
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports

Path planning in three‑dimensional
space based on butterfly
optimization algorithm
Hakimeh Mazaheri 1, Salman Goli 1* & Ali Nourollah 2

Path planning is one of the most critical issues in many related fields including UAVs. Many researchers
have addressed this problem according to different conditions and limitations, but modelling the
3-D space and routing with an evolutional algorithm in such spaces is an open issue. So, in this paper,
we first, introduce a method to grids the environment using geometrical shapes. This can reduce the
random states of cell decomposition and increases the computational speed. We then propose an
effective routing algorithm based on the butterfly optimization algorithm (BOA). It can simultaneously
optimize multiple path planning objectives. It uses an objective function to compute the shortest
path, based on obstacle avoidance and the UAV’s operational power minimization. A novel concept,
the intelligent throwing agent, used in this algorithm prevents getting stuck in local optima and
increases the network coverage in path planning. The throwing agent prevents the collision of the UAV
with the obstacles using geometrical techniques and contour lines. The simulation results show that
BOA has the least and second-least cost in best-case and worst-case scenarios in comparison with ant
colony and particle swarm. Its run time and the optimal value of the fitting function are also better
than the two other algorithms.

The rapid development of low-cost radio communications, global position systems, and micro-computers has
given Unmanned Aerial Vehicles (UAVs) massive potential in various applications such as assist and rescue1,
surveillance and reconnaissance2, patrolling the border3, tracking4, fire management5, traffic accidents monitor-
ing and management6, goods delivery7, and telecommunication amplifiers8. These applications facilitate human
life and make it more secure. UAVs have attracted the attention of many researchers and investors due to their
agility, cost-effectiveness, and high maneuverability9. The many UAV applications come with some important
challenges. These challenges differ in significance and sensitivity according to the application and network type.

Modeling the environment
To model the environment, targets, and obstacles are modeled as geometrical shapes and stored in a data struc-
ture, e.g., a graph, whose nodes and edges are represented by points and lines10.

Energy consumption
UAVs have limited energy storage. The stored energy might be just enough to fly for as little as 30 min. Vehicular
ad hoc networks, on the contrary, use car batteries that are charged while the car is moving11.

Mobility
Energy consumption differs with the application. UAVs in earthquake regions float over the area. Their connec-
tion is dynamic and low-speed. However, they move through large areas with a higher speed in agriculture or
forest monitoring applications.

Autonomy and collision avoidance are challenging problems due to the dynamic topology, non-homogenous
distribution, and passing through different geographical situations and crowded paths12. UAVs cannot solve this
problem on their own13. To carry on various operations, the UAV should be autonomous, i.e., solve the problem
and find the solution by itself14.

Path planning is a UAV utilization challenge due to the high rate of changes in UAV networks. Rapid transport
and non-homogenous distribution of the UAVs increase the chance of collision and crowding of the UAVs along

OPEN

1Computer Department, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan,
Iran. 2Computer Department, Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran,
Iran. *email: Salmangoli@kashanu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-52750-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

the path. This makes finding an optimal path from the source to the destination without obstacle collisions even
more significant13. Path planning is proposed as an effective solution to determine targets, appropriate flight
altitudes, and a path for UAVs13. Path planning is either covered or non-covered. Non-covered approaches search
a small piece of the environment while covered approaches search a large part or all of the environment. Many
path-planning algorithms, such as probabilistic, evolutional, potential fields, cell decomposition, and graph-based
algorithms, have been used for that purpose14–16.

This research aims to introduce a path planning optimization algorithm to improve the intended parameters
such as environment coverage, near-optimal path generation, avoiding collision, and reducing energy consump-
tion. The innovations of the proposed methods are:

•	 Modeling the environment based on covered path planning and convex griding to reduce the random states
•	 Generating points between the source and destination to go around the obstacles and reduce sudden turns

and intense maneuvers.
•	 Path planning using a meta-heuristic algorithm capable of optimizing issues such as path length, collision

avoidance, and reducing energy consumption.

In Section “Problem statement”, we state the problem as steps of path planning. Section “Modeling the envi-
ronment” reviews the related researches in this area and categorizes them according to the solution type and
application. Section “Background” introduces BOA and our proposed algorithm to discretize the environment
and plan paths. In Section “The proposed method”, the results of experiments and comparisons with other exist-
ing algorithms are presented. Section “Designing and evaluating the path in 2D space” concludes the paper and
gives suggestions for further work.

Problem statement
The problem space is defined as follows in path planning:

Definition 1  Workspace W is the physical space shown as R2 in a planar (two-dimensional) space and as R3 in
a three-dimensional space.

Definition 2  An obstacle Oi is part of workspace W that is permanently occupied

Definition 3  UAV consists of one or more solid bodies with motion limitations. It is shown as U which shows
the area occupied by the UAV body. U ∈ W.

Definition 4  UAV configuration, U(qs) , is a set of parameters such as velocity, attitude angle, and altitude which
completely specifies the UAV U position in a specific time and position q . S is a function of the time and place
of the UAV. U(qs) Is a region in W occupied by UAV U with configuration q in a specific moment and position
s. Different combinations of parameters represe nt various degrees of freedom. The workspace is divided into
three regions occupied by UAV, the obstacle, and the free configuration space.

Definition 5  Configuration space C for the UAV U is the set of all configurations of U in W

Definition 6  Obstacles of configuration space CO , is a map of the obstacles in the workspace into the configura-
tion space. It consists of all configurations where the UAV collides with the obstacles

Definition 7  Free configuration space Cfree is the set of all configurations where the UAV does not collide with
the obstacles of the workspace.

Definition 8  Local search begins from a solution in front of the UAV and successively moves to adjacent solu-
tions. It’s only possible when neighboring and adjacency relations are defined in the problem’s search space. The
local search leads to a local path. A local path is a continuous function shown by lpi(qs , q

′

s) in Eq. (5). lpi is the
i th local path, qs is the UAV configuration at the beginning of the local path, q′s is the UAV configuration at the
destination point, and n is the number of points in the local path. Showing local path as lpi

(

qs , q
′

s

)

 we have

Definition 9  Global path is defined similarly to the local path. The only difference is the UAV configuration at
the beginning and the destination point are shown as Gp(qstart , qend) . As we use a discrete search, Gp is defined as
an ordered set of k local paths Gp(lp1, . . . , lpk) . This gives a continuous path where the k parameter is the number
of intermediate points and Gpk is a global path with k intermediate points.

(1){Oi ∈ W|i = 1, . . . , n}

(2)C =
{
∀qs|U(qs) ⊆ W

}

(3)CO = {allqs, Oi|U(qs) ∩Oi �= ∅}

(4)Cfree = {allqs ,Oi|U(qs) ∩ Oi = ∅}

(5)lpi

(

qs , q
′

s

)

=

n∑

i=1

lp(i, i + 1), 1 ≤ i ≤ n,
[

qs , q
′

s

]

⊆ C

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Path planning is performed in two steps: preprocessing based on the area covered and the position of the
obstacle and path search to choose the best path among the possible ones. Let’s discuss these in more detail.

