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Bayesian network approach 
for reliability analysis of mining 
trucks
Mohammad Javad Rahimdel 

Having a safe and efficient system for mineral transportation is a top priority for all mining operations. 
Trucks are the most widely used material transportation systems that are applied in both surface and 
underground mines. Any truck failure disrupts the mineral transportation process and consequently 
decreases the overall output. Therefore, the reliability analysis of such equipment plays a critical 
role in increasing the efficiency and productivity of a mining operation. This paper proposes a novel 
method for analyzing the reliability of a fleet of mining trucks based on the Bayesian Network 
modeling. Considering the reliability block diagram, the fault tree of trucks was developed according 
to the logical relationship between the units. Then, a dynamic Bayesian network was constructed 
according to the conditional probability analysis. Moreover, the relative contributions of each truck’s 
component to the occurrence of the fleet failure were studied by using critical analysis. The results 
of this paper show that the successful operation of the fleet of trucks is most sensitive to truck no. 5, 
which has the highest reliability level in all time intervals. The reliability of the fleet of trucks reaches 
0.881 at 20 h, and the fuel injection system of the truck’s engine is the main leading cause of the trucks 
failure. A proper preventive maintenance strategy should be paid more attention to improve the 
reliability and availability of the engine system.

The mining sector is one of the most capital-intensive industries. Mining operations have a significant capital 
cost and operational expenditures. These make mining activities one of the most energy-intensive industries 
around the world. Therefore, it is crucial to have an efficient, less energy-consuming, labor-intensive, and reliable 
mining operation. The process of mineral production in hard rock mines is divided into four parts, including 
drilling, blasting, loading, and hauling. Among them, loading and hauling operations comprise a significant 
component of the capital and operating costs of mines. Generally, material transportation accounts for about 
50–60% of the total mines’ operating costs1. This means that mining operation and material transportation are 
inextricably linked together and it is crucial to use transportation systems with low cost of operation through 
the entire operational life.

In open pit mines, truck-shovel, belt conveyors, semi-mobile, and mobile crushers are different systems 
used to transport the broken ore from the working face of a mine to the dumping area. Among these, the 
truck-and-shovel system is an economical, flexible, and efficient system known as a conventional loading and 
hauling system2. Having more efficient and safe transportation systems leads to operating mines with the lowest 
operational cost. This requires equipment with less costly downtime and minimal requirement for inspections, 
servicing, and parts replacement. Unplanned downtimes waste all human and financial resources instead of 
engaging them to improve production productivity, especially in the most capital-intensive industries such 
as mining3. Heavy-duty dump truck, operated in mines, is a complex vehicle with many interconnecting 
components or parts. Failure of any subsystem, component, or part will cause a truck to fail. A failed truck 
disrupts the mineral transportation process and consequently decreases the overall output; therefore, it is crucial 
to keep the truck at a high level of availability4. Understanding the trucks’ complexities, efficiency, and failures 
helps to fulfill the production goal and reduce unexpected and unrequired costs, increases the machine’s lifetime, 
and results in optimized life cycle costs. This means that all trucks and their subsystems must operate efficiently 
during their lifetime. In this concept, reliability estimation and prediction of the trucks’ lifetime are necessary 
to keep them available.

Reliability analysis is a well-known statistical tool to identify the critical components and leading causes of 
failures in a complex system. In the reliability analysis, high levels of lifetime uncertainty and the risks of failure 
are estimated, prevented, and controlled5. Nowadays, several methods such as fault tree analysis, reliability block 
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diagram, reliability graph, and Markov chain have been developed for equipment fault detection and reliability 
analysis. Most of the research has been conducted on the failure behavior and reliability of mining equipment 
and vehicles at different mining operations, including drilling equipment6, loaders7,8, dragline9, and haulage 
vehicles such as dump trucks2 and rolling stocks10.

