows the top forecasts for the 
remaining cell lines.

We noticed that most drugs mentioned in this combination model are with similar mechanism of action 
which suggests the approach that drug combinations occur for drugs with same pharmacodynamic and differ-
ent pharmacokinetic profiles.

Cheminformatics studies
Drugs and their mechanism of actions
In drug combination protocol, every drug interacts with its receptor or has the same receptor. So, knowing the 
mechanism of the combined drugs and their chemical features is essential to understanding the reason for the 
highest CSS and subsequently predicting the recommended combination therapy for clinical trials for every 
cancer type 104.

In Table 11, we added the mechanism of action for each drug and the type of cancer to the best scores dataset 
to figure out the relation of CSS, mechanism of each drug, and type of cancer. The top-scoring drug combina-
tion was reorganized based on the type of cancer tissue. Six types of cancer tissues arose and were studied. From 
Table 11, we observe the following.

•	 Melanoma topoisomerase II inhibitors or kinases inhibitors with mTOR inhibitors or inhibitors of phos-
phorylation at ser296-Chk1 (Kinases drugs). Inhibitors the function of Hsp90 as the anti-apoptotic drug is 
recommended. Drugs with top CSS values are Gemcitabine, MK-8776, BEZ-235, and Geldanamycin.

•	 Ovarian cancer the combination of drugs acting on kinases pathways e.g. CDK inhibitors, an inhibitor of 
FPTase, and GGPTase-I or inhibitors of the phosphorylation at ser296-Chk, Aurora-A kinases inhibitors 
or those acting on Alkylating agent, crosslink DNA. Drugs with top CSS values are L778123, MK-5108, 
Dinaciclib, MK-8776, or AZD1775.

•	 Colorectal carcinoma a combination of drugs acting on kinase pathways e.g. CDK inhibitors or inhibitors of 
the WEE1 activity and induces DNA damage or those acting as mTOR inhibitors. Drugs with top CSS values 
are AZD1775, BEZ-235, Bortezomib, or MK-8776.

•	 Prostate cancer kinases with WEE1 activity or induce DNA damage. Drugs with top CSS values are Bort-
ezomib, Gemcitabine, BEZ-235, or AZD1775.

•	 Breast cancer Kinases with WEE1 activity and induces DNA damage. Using two drugs from the same mecha-
nism as mTOR inhibitors is also recommended. Drugs with top CSS values are Gemcitabine, AZD1775, 
Bortezomib, or Geldanamycin.

•	 Human lung cancer Kinases or inhibitors of WEE1 activity induce DNA damage or kinases with mTOR 
inhibitor. HDAC inhibitor (Zolinza) is recommended. Drugs with top CSS values are AZD1775, MK-8776, 
Vinorelbine, Zolinza, or Gemcitabine.

By analyzing, the results based on the name of the drugs: Gemcitabine MK-8776, and AZD1775 were repeated 
among most of the cancer tissue.

In the quest to uncover potent combinations of drugs that can conquer diseases, a treasure trove of data 
awaits within Table 12. This comprehensive catalog, meticulously curated from diverse sources, holds the keys 
to unlocking drug synergy across a spectrum of illnesses. Each row within this table represents a unique study, a 
testament to the collective efforts of researchers around the globe. Together, they paint a tapestry of knowledge, 
weaving insights from cancer to SARS-CoV-2, malaria, and Ebola. The columns description contained the fol-
lowing attributes.

–	 STUDY NAME: The beacon that guides us to the source of knowledge, revealing the specific research 
endeavor.

–	 DISEASE: The battlefield where the fight unfolds, ranging from cancer’s formidable frontlines to the emergent 
threats of viral foes.

–	 DATA SOURCE: The origin of the data, whether gleaned from published papers, curated databases like 
NCATS Tripod, or industry pioneers like AstraZeneca.

–	 PUBMED ID: A quick-link to delve deeper into the study’s methodology and findings, allowing us to trace 
the footsteps of researchers.

–	 NUMBER OF DRUGS: The cast of characters, the arsenal of molecules wielded in the pursuit of synergistic 
magic.