Ethical approval
This material is the authors’ own original work, which has not been previously published elsewhere. The paper
is not currently being considered for publication elsewhere. The paper reflects the authors’ own research and
analysis in a truthful and complete manner.

Modeling the environment
Designing obstacles
The first step in path planning is modeling the environment. It consists of discretizing the environment and
designing obstacles and targets. Two-dimensional path planning methods can’t find the obstacles in 3-D environ-
ments. This needs special 3-D algorithms that consider the uncertainties of the natural world. Such algorithms
require a discretization of that world17. Hierarchical data structures are used in most discretizing and present-
ing digital input data18. Discretization is used in applications such as visualizing multi-attitude terrain data in a
multi-resolution model. These structures need to be compatible with the terrain features to reduce the complexity
without affecting the image’s clarity. It should be possible to extract variable resolution data from these structures
to support multi-level details in run time. Figure 1 shows Multi-resolution terrain image discretization.

UAV missions are designed based on complex three-dimensional topography. Topography is a map showing
terrain features. It’s crucial in designing complex environments. To simulate obstacles in complex topographies
we use contour lines. These non-intersecting lines connect all terrain points of the same altitude. The smallest
closed contour in such maps shows the highest or lowest point. Contour lines specify the general situation of the
obstacle in topographic maps. We use a normal distribution to simulate cone-shaped obstacles. The topography
used is based on the model proposed in19. In Eq. (7), hi is the highest altitude of the mountain, and ai and bi are
the mountain’s central position. zi Is the normally distributed topographic model of the i th obstacle and z is
the normally distributed topographic model. The default value for standard deviation is 20. Figure 2 shows the
topographic models including contour lines.

To compute whether we hit the cone-shaped obstacles, and if so, what would be the impact, the x, y , and z
coordinates of some line segments’ points are obtained using the three-dimensional line equation for each x and
y. the corresponding z value will be calculated as follows

If the z value of any point is less than or equal to the z obtained above, a collision happens. If none of the
points on the line segment collides with the cone-shaped obstacle, the path is safe.

In Eq. (8) a.b, andc parameters show the directions of the coordinate systems axes in the three-dimensional
space. Not hitting the obstacles and going through the shortest path affect path planning. This paper proposes a
meta-heuristic algorithm to solve combinational multi-target problems.

Searching for the path
UAV limitations such as colliding with obstacles and each other, limited maneuverability, carrying a load, and
environmental conditions make the design and implementation of path planning algorithms difficult. The

(6)Gpk
(
qstart , qend

)
=

k∑

i=1

lp(i, i + 1), 1 ≤ i ≤ k

(7)
zi
(
x, y

)
= hi × e

(x−ai)
2

20 −
(x−bi)

2

20

z
(
x, y

)
=

µ
∑

i=1

hi × e
(x−ai)

2

20 −
(x−bi)

2

20

(8)
x − x1

a
=

y − y1

b
=

z − z1

c
= t

Figure 1.   Multi-resolution terrain image discretization 18.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

extensive growth of UAV applications in different areas might render previous algorithms ineffective or inap-
propriate. In a complex environment where UAVs are surrounded and sought by complex objects, we need three-
dimensional algorithms. Path planning techniques are either sampling-based or artificial intelligence based. The
first group is used in preprocessing and environment design using cell decomposition20, roadmap21, or potential
filed22 approaches. The second group is used during the search, e.g., using nature-based or otherwise meta-
heuristic approaches. Genetic algorithms, evolutional models, simulated annealing, and ant colony optimizations
are examples of this group15. Search step algorithms in this paper have better performances than the traditional
ones. The rest of the paper discusses practical path-planning algorithms.

Background
Representing the UAV path in the three-dimensional environment is the first step in path planning. Two major
representation techniques, namely sampling-based and artificial intelligence based are discussed. Sampling-based
methods need predefined information to configure the workspace in three-dimensional spaces. They are used
in preprocessing and environment modeling. The environment is divided into many nodes distributed in the
workspace using optimized path-planning algorithms. These will be used during the search.

Preprocessing and environment modeling algorithms
The intended environment, source and destination points, obstacles positions, and other effective parameters
in path-planning are determined. Cell decomposition is a sample-based practical approach for this purpose.
Many researchers have studied cell decomposition for preprocessing and environment modeling. These have
been categorized according to decomposing or not decomposing the cell.

Decomposing and discretizing
In decomposing approaches, the environment is usually divided into non-intersection regions called cells. The
size and resolution of the cells vary according to the decomposition type. This approach ensures that each cell is
visited exactly once and the whole environment is covered. Larger cells might need several moves to cover, while
one move might be enough in smaller cells. These cells are usually single-robot size (for terrain covering) or the
size of the range of the sensor or camera (for aerial coverage). Covered path planning includes the target region,
cell decomposition methods, performance criteria, and availability of information. Cooperative, round-trip,
decentralized, and line-forming path planning are examples of decomposition-based algorithms23,24.

Non‑decomposing approaches
Geometric patterns can handle regular, simple, and one-UAV operation path searches. No environment decom-
position is needed in such cases. Early samples of this approach were standardized in Mission Planner, the
popular flight control software, to actively cover the region. In this pattern, movements are straight lines that
turn around at the end of the cycle at a closed angle. In the last situation, the movement passes the external end
of the region and the beam goes back to the origin. Back-and-forth and spiral patterns are the most common
pattern used here25.

Path search algorithms
Evolutional algorithms are the main candidates for effective path planning and finding possible solutions in a
short time. Let’s discuss the existing research.

Figure 2.   Topographic models.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Artificial potential field
The artificial potential field algorithm was first introduced in 1986 by a researcher named Khatib. This algorithm
is based on simple mathematical calculations, so it was initially used traditionally for obstacle detection and
path planning in robots. Over time, this method became one of the most basic algorithms for solving path plan-
ning problems. Due to the simple implementation of this method and low computational requirements, local
algorithms are usually based on APF26. The artificial potential field algorithm uses the magnetic force method
in an unknown environment. In the magnetic force, the attractive force is used to reach the target point and the
repulsive force is used to prevent collision with obstacles. This algorithm assigns an artificial potential field to
each point in space using potential field functions. One challenge for the potential field algorithm is the local
optimal trap. The local optimal trap occurs when all artificial forces (attractive and repulsive) neutralize each
other. The local minimum condition means that if the UAVsis in that condition, it cannot continue its path27.
Researchers have proposed two approaches to eliminate the local minimum problem in the artificial potential
field method. In the first approach, when the local minimum problem occurs, the solution method changes to
another solution method such as circumventing the obstacle boundary28. This auxiliary method can effectively
solve the local minimum problems, but in this technique, the path length is not considered and we usually have a
longer path than the best answer. The second approach to solve the local minimum problem is to use optimization
methods to find the appropriate coefficients of absorption, repulsion and step length that can both pass the local
minimum and also consider the path length in optimization29. These two proposed approaches to solve the local
minimum problem can partially solve the APF method problem, but both have drawbacks. The obstacle boundary
circumvention method to prevent the local minimum increases the path length. Optimization or combination
approaches of APF with optimization algorithms can find a shorter path, but the convergence time of the local
minimum is high. With the increasing complexity of the UAVswork environment, the requirements of path plan-
ning algorithms become more and more and the traditional path planning strategies cannot meet their needs. In
order to adapt to the complex application environment and application requirements, there is an urgent need to
design path planning algorithms with shorter paths and faster processes in complex environments. Among the
path planning algorithms proposed by researchers, meta-heuristic algorithms have shown the characteristics of
fast and accurate solution. Therefore, to solve the problems of heuristic algorithms, meta-heuristic algorithms
have been studied that can solve the problem of getting stuck in the local optimum. These types of algorithms
are not dependent on a specific problem and define a general strategy that is fixed for solving any problem. The
only difference is that the problem of interest must be defined according to the existing strategy to be solvable.
Genetic algorithm, ant colony algorithm, particle swarm optimization and butterfly optimization are all of this
type that will be introduced and discussed in the following.