Summit and Halomoan11 studied the suitability of the scheduled maintenance program by applying the 
Weibull distribution for the reliability modeling for Caterpillar 777D dump trucks operating in open pit coal and 
metal mines in Australia. Results of the mentioned study showed that the suspension system of the truck was the 
most frequent failing component and the seal failures were the most frequent failure modes. It was mentioned 
that the front suspension system of the truck had a longer expected life than the rear one. A comparison of the 
failure data showed that the time to failures at the coal mine site was much less than at the metal mine site for 
both front and rear suspensions. Regarding the results of the reviewed study, haul road conditions might be the 
main reason for the low life expectancy of the suspension system that needed to be well maintained. Tumanggor12 
estimated the reliability of dump trucks in open-pit coal mines in South Kalimantan, Indonesia. Regarding the 
reliability block diagram approach, the dump truck system decomposed into six subsystems including engine, 
transmission, hydraulic, electrical, body and frame, and tires. The time between repairs for each system was 
calculated and then the Weibull distribution function was created to determine the systems’ lifetime. Results of 
the mentioned study showed that the truck axle had the highest repair time. It was concluded that the broken 
shaft trunnion had the most reason for the axle damage. He et al.13 applied the proportional hazard model (PHM) 
to predict the reliability of mining trucks. In the mentioned study, the failure of motors’ exhaust valves for 13 
trucks was analyzed and then the appropriate reliability model was proposed. Results of the reviewed study 
showed that the beginning engine hours, barometric pressure, coolant temperature, and fuel temperature had a 
significant effect on the exhaust valve failures.

In another research, Kishorilal and Mukhopadhyay14 studied the reliability of a truck with 85 ton capacity in 
an open pit mine using the reliability block diagram approach. In this study, the time between failures of a truck 
engine for three years was used for statistical analysis. The result of the mentioned study showed that the fuel 
supply subsystem of the motor is more prone to failure than other motor’s subsystems. The time intervals to reach 
70%, 80%, and 90% reliability levels were calculated to suggest preventive maintenance intervals for each engine’s 
subsystems. Angeles and Kumral15 proposed a preventive maintenance scheduling for a fleet of dump trucks in 
an open pit mine in Canada. In the mentioned research, the reliability of each truck was estimated by using the 
power law process, then optimal inspection intervals were proposed considering the age and the rejuvenation 
of the trucks after each repair. Wang and Zhang16 studied the reliability of truck engines regarding the after-
sales maintenance data. In the reviewed research, the main failures were identified, and the lifetime of the diesel 
engine at different service backgrounds was analyzed and discussed. Results of the studied paper showed that 
the fuel supply system had the highest number of failures that were inconsistent with the previous studies14,14,17. 
The service background had a considerable effect on the engine’s lifetime. It was also stated that the electronic 
devices and motor parts working in the high-pressure environment were the leading failure causes of diesel 
motors. Rahimdel2 estimated the residual lifetime of mining truck tires by considering the environmental and 
operating conditions, including truck axle, working shift, weather conditions, and temperature. The proportional 
hazard model is used to estimate the remaining useful life of tires for trucks with 100-tonne capacity in an open 
pit iron ore mine in Iran. Regarding the results of the reviewed study, the temperature had a considerable on 
the failure behavior of trucks’ tires. In higher temperature levels, the remaining life of tires was in the worst 
situation. In the mentioned study, checking and inspection intervals were proposed to keep the reliability of 
tires at a desirable level.