–	 NUMBER OF BLOCKS: A glimpse into the complexity of the study, revealing the number of distinct com-
binations explored in this intricate dance.
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Reference that confirms 
our results

Our results

Cell line Tissue disease

Drug 1 Drug 2

CSSName Mechanism Name Mechanism

76 A2058 Epithelial/ Melanoma Gemcitabine CDK inhibitor MK-8776 Inhibit phosphorylation at 
ser296-Chk1 42.96965

77 A375 Epithelial/ Melanoma Mitomycin Alkylating agent, crosslink 
DNA BEZ-235 mTOR inhibitor or 42.9484

40 HT144 Human skin malignant 
melanoma Geldanamycin Inhibits the function 

of Hsp90 BEZ-235 mTOR inhibitor 39.05215

78 RPMI7951 Human skin malignant 
melanoma Etoposide topoisomerase II inhibi-

tors Geldanamycin inhibits the function 
of Hsp90 43.3456

79 SKMEL30 Cutaneous melanoma Doxorubicin topoisomerase II inhibitor MK-8776 Inhibits phosphorylation 
at ser296-Chk1 41.24685

40 UACC62 Human Melanoma Geldanamycin inhibits the function 
of Hsp90 BEZ-235 mTOR inhibitor 39.7059

80 OVCAR3 Ovarian cancer Gemcitabine CDK inhibitor MK-8776 Inhibits phosphorylation 
at ser296-Chk1 42.3738

81 A2780 Epithelial/ ovarian cancer Gemcitabine CDK inhibitor Dinaciclib CDK inhibitor 43.1521

82,83 ES2 Ovary carcinoma BEZ-235 mTOR inhibitor MK-8776 Inhibits phosphorylation 
at ser296-Chk1 43.2467

84 CaoV3 High-grade ovarian serous 
adenocarcinoma Mitomycine Alkylating agent, crosslink 

DNA AZD1775 WEE1 activity and 
induces DNA damage 43.2587

85 PA1 Ovary (Teratocarcinoma) L778123 inhibitor of FPTase and 
GGPTase-I MK-5108 Aurora A kinase inhibitor 43.4017

86 OV90
Ovaery
Malignant Papillary 
Serous Adenocarcinoma

AZD1775 WEE1 activity and 
induces DNA damage MK-8776 Inhibit phosphorylation at 

ser296-Chk1 30.11825

87 UWB1289 Ovarian carcinoma ERLOTINIB an epidermal growth fac-
tor receptor inhibitor Sorafenib Kinase inhibitor 39.3318

88 UWB1289BRCA1 Ovarian carcinoma Bortezomib
Inhibits the 26S protea-
some, preventing the 
activation of NF-κB

BEZ-235 mTOR inhibitor 40.7658

89 SKOV3 Ovarian Adenocarcinoma AZD1775 WEE1 activity and 
induces DNA damage MK-8776 Inhibits phosphorylation 

at ser296-Chk1 42.1901

90 HCT116 Colorectal carcinoma Gemcitabine CDK inhibitors AZD1775 Inhibit WEE1 activity and 
induce DNA damage 40.6917

91 COLO320DM Colon adenocarcinoma Methotrexate DHFR inhibitor Erlotinib EGFR inhibitor 41.28255

80 DLD1 Adenocarcinoma; Colo-
rectal Gemcitabine CDK inhibitor MK-8776 Inhibit phosphorylation at 

ser296-Chk1 34.00605

92 HT29 Human colon adenocarci-
noma cell AZD1775 Inhibit WEE1 activity and 

induce DNA damage MK-8776 Inhibits phosphorylation 
at ser296-Chk1 41.93325

93 LOVO Adenocarcinoma; Colo-
rectal AZD1775 Inhibits WEE1 activity 

and induces DNA damage MK-8776 Inhibits phosphorylation 
at ser296-Chk1 42.70565

94 RKO Colon carcinoma Vinblastine
binds to microtubular 
proteins in the mitotic 
spindle

Sorafenib kinase inhibitor 39.98395

95 SW620 Adenocarcinoma of the 
colon Bortezomib

Inhibits the 26S protea-
some, preventing the 
activation of NF-κB

BEZ-235 mTOR inhibitor 43.17505

96 SW837 Human colorectal adeno-
carcinoma Dasatinib protein tyrosine kinase 

inhibitor BEZ-235 mTOR inhibitor 36.07155

40 LNCAP Prostate adenocarcinoma Bortezomib
Inhibits the 26S protea-
some, preventing the 
activation of NF-κB

BEZ-235 mTOR inhibitor 42.39735

97 VCAP Prostate cancer Gemcitabine CDK inhibitor AZD1775 WEE1 activity and 
induces DNA damage 40.90855

98 OCUBM Breast carcinoma Gemcitabine CDK inhibitor AZD1775 WEE1 activity and 
induces DNA damage 42.46835

82 T47D Human breast cancer MK-8669 mTOR inhibitor BEZ-235 mTOR inhibitor 34.71975
83 KPL1 Human breast cancer MK-8669 mTOR inhibitor BEZ-235 mTOR inhibitor 34.43505