Ant colony optimization algorithm
This algorithm, a manifestation of collective intelligence, is inspired by the ant colonies. It has been used for path
planning30. Authors in31 introduced a variant to create an environment model before path planning. They used a
strategy to select the next path moves by the constructed model. It could save the path and includes information
regarding the problem space32. The artificial ant colony algorithm adds new features such as local optimization,
a priori knowledge, forecasting, and search methods to its natural peer.

Particle Swarm Optimization (PSO) is Another practical path-planning algorithm that does a global random
population-based optimization33. In PSO, a group of particles move in a search space, each representing a can-
didate path. For each particle position, velocity, the best-experienced position, and the objective function cor-
responding to that best-experienced position properties are adjusted. Particles move in the search space to find
the optimal path by updating each particle’s position according to the particle’s and the neighboring particles’
experience. Once a solution is found, a vector is drawn from the origin to the best-experienced position. The pre-
vious best position of the particle is recorded as the local path and the best position found by the swarm is called
the best global path. PSO searches for an optimal solution by updating the position and velocity of each particle.

Butterfly optimization algorithm
Butterflies use their smell, sight, taste, touch, and hearing to find food. Their sense of smell is the strongest one.
A butterfly generates a fragrance of specific intensity proportional to its fitting. This perfume is spread broadly
and other butterflies can sense it. Once a butterfly smells the fragrance of another butterfly, it moves toward
the source. This is called the global search. A butterfly smelling no fragrance moves randomly. This is called
local search. In the butterfly optimization algorithm (BOA) each butterfly has its fitting which distinguishes the
algorithm from other meta-heuristic algorithms16.

Intelligent optimization algorithms such as genetic (GA)34–37 and ant colony (ACA)38,39 are used in searching
the path step. The former has suitable maneuverability in global searching. It can quickly find all the solutions
without falling into the local optima40. The latter is better at finding solutions37. It solves the problem through
empirical results. However, the common limitations of these algorithms are barely avoidable in large-scale UAV
path planning. The genetic algorithm performs weak in low-performance breath first searches needing a large
number of iterations and converges quickly35. The ant colony algorithm is sensitive to the initial parameter setting.
An inappropriate setting reduces the amount of the search and gives poor results37. In BOA each butterfly has its
unique fragrance perceived through different sensory receptors16. This might be useful in UAV path planning
considering the effective parameters. We propose a butterfly algorithm focusing on reducing the length and cost
of the path and avoiding collision with the obstacles.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

The proposed method
Most path-planning algorithms are suitable for two-dimensional and robotic applications. They can not be
applied to the three-dimensional space directly. We introduce a meta-heuristic UAV path planning algorithm
in three-dimensional space that traverses a minimum length path, reduces energy consumption, and does not
collide with obstacles. The UAV maneuvers are reduced using generated intermediate points. This reduces energy
consumption and falls into the local optima. We then compare the performance of the proposed algorithm
with common meta-heuristic ant colony and particle swarm optimization algorithms29. The path cost of those
algorithms is compared with ours in two-dimensional and three-dimensional spaces against obstacles modeled
as simple geometric shapes such as circles and cones. Our method adds an intelligent throwing agent to BOA.
Its fitting function is based on the distance traveled, operational power of the UAV, and the number of collisions
with the obstacles. By using the intelligent agent, we create intermediate points that reduce UAV maneuvers
and energy consumption. A pseudo-code of the proposed algorithm including the definition of the fitting and
collision avoidance function is given in Appendix A.

Modeling the environment
In an application such as agriculture, construction or traffic monitoring, and fire management we need to cover
the whole environment. The environment model is usually simplified in such cases by using simple geometric
shapes such as convex or rectangular polygons or non-polygons such as circles and spirals40. The environment is
searched using different algorithms according to the application. For instance, in non-polygons, morse functions
are used to decompose the environment. They can handle the obstacles and use back-and-forth and spiral flight
patterns in the search. The latter pattern moves along the main axis and turns 90 degrees in turning maneuvers.
They need less computation time to find covering paths. However, they have limited durability since the vehicle
should reduce its speed, turns, or accelerate during the turning maneuvers which increases the flight time, the
impact of a collision with the obstacles, and subsequently the consumed energy. Also, the installed sensors on
the UAV increase its weight and reduce its durability41. The cells decomposed as convex polygons use a network
representation. Such a representation increases computation time but simplifies the implementation and provides
more accurate and clear images17. Figure 3 shows different model griding methods and the containers’ capacity.

Large-scale flight environment simulation involves performance preservation challenges. It makes the simula-
tion a significant part of the process. To improve the algorithm’s performance, the environment model should

Figure 3.   (a) The Decomposition of the environment using simple geometric shapes. (b) A quadrilateral
container containing a hexagon. (c) A quadrilateral container containing a hexagon. (d) A quadrilateral
container containing a hexagon. (e) A quadrilateral container containing a hexagon. (f) A quadrilateral
container containing a hexagon.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

be simplified as much as possible without losing image clarity. The geometrical simplification is therefore con-
trolled using an approximate error threshold. Different paths in the environment can be rendered in different
levels of detail. This means preparing the image for depiction after modeling and simplifications to enhance the
performance. Most existing preprocessing and modeling methods model environments in a planar simple way42.
This simplification works for applications such as cleaning floors, detecting land mines, and lawn mowing. Our
algorithm uses a multi-level altitude-based simplification. This reduces the random states in the path search step
and adds to the computation speed. Multi-level environment modeling is performed after the simplification with
or without decomposing. In the decomposing approach, the environment is divided into convex geometrical
shapes. In non-decomposing approaches, the environment is searched dissecting it into smaller pieces. The
decomposes approach is used more due to its convex cells that reduce the intensity of turning maneuvers and
reduce UAV energy consumption.

Modeling the environment cellular decomposition
Existing research mostly decomposes the environment into geometrical shapes using criteria such as the number
of points in the environment. Using such criteria needs knowing the exact position of the points and lots of com-
putations. Errors in input data affect the decomposition greatly and add significant overhead. We use the criteria
of angle and altitude for a multi-level decomposition. These criteria require less computation than coordinate
criteria and are used more in path planning. Equations (9)–(14) show the containers’ cellular decomposition.