Reviewing the paper, mentioned above, shows that the reliability of truck, operated in the mine, have been 
studied in numerous previous researches. However, most of these studies evaluated the reliability and failure 
behavior of a specific part of the truck by using statistical modeling approaches. The application of mathematical 
models for reliability modeling is a usual approach when historical failure data such as time between failures 
(TBFs) and time to failures (TTFs) are available. Probability distribution modeling, failure mode and effect 
analysis (FMEA), and fault tree analysis (FT) are well-known approaches. These methods simplify the reliability 
analysis processes by using simplified assumptions such as considering only a part of a system, independence of 
the system components, and availability of failure data. Moreover, these methods couldn’t update the posterior 
failure probability of the components regarding the evidence data. The main challenge in the reliability analysis 
of complex systems, with numerous interacting components that might be in an active or failed state, is to 
represent the interactions between each equipment’s component and their basic and conditional probabilities. 
This allows us to understand the cause-and-effect relationship between components and accordingly enhance 
the reliability prediction and evaluation. To address this issues Bayesian Networks (BNs) are found to overcome 
such challenges18. The BNs are used to estimate not only the failure probability of the overall system but also the 
failure probability of the basic components. They can also be used for robust probabilistic reasoning in uncertain 
conditions. BNs can also dynamically assess the system performance, considering updated information19,20. In 
recent decades, the BN has been widely used for the reliability analysis of complex mechanical and electrical 
equipment such as dragline system21 complex electronic systems22, offshore wind turbines23, subsea blowout 
control systems24, wind turbines and diesel generators25, and complex railway systems26.

Considering that BN are not currently employed for reliability analysis of heavy-duty mining trucks, the 
contribution of this study lies in implementing a developed reliability modelling approach in a specific case 
study in Iran. The main aim of this paper is to analyze the reliability and fault diagnosis of a fleet of heavy-duty 
mining trucks by combining FT and BN. In this approach, it is possible to analyze the root causes of heavy-duty 
truck failures through fault tree modeling. The FT model provides prior information for BN modelling and the 
BN is investigate for the reliability analysis and fault diagnosis of a fleet of mineral transportation vehicles with 
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complex components. The system’s components with the high relative contributions to the failure occurrence 
of the system are identified, as well.

The results of this study are helpful for operation and maintenance managers to find critical components 
of mining trucks that require further improvement. It is also helpful to propose a suitable maintenance plan to 
keep the reliability of mining trucks at a desirable level and have a reliable mineral transportation operation. This 
decreases the operational cost of mineral transportation by maximizing truck availability, as well.

This paper is divided into three sections. Research foundation and the methodology of the paper is described 
in section “Research methodology”. Application of the dynamic Bayesian network to reliability modelling of the 
fleet of mining trucks and the critically analysis of the truck’s sub-systems are presented and discussed in section 
“Application of the BN for the reliability analysis of a fleet of mining trucks”.

Research methodology
This section is devoted to discussing the theoretical foundation of the paper. The fault tree modeling is presented, 
and then mapping the fault tree to a Bayesian network is introduced and discussed. Analysis of the components’ 
role and their importance in the whole system is presented to identify the critical components.

Fault tree analysis
A fault tree (FT) is a logic diagram in which the potential causes of a failure, called the top event, are postulated. 
Currently, FT is widely used to study the reliability and risk mitigation of mine hoists27, safety and health risks 
of mining operations28, reliability analysis of mining draglines29, fault diagnosis of electric trucks30, reliability 
analysis of explosive vehicle31, fault diagnosis of road headers32, and failure analysis of mine cage conveyance33. 
In this method, the possible ways for the top event to occur are deduced, and the potential causes of this event 
are evaluated using Boolean logic34. The relationships between events in fault trees are represented using gates. 
Figure 1 shows a sample of the fault tree. AND- and OR- gates are the most widely used ones. The output of 
OR-gate will occur when any one of all inputs will occur. However, in the case of AND-gate, the output will 
occur when all inputs occur. For instance, regarding Fig. 1, the intermediate event IE1 will occur when any of 
the basic events E1 and E2 occur, and the top event will occur when both intermediate events IE1 and IE2 occur.

FT is a top-down method started at a top event and then branches out downwards to display different states 
of the system by using the logic symbols. After constructing the fault tree, the model is evaluated by quantitative 
analyses in which the occurrence probability of the primary events is considered for the probability of the top 
event.