99 MDAMB436 Human Breast Cancer Bortezomib
Inhibits the 26S protea-
some, preventing the 
activation of NF-κB

Geldanamycin Inhibits the function 
of Hsp90 41.08135

46 EFM192B Breast carcinoma Mitomycine Alkylating agent, crosslink 
DNA ZOLINZA HDAC inhibitor 37.10165

100 SKMES1 Lung squamous cell 
carcinoma Topotecan Topoisomerase inhibitor BEZ-235 inhibits mTOR 41.80635

101,102 A427 Lung adenocarcinoma AZD1775 Inhibits WEE1 activity 
and induces DNA damage MK-8776 Inhibit phosphorylation at 

ser296-Chk1 43.352

Continued
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Reference that confirms 
our results

Our results

Cell line Tissue disease

Drug 1 Drug 2

CSSName Mechanism Name Mechanism
69 MSTO Lung carcinoma Vinorelbine Tubulin inhibitors Zolinza HDAC inhibitor 43.3598

80 NCIH1650 Lung carcinoma Gemcitabine CDK inhibitor MK-8776 Inhibits phosphorylation 
at ser296-Chk1 42.68605

80 NCIH2122 Non-small cell lung 
cancer Gemcitabine CDK inhibitor MK-8776 Inhibit phosphorylation at 

ser296-Chk1 42.00935

103 NCIH23 Human lung cancer Zolinza HDAC inhibitor AZD1775 WEE1 activity and 
induces DNA damage 42.78825

40 NCIH460 Large cell cancer of the 
lung Geldanamycin inhibits the function 

of Hsp90 BEZ-235 mTOR inhibitor 41.1219

41 NCIH520 Squamous Cell Carcinoma MK-8669 mTOR inhibitor BEZ-235 mTOR inhibitor 41.70995

Table 11.   Highest drug combination scores with a type of tissue cancer and drug pair information.

Table 12.   Drug combination datasets used to confirm our results (https://​drugc​omb.​org/​help/#​line12).

Study name Disease Data source Pubmed id Number of drugs Number of blocks
Number of cell 
lines Number of tissues