In the first step, optimal values for parameters such as population size, maximum number of iterations,
number of butterflies, and number of samples in each iteration are obtained using greedy methods. The random,
uniformly distributed initial points are then distributed in the environment. Many intermediate points are gener-
ated using the agent and the UAV is guided to the new positions according to the path fitting and step parameters.
The maximum length of each agent in the throwing function is n . The length of the throwing parameter is n and
plans the path globally. In early steps, an unfit path is penalized less due to the lower value of Step . As we get
close to the final steps, we expect to select more appropriate paths as there are fewer points ahead and a wrong
path selection receives heavier penalties. BOA determines the values of i and pi.

In these equations angles vector and sidelength variable represent the angles and side length of the geometrical
shapes. Vectors X,Y , x, y are the coordinates of the points calculated from the angle vectors and the side length
variables. Z Is the UAV’s altitude. d and k vectors determine whether the polygon moves up, down, left, or right.
m and b parameters make the shapes bigger or smaller according to their level. func_G() is a function used to
draw lines between points and C is a constant parameter.

Intelligent throwing agent
Our algorithm is the first to use a butterfly optimization algorithm for path planning. It goes through global and
local search steps. Choosing a globally optimal path and avoiding falling into local optima needs a supervisor
who decides intelligently based on the path fitting. This intelligent agent deletes the wrong points and throws
the UAV as necessary. This virtual agent assists the UAV in fitting and choosing the path. It avoids falling into
local optima and increases the network coverage during path planning. Figure 4 show Intended regions for an
intelligent throw.

The intelligent throw in the problem space is performed as follows:

(9)x = sidelength× cos
◦ (

angles
)

(10)y = sidelength× sin
◦(
angles

)

(11)X =

n/m
∑

i=1

x + sidelength× d(i)×m

(12)Y =

n/m
∑

i=1

y + sidelength× d(i)×m

(13)Square = func_G(X,Y ,Z − C)

(14)

hexagonal =

n∑

i=0

2n∑

j=1

func_G

(

X +

(
sidelength

b

)

× d
(
j
)
)

+

(

i ×

(
sidelength

b

)

,Y +

(
sidelength

b

)

× d
(
j
)
−

(

i ×

(
sidelength

b

)

,Z − C

))

i
︸︷︷︸

First step

p1 · · · pi · · · p2 · · · pn−1 pn
︸ ︷︷ ︸

Second step

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

(a)	 Determine the intermediate point for throwing
(b)	 Determine the length and direction of the throw (throwing size)
(c)	 Determine the intermediate point for the throw
(d)	 Determine the length and direction of the throw (throw size)
(e)	 Move from regions 1to8 to the optimal solution point (Fig. 4).

Using an intelligent throwing agent during BOA ’s path determination has two advantages. The points are
generated randomly in a wide specific area of the environment and therefore don’t get stuck in local optima. Also,
due to the point’s variable length, the algorithm calculates the length and path of the throw for UAV transport
in a wider space to avoid getting close to global optima.

Fitting function
The algorithm consists of initialization, iterations, and final steps. The algorithm finishes if an optimal solution
is found after initialization and iterative searching. The steps are:

•	 Define the objective function, solution space, and parameter values. Determine the initial number of but-
terflies (whose total number is constant).

•	 Define the butterflies’ positions, fragrance storage, and fitting
•	 Create artificial butterflies and begin to search.

Reducing path length and energy consumption, and avoiding UAV collision with the obstacles affect calculat-
ing fitness function. This section and the next one discuss the equations used for calculating the targets.

In Eq. (15) d(x, y) is the Euclidian distance between the UAV’s current position and the intermediate point in
the problem space in meters. In Eq. (16) L is the number of intermediate points between the source and destina-
tion. We first calculate the distance between the source and the first intermediate point. The algorithm should
calculate all the paths to the intermediate points, while there is an intermediate point, and make the best decision.
The agent’s forward paths are examined and paths longer than the operational range of the UAV are penalized to
become of lower priority. Assuming sufficient UAV power to cover the path, Eq. (17) chooses the intermediate
points and new UAV position based on the distance and operational power of the UAV.

OP is the UAV’s operational power in terms of the distance it can transport in meters. If the distance from
UAV to the next point is more than its operational power, a negative value is added to the path to penalize it. This
makes paths longer than the UAV’s operational power unselectable. Once a new position is found according to
the distance and operational power parameters, the path quality must be evaluated according to the number of
obstacles in the paths and the collision impact criteria. We use two algorithms to calculate collision. In spherical

(15)d
(
x, y

)
=

√

(x − y)2

(16)pl =







L−1�

i=1

pli−1 + d
�
pi , pi+1

�
, if L > 0

0, o.w

(17)e =







L−1�

i=1

ei−1 + 1−
�
d
�
pi , pi+1

�
− OPi

�
, if d > OP

1, o.w

Figure 4.   Intended regions for an intelligent throw.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

obstacles, collision paths should be calculated to determine possible collisions. The quality of the path is meas-
ured according to that parameter. The algorithm uses Eq. (18) to find the length of the line segment between the
current (v1) and new (v2) positions and the center of the path obstacles (pt) using the formula for the distance
of a point from a line. A distance less than the obstacle’s radius means part of or the whole path collides with
the obstacle This length will then be added to the path-calculated collision length and the number of collisions
is increased by one. Otherwise, the length and number of collisions for this path will be zero. Function cross
calculates the external product between aandb and dptl(pt, v1, v2) is the distance of a point from a line segment
which calculates the distance between the line segment between v1, v2 and the center of the obstacles.

Equation (19) calculates the number and impact of the agent’s collisions with the obstacles.or Is the radius of
the obstacle and d

(
cnti , dptl(i)

)
 is the Euclidian distance between dptl and the center of the obstacle. If Disptl is more

than the radius of the obstacle, part of or the whole path collides with the obstacle. After calculating collisions
in aerial obstacles, let us discuss calculating them in terrain cone-shaped ones. We draw a line segment from the
source to the first intermediate point in three-dimensional space using the line equation. That’s the first segment
of the path. The existence of collision(s) and its length are checked and calculated for all points on this line seg-
ment. Assuming p0(x, y, z) and p1(x, y, z) are the source and the first intermediate point’s coordinate, function
vec(p0, p1, t) calculates all the points between those points with a distance t and returns their coordinates. z And
zout are UAV altitude in that intermediate point and the obstacle’s altitude. f Indicates whether there will be a
collision. The criterion for the existence of a collision is calculated based on the topographic modeling of Eq. (7).
Equation (20) finds the path length in cone-shaped obstacles. According to it, if the UAV altitude in the first point
is less than the obstacle’s altitude and f is zero, there will be a collision in the beginning moment. The coordinates
of this point will be recorded as the first collision point. All further points with a f value equal to one and an
altitude less than the obstacle’s altitude (falling within the obstacle) are added to the path length. This continues
until the UAV altitude exceeds the obstacle’s altitude and that path segment becomes collision-free. That point’s
coordinates will be the collision’s end coordinates. Equation (15) shows the total whole path length obtained.