To analyze the reliability by using the approach, mentioned above, basic assumptions of the standard FT 
analysis are made as follows:

•	 All basic events in the fault tree model are statistically independent.
•	 The failures of all components have a constant failure rate. This means that the failures follow the exponential 

distribution. In this approach, the occurrence probability of basic events at the operating time t, is obtained 
as35:

where λ is the constant failure rate, and P(BEi)t is the occurrence probability of ith basic event at time t.

•	 All components are considered as good as new after maintenance operation. On the other hand, the remaining 
life of a component is independent of its current age.

(1)P(BEi)t = 1− exp(−�t)

Figure 1.   A sample of fault tree.
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Bayesian network modeling
Bayesian networks are a sample of graphical models to describe probabilistic relationships within a group of 
random variables. BNs is a directed acyclic graph, constituted by points (represent variables) and directed edges 
that connect these points. In a BN, if an arc starts at node A and ends in node B, then node A is the parent of 
node B. In BNs, a root node is a node without a parent, and a node without any child node is considered a leaf 
node. Figure 2 shows a simple BN. In this figure, two nodes are connected by a directed edge. The “parent or 
cause nodes” are the node at the tail (nodes E1 and E2 in Fig. 2), and the “child or effect node” is the node at the 
head (node IE1 in Fig. 2).

A parent node has only a marginal probability. Each child node in the BN has a Conditional Probability 
Table (CPT) that illustrates how the states of each node are characterized by the conditional probability for the 
combination of every state of its parents. In the BN example, shown in Fig. 2, each node has two states: state 0 
and state 1. The CPT is used to obtain the joint probability distribution of all the nodes.

Conditional probability is the foundation of the Bayesian reasoning that is expressed as follows20,23:

where A is a hypothetical event or set of hypothetical events, B is the observed evidence; P(A|B) is the posterior 
probability after observing B, P(B|A) is the conditional probability that B is present in every state of A, P(A) is 
prior probability before observing B, and P(B) is the marginal probability; and P(A,B) is the joint probability.

The joint probability distribution function of variables is estimated according to conditional independence 
and the chain rule in the probability theory. The joint probability distribution of a set of variables U = {X1 . . . .Xn} 
can be expressed as follows20,23:

where P(U) is the joint probability of a set of variables X1 . . . .Xn , P(Xi|Pa(Xi)) is the conditional probability of 
Xi , and Pa(Xi) is the parent nodes of Xi.

The system’s reliability can be obtained through the marginalization of this joint probability distribution. In 
the reliability analysis via BNs, the prior probability of each event is updated by new information (or posterior 
probability). When new observation or evidence E is given, the posterior probability can be calculated by 
conditional probability function or Bayesian inference as follows23,36:

Mapping the fault tree to the Bayesian network
According to the constructed fault tree model of the system, the corresponding Bayesian network can be obtained 
by mapping the fault tree to the Bayesian network. In graphical mapping, basic and intermediate events in the 
FT are considered the root and intermediate nodes in the corresponding BN, respectively. Moreover, the top 
event in the FT is the leaf node in the BN. The occurrence probabilities of the primary events are assigned to 
the corresponding root nodes, and the conditional probability table is developed for each child node37,38. The 
process of Mapping FT to BN is shown in Fig. 3.

(2)P(A|B) =
P(A) · P(B|A)

P(B)
=

P(A,B)

P(B)

(3)P(U) = P(X1 . . . .Xn) =

n∏

i=1

P(Xi|Pa(Xi))

(4)P(U |E) =
P(U ,E)

P(E)
=

P(E|U) · P(U)

P(E)
=

P(E|U) · P(U)∑
E
P(E|U) · P(U)

Figure 2.   Example of a BN model with two parent nodes and one child node and their corresponding CPT.
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Dynamic reliability analysis
After mapping the fault tree to the Bayesian network, the predictive analysis is done on the model to obtain 
system reliability. To achieve this, the estimated occurrence probability of basic events at the specific operating 
time is used as the quantitative input in BN modeling to conduct dynamic probability reasoning. In this approach, 
the reliability of the system can be obtained as follows23:

where R(t) is the system reliability at time t and Pr{TE}t is the top event occurrence probability at time t.