Full dose–response 
matrix size

ONEIL Cancer Publication 26983881 38 92,208 39 6 5 × 5

CLOUD Cancer Publication 28530711 283 40,160 1 1 2 × 2

ALMANAC Cancer Publication 28446463 103 311,604 60 9 4 × 4, 4 × 6

FORCINA Cancer Publication 28601558 1818 1818 1 1 2 × 2

NCATS_ATL Cancer NCATS Tripod 22 30 1 1 10 × 10

MATHEWS Cancer NCATS Tripod 24469833 477 1119 1 1 6 × 6, 10 × 10

NCATS_DIPG Cancer NCATS Tripod 2450 8854 2 2 6 × 6, 10 × 10

NCATS_ES(FAKI/
AURKI) Cancer NCATS Tripod 1909 1910 1 1 6 × 6

NCATS_
ES(NAMPT + PARP) Cancer NCATS Tripod 94 4628 4 3 6 × 6, 10 × 10

WILSON Cancer NCATS Tripod 30289729 31 764 2 1 6 × 6, 10 × 10

NCATS_HL Cancer NCATS Tripod 1910 2694 4 2 6 × 6, 10 × 10

YOHE Cancer NCATS Tripod 29973406 25 270 3 2 10 × 10

NCATS_2D_3D Cancer NCATS Tripod 5 70 2 2 10 × 10

PHELAN Cancer NCATS Tripod 29925955 16 62 1 1 10 × 10

NCATS_MDR_CS Cancer NCATS Tripod 18 68 2 1 10 × 10

CCLE Cancer PharmacoDB 22460905 24 11,670 503 24 6 × 1, 7 × 1, 8 × 1

CTRPV2 Cancer PharmacoDB 26482930 544 395,263 887 24 8 × 1 ~ 29 × 1

FIMM Cancer PharmacoDB 24056683 52 2561 50 5 5 × 1

GCSI Cancer PharmacoDB 27193678 16 6455 409 23 8 × 1, 9 × 1

GDSC1 Cancer PharmacoDB 23180760 250 225,480 1074 30 5 × 1, 9 × 1

GRAY​ Cancer PharmacoDB 24176112 89 9413 70 2 9 × 1

UHNBREAST Cancer PharmacoDB 26771497 4 52 15 1 9 × 1, 18 × 1

BEATAML Cancer Publication 30333627 122 59,348 528 1 7 × 1

FLOBAK Cancer Publication 31664030 19 9984 8 7 6 × 6

ASTRAZENECA Cancer AstraZeneca 31209238 116 20,482 153 10 6 × 6

FRIEDMAN Cancer Publication 26461489 108 208,008 36 1 3 × 3

SCHMIDT Cancer Publication 24101737 4 100 5 1 8 × 8

MILLER Cancer Publication 24065146 13 82 1 1 8 × 8

FRIEDMAN2 Cancer Publication 28446504 76 28,500 10 1 3 × 3

TOURET SARS-CoV-2 Publication 32753646 1516 1520 1 1 1 × 1

GORDON SARS-CoV-2 Publication 32353859 75 290 1 1 5 × 1, 6 × 1, 7 × 1

ELLINGER SARS-CoV-2 ChEMBL 5604 5632 1 1 1 × 1

MOTT Malaria NCATS Tripod 26403635 223 17,072 3 1 6 × 6, 10 × 10

NCATS_SARS-COV-
2DPI SARS-CoV-2 NCATS Tripod 56 206 1 1 6 × 6

BOBROWSKI SARS-CoV-2 NCATS Tripod 32637956 34 262 1 1 6 × 6

DYALL Ebola NCATS Tripod 29939303 17 432 2 2 6 × 6

FALLAHI-SICHANI Cancer Publication 28069687 10 111 5 1 10 × 1, 20 × 1

https://drugcomb.org/help/#line12
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–	 NUMBER OF CELL LINES: The battleground where the drugs are tested, the diverse landscapes of cells that 
bear witness to the power of synergy.

–	 NUMBER OF TISSUES: For studies venturing beyond the cellular level, this column reveals additional testing 
grounds, offering insights into drug synergy within the body’s intricate tapestry.

–	 FULL DOSE–RESPONSE MATRIX SIZE: A window into the vastness of data collected, showcasing the scope 
of each investigation.

The proposed model, meticulously trained to uncover patterns within this symphony of data, has achieved 
promising results in both regression and classification tasks across these diverse datasets. We proudly present only 
the best results in our evaluation, showcasing the potential of computational approaches to illuminate the path 
towards effective drug combinations. Table 12 beckons researchers and enthusiasts alike to explore its depths. 
Within its rows lies the promise of a future where drug synergy triumphs over disease, where the combined might 
of molecules paves the way towards a healthier world.

Drug descriptors
The molecular descriptors of each drug are responsible for the relevant activity105. These descriptors have been 
extensively demonstrated as a measure of structure. The selected drugs were represented as color atoms based 
on ROCS, as investigated in Table 13. ROCS is a feature and application in the Openeye scientific program (Aca-
demic License by Yaseen Elshaier 2021, https://​www.​eyeso​pen.​com/). The characters include the following items:-

•	 No acceptors Several drug features can form HB as acceptors.
•	 No donors Several drug features can form HB as a donor.
•	 No hydrophobe Several drug features act as hydrophobe parts.
•	 No of rings number of rings inside the drug’s chemical structure.
•	 No of anion number of anion groups inside the drug’s chemical structure.
•	 No cation number of cation groups inside the drug’s chemical structure.

For selected drugs, the shape of the atoms and the corresponding color atoms determined by ROCS is shown 
in Table 13.

We found a combination of drugs complimentary by analyzing the results. Drugs with cationic or anionic 
features combined with drugs devoted from any cationic or anionic features. The number of acceptors, the 
number of donors, and the number of rings are very important. Total summation for the same type of descrip-
tor shouldn’t be very high.

Cheminformatics study (ROCS analysis)
The ROCS assesses the three-dimensionality of medicines. It computed the shape and color of ligands in their 
binding proteins, which are crucial elements in determining commonalities between them. The ROCS program 
OpenEye scientific software displays shape and color attributes. The query molecules were chosen for their high 
degree of similarity [https://​www.​eyeso​pen.​com/]. The database file was chosen as the Compounds library. 
Omega program reduced the amount of energy used by the database files. ROCS operates on a personal computer 
using the vROCS interface. vROCS was employed to run and analyze/visualize the results. The Vida application 
visualized the outcome. Compound conformers were rated based on their Gaussian overlap with the query, with 
Tanimoto Combo scores (shape + color) being the best scoring criteria. The compound with the highest score 
was the best matched with the query compound.

Table 13.   The number of color atoms for selected drugs calculated by ROCS.