Now that the path length, operational power, and collision length are calculated, it’s time to calculate the fit-
ting function. The algorithm iteratively improves the obtained points to find a final optimal path. The chance of
selecting the wrong path and hitting the obstacles in the early steps is more than in the last steps. These values
are constant in our algorithm. The algorithm specifies the path by connecting the source to the intermediate
and destination points. The number and positions of the intermediate points vary according to the number of
path obstacles and the complexity of the problem space. Different functions here have different significances.
Determining the exact optimal value of these coefficients are beyond the scope of this paper and will be addressed
in future publications. Equation (21) calculates the fitting function.

UAV movements
Butterflies use the following equation to create fragrances in their new positions.

fragrance is the intensity and power of the smelled fragrance, sensorymodality is the smelling-based sensory
method, fitness(H) is the stimulus intensity function correlated with a coded objectivity function, and power
is the power absorbed in different levels according to the sensing method. The status means the raw input of
the sensors when talking about sense. Measurement of the energy and its processing is the same as in similar

(18)

a = v1 − v2

b = pt − v2

dptl
(
pt, a, b

)
=

|cross(a, b, 2)|
√

(a2 + b2

(19)Ci =







Li�

1

Cii−1 + 1+ d
�
cnti , dptl(i)

�
, f dptl(i) < or

0, o.w

(20)Co =













L�

1

Coi−1 + d(Csi ,Cei)

Ce =
�
x, y, z

�

f = 0






, z > zout and f = 1





L�

1

Coi−1 + d(Csi ,Cei))

Ce =
�
x, y, z

�



, z ≤ zout and f = 1

�

Cs =
�
x, y, z

�

f = 1

�

, if z ≤ zout and f = 0

(21)Cl = Ci + Co

(22)fragrance = sensorymodality×(fitness(H))power

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

methods. power and sensorymodality can be chosen in [0,1] for most cases. These two parameters control the
behavior of the algorithm and are significant in determining the convergence rate. The UAV behavior depends
on two crucial variables of fitness(H) function’s rate of change and the changes in fragrance equation. In BOA
the specific fragrance generated by a butterfly is proportional to its fitting. The algorithm uses a movement to
determine the next move. Each butterfly’s position vector is updated as follows

Global and local search are the two key steps of the algorithm. The global search uses the following equation
to move toward the most suitable butterfly or solution ( g∗).

xti is the solution vector xi for i th butterfly in the t  th iteration. g∗ Is the best solution within the current itera-
tion. fragrancei is the fragrance of the ith butterfly and r is a random number in [0,1]. Once the target regions
are selected, the next generated move to determine the points of the path will be smaller and more cautious.
This determines the next optimal point at any moment. In the following local search, butterflies evaluate and
save their path according to the intermediate points determined by intelligent throw. The local search uses the
following equation

p and xtj are the xtk th and j th butterfly in the solution space. Artificial butterflies are now generated and the
introduced agent iteratively updates the intermediate points according to the intermediate point and operational
power. It decides on the next new position in the solution space by evaluating the fitting function. This guides the
butterfly to the destination through the optimal path. The length of the agent (number of intermediate points)
varies during this step. It will be maximum in the beginning but will change in run time. Two approaches can be
used to update the butterfly’s positions: ‌the BOA approach or using an intelligent throw function to avoid fall-
ing into local optima. The optimal path will be selected by calculating the performance of each butterfly. Switch
p is used to move between global and local searches. The iterations go on until the stop criteria, the maximum
number of iterations. is met. At the end of iterations, the algorithm provides the best solution. Figure 7 shows a
flowchart of the proposed algorithm.

In this section, the steps of path design are briefly shown in Fig. 5. It should be noted that in order to facilitate
the transfer of concept, the UAVs movement is shown in two-dimensional space. It is obvious that in three-
dimensional space, the algorithm’s performance will be similar. In this model, the position of obstacles and envi-
ronment is fixed. The cells inside the circle indicate the obstacle and the cells outside the circle indicate the free
area. The bottom left corner is the starting point and the top right corner is the target point. In this environmental
model, the whole environment is first examined and based on the information of coordinates and obstacles in
the environment, the initial path is designed (Fig. 5a). Such environmental modeling enables the UAV to have
a basic understanding of global information and find an optimal path in the global environment43. In the next
step, the previous path is optimized by repeating the algorithm (Fig. 5b). In the next steps, the length of the path
determined is measured relative to the distance to the target point and if there is a shorter path in another area,
the intelligent throw agent directs the algorithm to that area with an intelligent throw and draws a global path
based on the new position. (Fig. 5c). Then the BOA algorithm improves the path designed in the new position
in the next steps to achieve the shortest possible path (Fig. 5d). It should be mentioned that in some parts of the
images where the path is tangent to the obstacle, a safe margin for the obstacles is considered, which prevents
the UAV from colliding with the obstacle.

The important point is that unlike greedy algorithms that select and draw a part of the path at each step, in
the BOA algorithm, a global path is calculated at each step. To select a global path, intermediate points are used.
Figure 6 is a screenshot of one of the steps of path design. The main goal of this algorithm is to design an optimal
path from source to destination. Therefore, how to move on this path (moving straight, zigzag, etc.) is in the
domain of motion planning problems, which will not be discussed in detail in this research (Fig. 7).

(23)xt+1
i = xti + fragrancet+1

i

(24)xt+1
i = xti +

(
r2 × g∗ − xti

)
× fragrancei

(25)xt+1
i = xti +

(

r2 × xtj − xlk

)

× fragrancei

Figure 5.   (a) Designing the initial path. (b) Improving the initial path. (c) Smart search and throw to another
area. (d) Improving the final path.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Designing and evaluating the path in 2D space
Initial Parameters and defaults are set according to Table 1.

The first test is performed on different spherical obstacles of varying radiuses located in specific positions. The
algorithm finds an initial path based on two intermediate points which has a collision. This path is penalized to
get a lower qualitative priority. However, since its early steps, it is accepted and the algorithm iterates. After some
iteration, another path is found which contains one intermediate point and is tangent to the obstacle. While the
number of collisions is still one, the collision length of the new path is shorter. The second path is deleted from
the selection process and iterations continue. If the algorithm can find a shorter, better-quality path, the points
are updated and the new path is drawn. Figure 8a indicates the path with two intermediate points. Figure 8b
indicates the path with one intermediate point. Figure 8c indicates that after several iterations a path without
collision or not tangent to an obstacle is found. Figure 8d shows selecting the path with less cost in the final step.

Path planning in two‑dimensional space with aerial obstacles‑APF
As shown in Fig. 9a, the initial environment with 2 circular obstacles and 2 rectangular obstacles has been
simulated. The APF algorithm starts moving from the top left point and reaches the destination which is at the
bottom right (Fig. 9b and c). In this scenario, the algorithm has been able to find a solution for the problem, but
this solution is not necessarily optimal, because as shown in Fig. 9d, the path designed by the APF algorithm is
curved. The reason for this situation is that this algorithm does not have a global view of the environment and in
each step, it looks for a solution in the local area ahead. Therefore, if necessary, to avoid collision with obstacles
or getting stuck in local optimum, it bypasses the obstacles. This causes the path length to be longer. While the
proposed BOA algorithm, with the help of an intelligent throwing agent, can be guided to another area and, with
a global view of the environment, choose the shortest path.