Criticality analysis
Identification of the most critical components of a system that require more attention leads to reducing the 
frequency of failures and accordingly improves the performance of the whole system. The critical analysis is 
used to identify the role of components and their importance in the occurrence of the top event. On the other 
hand, criticality analysis is used to show the systems’ reaction when the input parameters of a component are 
different from the others. There are different importance measure methods to measure the relative importance 
of basic events in FT that can be applied to the basic nodes of BN, in a parallel way. In this paper, the Birnbaum 
Importance Measure (BIM) and Risk Reduction Worth (RRW​), as the most common importance measures, are 
used to carry out the sensitivity analysis37,39.

The BIM in a BN can be obtained as follows40:

where IBIM
RNi

 is the Birnbaum importance measure of root node RNi , P(LN |RNi = 1) is the conditional probability 
of the leaf node for the occurrence of root node RNi , and P(LN |RNi = 0) is the conditional probability of the 
leaf node for nonoccurrence of root node RNi.

The RRW​ indicates the effect of root node on the leaf node concerning non-occurrence of root node. In a BN 
the RRW​ can be calculated as follows41:

where IRRW
RNi

 is the RRW​ importance of root node RNi , P(LN) is the occurrence probability of leaf node, and 
P(LN |RNi = 0) is the conditional probability of the leaf node for nonoccurrence of root node RNi.

Application of the BN for the reliability analysis of a fleet of mining trucks
Trucks are an essential part of the mine haulage system that must be available for a given mission time. This 
section aims to apply the proposed methodology, mentioned in section “Research methodology”, for analyzing 
the reliability of a fleet of mining trucks in Golgohar Iron Mine, Iran. Golgohar Iron deposit is located in 55 km 
southwest of Sirjan City, Kerman Province, Iran. Golgohar iron ore complex is located in six different anomalies 
encompassing a 10 × 4 km area. Among them, anomaly no. 3 with a mineral reservoir of more than 660 million 
tons is the largest iron ore reserve. Regarding the exploration studies, the total ore reserve of this anomaly is 
calculated as 616 million tons with an average grade of 54.3% Fe. Golgohar no. 3 mine is the biggest iron ore mine 
in Iran, and its ore extraction is more than 15 million tons per year. After the blasting operation, broken rocks 
are transported to crushers by Komatsu dump trucks with 65-tonne capacity and Caterpillar dump trucks with 
100-tonne capacity. Currently, 28 dump trucks with 65-tonne capacity and 20 trucks with 100-tonne capacity 
are working three shifts per day2.

The remaining part of this section is devoted to the reliability analysis of a fleet of mining trucks through 
the Bayesian Network analysis. A fleet of six Caterpillar 777 trucks with 100-tonne capacity, TR1 to TR6, were 
selected for data gathering and analysis. The failure data were gathered over one year. To study the reliability 
of trucks, it is crucial to identify the components and subsystems that have the most significant effect on the 

(5)R(t) = 1− Pr{TE}t

(6)I
BIM

RNi
= P(LN |RNi = 1)− P(LN |RNi = 0)

(7)I
RRW

RNi
=

P(LN)− P(LN |RNi = 0)

P(LN)

Figure 3.   Process of mapping the fault tree to the Bayesian network.
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reliability. Therefore, at the first step, the dump truck is decomposed to its sub-systems/component as given in 
Table 1.

Construction of the reliability block diagram (RBD) is necessary for evaluating the reliability of trucks. The 
RBD is a graphical representation of a system components from a reliability viewpoint. The reliability block 
diagram of the studied truck is shown in Fig. 4. Regarding Fig. 4, the truck is considered to be a system that 
consists of seven major sub-systems including engine, drive system, power transmission, tire, body and chassis, 
and electrical sub-systems.