Drug name No of acceptors No of donors No of rings No of hydrophobe No of anion No of cation

ZOLINZA 2 2 1 2 – –

MK-5108 5 1 4 – – –

GEMCITABINE 6 4 2 – –

AZD1775 6 4 2 – – –

L778123 3 1 4 – – 2

MK-8776 3 3 4 1 – 1

MK-8776 2 3 6 – – 1

GELDANAMYCIN 8 3 2 – –

BORTEZOMIB 4 2 2 1 – –

DINACICLIB 2 3 4 1 1 –

VINBLASTINE 6 5 8 2 – 1

VINORELBINE 5 4 9 2 – 1

BEZ-235 4 – 6 1 – 1

https://www.eyesopen.com/
https://www.eyesopen.com/
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Discussion, advantages, and limitation
This paper presents a machine-learning-driven approach to forecast effective drug synergy pairs for cancer 
treatment, encompassing multiple steps such as data collection, annotation, preprocessing, and model building. 
Notably, the study annotates drug combinations with generic names and mechanisms of action, contributing to a 
nuanced understanding of synergy behavior. Utilizing a mix of classification and regression models, the frame-
work demonstrates its versatility. Integration of the ROCS adds a three-dimensional assessment of medicines, 
considering shape and color attributes. Furthermore, the analysis extends beyond drug combinations, classify-
ing data by cancer tissue type and providing specific recommendations for different cancer types. Despite these 
strengths, the study relies on the ROCS program, introduces assumptions about drug-receptor interactions, 
and may oversimplify complex relationships between Combined Synergy Scores (CSS), drug mechanisms, and 
cancer types.

The study demonstrated several strengths in its approach to predicting synergistic drug combinations such as:

–	 It took a comprehensive, systematic view by incorporating multiple machine learning steps to build models. 
This enhances the robustness of the methodology.

–	 Annotating drug pairs with generic names and mechanisms of action provided more context around synergy 
behaviors.

–	 The versatility of both classification and regression models showcased the approach’s flexibility in predicting 
synergy.

–	 Incorporating the ROCS program offered a three-dimensional perspective on drug structures and properties, 
providing shape- and color-based insights.

–	 Classifying data by cancer tissue type customized recommendations for different cancer types, considering 
their specificities.

The limitations of this work can be summarized as follows:

–	 Reliance on the ROCS program introduced potential issues from its own algorithms and information sources.
–	 Assuming all drugs interact through a single receptor oversimplified complex real-world interactions.
–	 While mechanisms were included, the completeness and standardization of this drug information could vary 

widely.
–	 Simplifying the relationship between CSS, drugs and cancers may have obscured intricate linkages.
–	 The model’s effectiveness depended heavily on the quality and representation of its underlying dataset.
–	 Seeing some drugs repeated across cancers raised questions about bias and generalizability.
–	 The lack of external validation with new data left applicability to other scenarios uncertain.

Conclusion and future works
The proposed framework highlighted the importance of drug mechanisms in drug combination therapy deci-
sions. This paper uses a classification model to classify three types of pharmacological combinations: synergism, 
additive, and antagonistic. This guarantees that the medication combination is effective on the designated cell. 
Furthermore, we applied machine learning algorithms to predict the drug combination sensitivity score to 
enhance the results with real data. The experimental results pass different stages to achieve the required clas-
sification and prediction tasks. Starting with the preprocessing stage, the normalization, outlier removable, and 
data balancing were performed. Afterward, the enrolled data are ready for classification and prediction using two 
intervals applied to the O’Neil drug combination data. With machine learning techniques, we have concluded 
that drug combinations significantly impact the physician’s decision-making in choosing the best method for 
inclusion. In the future, we plan to use AI applications to predict the different types of drug combination therapy 
for alleviating a series of diseases.

As for the future works, there are several futures that will shape how we predict optimal drug combinations in 
the years ahead. The future research focused more on integrating different types of biological data, like genetics, 
gene expression, proteins, and metabolites. Looking at all these “omics” together can give us a more complete 
picture of how drugs work together and interact at the molecular level, helping identify the best combinations. 
Artificial intelligence, especially deep learning, will also play a bigger role. These advanced algorithms excel at 
finding complex patterns in data, which is perfect for capturing the nonlinear relationships inside our bodies. 
This should lead to more accurate predictions of synergistic drug effects.

Data availability
The dataset used in this study is public and all test data are available at this portal (https://​drugc​omb.​fimm.​fi). 
DrugComb is an open-access, community-driven data portal where the results of drug combination screening 
studies for a large variety of cancer cell lines are accumulated, standardized, and harmonized. An actively expand-
ing array of data visualization and computational tools is provided to analyze drug combination data. All the data 
and informatics tools are made freely available to a broader community of cancer researchers.
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