In another scenario, while maintaining the previous conditions, a circular obstacle is added to the environ-
ment (Fig. 10a). As shown in Fig. 10b and c, the UAV moves from the starting point, top left, but due to getting
stuck in the local optimum, the algorithm cannot find a solution and therefore the UAVs stops in the middle of
the path (Fig. 10d). Therefore, it can be said that the APF algorithm shows a weak ability to overcome the trap of
the local minimum by increasing the obstacles and provides suboptimal results. This is while the performance
of the proposed BOA algorithm is optimal with increasing obstacles and even in crowded environments. Next,
we will implement meta-heuristic algorithms.

From the simulation of the APF algorithm, we realized that this algorithm may have a reasonable time solu-
tion in some scenarios, but its weakness is getting stuck in the local optimum. Of course, different scenarios
may have different results because the execution of the algorithm in real-world scenarios is difficult. From the
results, it is clear that there is a trade-off between optimality and computational time constraints and the choice
of algorithm should be based on both criteria and not necessarily one of them. Next, we will implement meta-
heuristic algorithms.

Path planning in three‑dimensional space with aerial obstacles
In this section, we run the proposed algorithm using random parameters in a three-dimensional space that con-
tains spherical obstacles. Figure 11 shows the algorithm’s path selection steps. The UAV’s source and destination
points are (0, 0, 0) and (20, 20, 20). The default population size is 50. number of butterflies in each population is
20, and The number of iterations is set at 300. The change of one coordinate during the generated path changes
the path a lot. The path might change from one moment to the next. However, a better solution will be selected
in the end. Parameters are chosen randomly at the beginning of this scenario.

Path planning in a three‑dimensional space containing terrain obstacles
UAVs are used as an effective hardware platform to monitor and petrol these complexes. There are difficult
operational environments where humans or other devices can’t go. Path planning is necessary for applications
such as search and rescue, traffic monitoring, and systematic patrolling in a wide geographical area with complex
topographies. Many factors can affect the flight path. Due to the uncertainty of these operational situations, the
optimal path must be optimal in all positions and not just between the two points. Let’s examine our algorithm’s
performance in this situation. Figure 12 shows Selecting a path using intermediate points and combinational
obstacles.

Figure 6.   A screenshot of the second stage of route design.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Tests and results
This section compares the results of running three algorithms in two- and three-dimensional spaces with random
and optimal parameters according to their length and the cost of the path. Problem space is designed according
to up-down cellular decomposition based on polygon shapes. The parameters are set the same as in the previous
section. Figures 13, 14 and 15 demonstrate the paths designed by the algorithms in two-dimensional space using
random parameters at the end of their runs.

No

Examined all
samples?

Found the best
target region?

Local search and chose the next move

Global search and intelligent throwing

Yes

Yes

Update the fi�ng func�on
according to the new values

No

Yes

Found a new
solu�on?

Ini�alize parameters

START

Found
op�mal

parameters?

Yes

No

Create the ini�al popula�on in three-
dimensional space

Calculate the distance to the
center of the obstacle

Calculate the bu�erfly’s fi�ng

Update bu�erflies’ posi�ons

distance
To the middle

point acceptable?

Select the middle point

Ye

Is Collison in the
path?

Yes

No

No

Calcula�ng each bu�erfly’s
performance

Stop condi�on ?

No

Ye

END
d

Select the best solu�on

Found the
op�mal

solu�on?

Calculate cost

Ye

No

Calculate the distance
between the points

Figure 7.   The Flowchart of the purposed algorithm.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Table 1.   Summary of the Parameters and simulation techniques.

Parameters Value

1 Simulation environment Matlab

2 Population size 100

3 Beginning point 0, 0, 0

4 Endpoint 40, 40, 30

5 Test iterations 100

6 Number of butterflies 50

7 Simulation dimensions 2-D. 3D

8 Distance calculation strategy Geometrical

9 Path selection strategy Meta-heuristic

10 Input type Optimal, random, constant

11 w2,w1 2 and 3, respectively

12 OP 3.5

Figure 8.   (a) Selecting the path with two intermediate points (step 1). (b) Selecting the path with two
intermediate points (step 1). (c) Selecting the path with two intermediate points (step 1). (d) Selecting the path
with two intermediate points (step 4).

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

According to Figs. 13, 14 and 15, the paths generated are fairly close to each other and only differ in the
number and position of the intermediate point. For instance, ACO uses one intermediate point, but PSO and our
algorithm use two points in different positions. Figures 16 and 17 show a path generated in three-dimensional
space containing terrain and aerial obstacles. Figure 18 shows the single-level to four-level hierarchical cellular
decomposition using quadrilaterals and hexagons.

Figure 18 shows the convergence curve for the ‘cost of path generation’ criteria and the best positions for ACO,
PSO, and BOA according to their number of iterations in two- and three-dimensional spaces with aerial and
terrain obstacles. The results indicate that the cost of BOA with random parameters in two-dimensional space
drops 20 units from 314 to 295 in 15 iterations. The cost remains unchanged after that. PSO cost decreases by
17 units from 314 to 297 in 40 iterations with no further changes in later iterations. ACO cost decreases 10 units
from 314 to 304 in 10 iterations and remains constant afterwards. BOA achieves the least cost in the least num-
ber of iterations compared to the other two algorithms. The results of running algorithms in three-dimensional

Figure 9.   (a) Initial environment with 4 obstacles. (b) Starting the movement from the origin. (c) Following the
path to the destination. (d) The path taken from the origin to the destination.

Figure 10.   (a) Initial environment with adding an obstacle. (b) Starting the movement from the origin. (c)
Getting stuck in local optimum. (d) Path from origin to stop at local.

Figure 11.   (a) Selecting the path using intermediate points and spherical obstacles. (b) Selecting the path using
intermediate points and spherical obstacles.

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Figure 12.   (a) Selecting a path using intermediate 2 points and combinational obstacles. (b) Selecting a path
using intermediate 1 point and combinational obstacles.

Figure 13.   Path designed by ACO.

Figure 14.   Path designed by PSO.

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

space using random parameters shows that BOA cost decreases by 20 unit from 265 to 246 in 32 iterations and
remains unchanged afterwards. PSO cost drops 3 units from 254 to 251 after 10 iterations and ACO decreases 3
units from 257 to 254 after 30 iterations. BOA generally achieves the least cost through iterations while in other
algorithms the cost doesn’t reduce with further iterations. Greedy algorithms are used to improve the results. The
population-related parameters such as size and number are examined in all problem space states and their best

Figure 15.   Path designed by BOA.

Figure 16.   (a) Path designed by ACO. (b) Path designed by PSO. (c) Path designed by BOA.

Figure 17.   (a) Path designed by ACO. (b) Path designed by PSO. (c) Path designed by BOA.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

values are chosen as the optimal input for the algorithm. Figure 17 shows the results of running the proposed
algorithm with the optimal parameters. It shows that choosing optimal parameters using a greedy algorithm
reduces the path costs in all three algorithms. The best position curve also has fewer fluctuations in different
steps. Figure 19 indicates that BOA has a lower run time and fitting function values than ACO and PSO. We can
conclude that BOA can replace much-used algorithms such as ant colony and particle swarm optimization in the
path planning of airborne UAVs. Figure 20a indicates Path Length in APF and BOA. Figure 20b indicates Cost
convergence curve and Best position curve in three-dimensional space using optimal parameters.

Conclusions
Optimal path planning is a crucial problem in UAV pathfinding. This paper used a multi-level decomposition
algorithm based on geometrical techniques. The proposed algorithm speeds up the computations by reducing the
random states. We used meta-heuristic algorithms for path searching. These algorithms are practical solution-
finding techniques due to their good ability to solve combinational multi-target problems. We used a butterfly

Figure 18.   (a) Single-level decomposition. (b) Two-level decomposition. (c) Three-level decomposition. (d)
Four-level decomposition.

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Figure 19.   (a) Cost convergence curve in two-dimensional space using random parameters. (b) Cost
convergence curve in two-dimensional space using random parameters. (c) Cost convergence curve in three-
dimensional space using random parameters. (d) Best position curve in three-dimensional space using random
parameters. (e) Cost convergence curve in three-dimensional space using optimal parameters. (f) Best position
curve in three-dimensional space using optimal parameters.

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

optimization algorithm with an intelligent throw factor to improve the global search and avoid falling in local
optima. The input parameters of the algorithm were calculated randomly and optimally. The results were com-
pared to those of the ant colony and particle swarm algorithms. The cost convergence and optimal path indicate
that the proposed algorithm has better performance than the mentioned algorithms under the same condition.
It also had the least run time and fitting function value. Its planned path had better maneuverability against the
obstacles which makes it acceptable in environments with many obstacles if the physical features of the UAV do
not limit it. The algorithm was tested using optimal and random inputs. The results show that the performance
of the algorithm with random inputs is close to optimal while it won’t suffer the optimal parameter computation
overhead due to its multi-level modeling.

Data availability
Data will be made available on request. If someone wants to request the data from this study, contact the addres
Hakimeh.mazaheri@gmail.com.

Received: 8 August 2023; Accepted: 23 January 2024

References
	 1.	 Sánchez-García, J., Reina, D. G. & Toral, S. L. A distributed PSO-based exploration algorithm for a UAV network assisting a disaster

scenario. Future Gener. Comput. Syst. 90, 129–148. https://​doi.​org/​10.​1016/j.​future.​2018.​07.​048 (2019).
	 2.	 Kopfstedt, T., Mukai, M., Fujita, M. & Ament, C. Control of formations of UAVs for surveillance and reconnaissance missions.

IFAC Proc. Vol. 41(2), 5161–5166. https://​doi.​org/​10.​3182/​20080​706-5-​kr-​1001.​00867.​99716​VOLUM​E7,2019 (2008).
	 3.	 Bein, D., Bein, W., Karki, A. & Madan, B. B. Optimizing border patrol operations using unmanned aerial vehicles. In Proceedings

of 12th International Conference on Information Technology-New Generations, 2015 479–484. https://​doi.​org/​10.​1109/​itng.​2015.​
83 (2015).

	 4.	 Pitre, R. R., Li, X. R. & Delbalzo, R. UAV route planning for joint search and track missions—An information-value approach.
IEEE Trans. Aerosp. Electron. Syst. 48(3), 2551–2565. https://​doi.​org/​10.​1109/​taes.​2012.​62376​08 (2012).

	 5.	 Barrado, C. et al. Wildfire monitoring using a mixed air-ground mobile network. IEEE Pervasive Comput. 9, 24–32. https://​doi.​
org/​10.​1109/​mprv.​2010.​54 (2010).

	 6.	 Semsch, E., Jakob, M., Pavlicek, D. & Pechoucek, M. Autonomous UAV surveillance in complex urban environments. In IEEE/
WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2009 82–85. https://​doi.​org/​10.​1109/​
wi-​iat.​2009.​132 (2009).

	 7.	 Jiang, F. & Swindlehurst, A. L. Dynamic UAV relay positioning for the ground-to-air uplink. In Proceedings of IEEE GLOBECOM
Workshops, 2010 1766–1770. https://​doi.​org/​10.​1109/​gloco​mw.​2010.​57002​45 (2010).

	 8.	 Vollgger, S. A. & Cruden, A. R. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape
Liptrap and Cape Paterson, Victoria, Australia. J. Struct. Geol. 85, 168–187. https://​doi.​org/​10.​1016/j.​jsg.​2016.​02.​012 (2016).

	 9.	 PwC. Global market for commercial applications of drone technology valued at over 127bn. https://​press.​pwc.​com/. Accessed Feb
2018

	10.	 Giesbrecht, J. Global path planning for unmanned ground vehicles. Tech. Rep, Defence Research and Development Suffield
(Alberta) (2004).

	11.	 Qiu, C., Shen, H. & Chen, K. ‘An energy-efficient and distributed cooperation mechanism for k-coverage hole detection and healing
in WSNs. In Proceedings of IEEE 12th International Conference on Mobile Ad Hoc Sensing Systems 2015 73–81 (2015).

	12.	 Omkar, T. & Jugal, G. A game theoretic approach to UAV routing and information collection. M.S. Thesis, University of Illinois
at Urbana-Champaign (2017).

	13.	 Chen, H., Wang, X. M. & Li, Y. A survey of autonomous control for uav. In 2009 International Conference on Artificial Intelligence
and Computational Intelligence, IEEE, 2009 Vol. 2 267–271 (2009).

	14.	 Hrabar, S. 3d path planning and stereo-based obstacle avoidance for rotorcraft uavs. In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2008 807–814 (2008).

	15.	 Geem, Z. W., Kim, J. H. & Loganathan, G. V. A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68
(2001).

565.68

705.23

0
100
200
300
400
500
600
700
800

1

aa Path length BOA algorithm VS APF
algorithms

222220219

122112110

0

50

100

150

200

250

b Comparing run �me and the least value of
fi
ng func�on in three meta-heuris�c algorithms

minimum_Fitnees Time(s)
BOA PSO ACOBOA_Path_Length APF_Path_Length

Figure 20.   (a) Path length BOA algorithm VS APF algorithms. (b) Comparing run time and the least value of
fitting function in three meta-heuristic algorithms.

https://doi.org/10.1016/j.future.2018.07.048
https://doi.org/10.3182/20080706-5-kr-1001.00867.99716VOLUME7,2019
https://doi.org/10.1109/itng.2015.83
https://doi.org/10.1109/itng.2015.83
https://doi.org/10.1109/taes.2012.6237608
https://doi.org/10.1109/mprv.2010.54
https://doi.org/10.1109/mprv.2010.54
https://doi.org/10.1109/wi-iat.2009.132
https://doi.org/10.1109/wi-iat.2009.132
https://doi.org/10.1109/glocomw.2010.5700245
https://doi.org/10.1016/j.jsg.2016.02.012
https://press.pwc.com/

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

	16.	 Arora, S. & Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft. Comput. 23, 715–734.
https://​doi.​org/​10.​1007/​s00500-​018-​3102-4 (2019).

	17.	 Oh, S., Choi, Y. H., Park, J. B. & Zheng, Y. Complete coverage avigation of cleaning robots using triangular-cell-based map. IEEE
Trans. Ind. Electron. 51(3), 718–726 (2004).

	18.	 De Floriani, L. & Puppo, E. Hierarchical trian-gulation for multiresolution surface description. ACM Trans. Graph. 14(4), 363–411
(1995).

	19.	 Wang, H. et al. On optimal path planning for UAV based patrolling in complex 3D topographies. In 2016 IEEE International
Conference on Information and Automation (ICIA) 986–990 (2016).

	20.	 Geraerts, R. Planning short paths with clearance using explicit corridors. In 2010 IEEE International Conference on Robotics and
Automation, IEEE, 2010 1997–2004 (2010).

	21.	 DuToit, R., Lyle, M., Holt, M. & Biaz, S. UAV Collision Avoidance Using RRT* and LOS Maximization. Auburn University, Techni-
cal Report #CSSE12-03 (2012).

	22.	 Nash, A., Koenig, S., Tovey, C. Lazy theta*: Any-angle path planning and path length analysis in 3d. In Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010 (2010).

	23.	 Galceran, E. & Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst 61, 1258–1276 (2013).
	24.	 Jiao, Y. S., Wang, X. M., Chen, H., Li, Y. Research on the coverage path planning of UAVs for polygon areas. In Proceedings of the

2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17, 2010 1467–1472 (2010).
	25.	 Nam, L., Huang, L., Li, X., Xu, J. An approach for coverage path planning for UAVs. In Proceedings of the 2016 IEEE 14th Interna‑

tional Workshop on Advanced Motion Control (AMC), Auckland, New Zealand, 22–24 Apr 2016 411–416 (2016).
	26.	 Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings. 1985 IEEE International Conference

on Robotics and Automation, St. Louis, MO, USA, 1985 500–505. https://​doi.​org/​10.​1109/​ROBOT.​1985.​10872​47 (1985).
	27.	 Kovacs, B. Path planning of autonomous service robots. PhD Thesis, Budapest University of Engineering and Technology (2017).
	28.	 McGuire, K. N., de Croon, G. C. H. E. & Tuyls, K. A comparative study of bug algorithms for robot navigation. Robot. Auton. Syst.

121, 103261. https://​doi.​org/​10.​1016/j.​robot.​2019.​103261 (2019).
	29.	 Das, P. K. & Jena, P. K. Multi-robot path planning using improved particle swarm optimization algorithm through novel evolution-

ary operators. Appl. Soft Comput. 92, 1–24. https://​doi.​org/​10.​1016/j.​asoc.​2020.​106312 (2020).
	30.	 Ji, X., Hua, Q., Li, C., Tang, J., Wang, A., Chen, X. & Fang, D. 2-optaco: An improvement of ant colony optimization for uav path

in disaster rescue. In Networking and Network Applications (NaNA), 2017 International Conference on, IEEE, 2017 225–231 (2017).
	31.	 Yue, L. & Chen, H. Unmanned vehicle path planning using anovel ant colony algorithm. EURASIP J. Wirel. Commun. Netw. 2019,

136. https://​doi.​org/​10.​1186/​s13638-​019-​1474-5 (2019).
	32.	 Ning, J. et al. A best-path-updating information-guided ant colony optimization algorithm. Inf. Sci. 433–434, 142–162 (2018).
	33.	 Ever, Y. K. Using simplified swarm optimization on path planning for intelligent mobile robot. Procedia Comput. Sci. 120, 83–90.

https://​doi.​org/​10.​1016/j.​procs.​2017.​11.​213 (2017).
	34.	 Geng, Q. & Zhao, Z. A kind of route planning method for UAV based on improved PSO algorithm. In 25th Chinese Control and

Decision Conference (CCDC) 2328–2331 (2013).
	35.	 Pierre, D. M., Zakaria, N. & Pal, A. J. Master-slave parallel vector-evaluated genetic algorithm for unmanned aerial vehicle’s path

planning. In Proceedings of the 11th International Conference on Hybrid Intelligent Systems (HIS ’11), Malacca, Malaysia, December
2011 517–521 (2011).

	36.	 Allaire, F. C. J., Tarbouchi, M., Labonté, G. & Fusina, G. FPGA implementation of genetic algorithm for UAV real-time path plan-
ning. J. Intell. Robot. Syst. 54(1–3), 495–510 (2009).

	37.	 Garcia, M. A. P., Montiel, O., Castillo, O., Sepúlveda, R. & Melin, P. Path planning for autonomous mobile robot navigation with
ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9, 1102–1110 (2009).

	38.	 Jevtić, A., Andina, D., Jaimes, A., Gomez, J. & Jamshidi, M. Unmanned aerial vehicle route optimization using ant system algorithm.
In Proceedings of the 5th International Conference on System of Systems Engineering (SoSE ’10), Loughborough, UK, June 2010 1–6
(2010)

	39.	 Samar, R. & Rehman, A. Autonomous terrain-following for unmanned air vehicles. Mechatronics 21(5), 844–860 (2011).
	40.	 Milnor, J. W. Morse Theory (Princeton University Press, 1963).
	41.	 Choset, H., Acar, E., Rizzi, A. A. & Luntz, J. Exactcellular decompositions interms of critical points of Morse functions. In Proceed‑

ings of. IEEE International Conferenc eon Robotics and AutomationI CRA’00 Vol. 3 2270–2277 (2000.)
	42.	 Thrun, S. Learning metric-topologicalmaps for indoor mobile robot navigation. Artif. Intell. 99(1), 21–71 (1998).
	43.	 Xu, L., Fu, W. H., Jiang, W. H. & Li, Z. T. Mobile robots path planning based on 16-directions 24-neighborhoods improved ant

colony algorithm. Control Decis. 36, 1137–1146 (2021) (in Chinese).

Author contributions
All authors have been personally and actively involved in substantial work leading to the paper, and will take
public responsibility for its content.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​52750-9.

Correspondence and requests for materials should be addressed to S.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s00500-018-3102-4
https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1016/j.robot.2019.103261
https://doi.org/10.1016/j.asoc.2020.106312
https://doi.org/10.1186/s13638-019-1474-5
https://doi.org/10.1016/j.procs.2017.11.213
https://doi.org/10.1038/s41598-024-52750-9
https://doi.org/10.1038/s41598-024-52750-9
www.nature.com/reprints

21

Vol.:(0123456789)

Scientific Reports | (2024) 14:2332 | https://doi.org/10.1038/s41598-024-52750-9

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Path planning in three-dimensional space based on butterfly optimization algorithm
	Modeling the environment
	Energy consumption
	Mobility
	Problem statement
	Ethical approval

	Modeling the environment
	Designing obstacles
	Searching for the path

	Background
	Preprocessing and environment modeling algorithms
	Decomposing and discretizing
	Non-decomposing approaches

	Path search algorithms
	Artificial potential field
	Ant colony optimization algorithm
	Butterfly optimization algorithm

	The proposed method
	Modeling the environment
	Modeling the environment cellular decomposition
	Intelligent throwing agent
	Fitting function
	UAV movements

	Designing and evaluating the path in 2D space
	Path planning in two-dimensional space with aerial obstacles-APF
	Path planning in three-dimensional space with aerial obstacles
	Path planning in a three-dimensional space containing terrain obstacles
	Tests and results
	Conclusions
	References