Regarding the block diagram of all in-operation trucks of the mine as a serial-parallel network (Fig. 5), the 
Bayesian network analysis is performed to complete the reliability analysis. To identify all possible causes of 
failure and to indicate critical sub-systems concerning the failure of interest, a fault tree was developed according 
to RBD and shown in Fig. 6. To perform a reliability analysis, it is necessary to access the historical failure data to 
obtain the failure rate of the basic event. Regarding the basic assumption of a standard fault tree, the failures of 
all components have a constant failure rate. It should be noted that, the constant failure rate of each basic event is 
calculated as the reverse of mean time between failures (MTBF)42. Thus, the probability of basic failures with an 
identified failure rate can be obtained. The required failure data were gathered over 9 months from the operation 
and maintenance unit of the mine. For example, the time between failure data of the engine’s component of truck 
TR1 were obtained and given in Table 2. Accordingly, the failure rate of each basic event of truck TR1 has been 
computed and given in Table 3.

Reliability analysis of the fleet of trucks
To perform the reliability analysis using BN, first, the fault tree is transformed to BN. As mentioned in section 
“Mapping the fault tree to the Bayesian network”, the mapping process has two parts, including graphical mapping 
and numerical mapping. In the graphical mapping part, the basic events connected with the intermediate node 
of the FT can be mapped with corresponding intermediate nodes in the BN. Then, the top event in the fault tree 
can be converted into leaf nodes in the Bayesian network. In the quantitative mapping process, the occurrence 
probabilities of the basic events are mapped to the priory probabilities of the BN. In this way, the probability of 
the gates can be mapped into the conditional probability tables in the Bayesian network. The BN for the studied 
trucks is presented in Fig. 7. In Fig. 7, the nodes with different systems have been shown with different colors. 
Regarding Fig. 6, there are 17 parent nodes. They are DS, DS 1, DS 2, DS 1.1, DS 1.2, ES, ES 1, ES 2, ES 3, ES 4, 
BC, BC 1, BC 1.1, BC 2, Tr, Ts, and El. The remaining are child nodes with their own CPT associated with their 
parent nodes. The failure probability of each root node was obtained from the corresponding failure rate, and 
then, the CPT was assigned to nodes. In this paper, GeNIe software43 was used to model the Bayesian network 
and determine the most critical basic events affecting truck failure.

According to the failure rate of the basic events, the failure probabilities were obtained in different time 
intervals. Then, the GeNle program is employed to use failure probabilities for modeling the Bayes Network. The 
network was updated by using the failure probability of basic events at different observation times to compute 
the failure probability of the truck and accordingly its reliability. In this approach, the reliability of each truck 
at different observation times was obtained using the predictive inference of the corresponding BN. The results 
are given in Fig. 8. A similar process, mentioned in section “Mapping the fault tree to the Bayesian network”, 
was applied to obtain the reliability of a fleet of trucks. As at least one of the trucks must operate for the mineral 
haulage system to succeed, a fleet of trucks can be considered a parallel system. The FT and corresponding BN 
of a parallel system with six trucks is constructed and shown in Fig. 9. The reliability of the fleet of trucks at 
different time was obtained using the BN and shown in Fig. 10.

Critically analysis of the truck sub‑systems
One of the main aims of the reliability analyses is to identify those components/systems/subsystems that are 
critical from the reliability perspective. This helps decision-makers to take appropriate actions to prevent failures 
and mitigate consequences. To achieve this, in this paper, the relative importance of each basic node of the BN is 
performed by using the Birnbaum importance measure (BIM) and risk reduction worth (RRW) as described in 
Eqs. (5) and (6). Figures 11, 12, 13, 14, 15, and 16 shows the values of BIM and RRW importance measures for 
trucks TR1 to TR6. Moreover, the relative contributions of each truck to the occurrence of the failure probability 
of the material haulage system are performed. The results are given in Table 4.

Discussion
Regarding the reliability analysis of the studied trucks, although truck no. 5 has the highest reliability compared 
the others, the reliability of this truck degrades from 1 to 0.7241 only after 5 h. The reliability of trucks TR1 and 
TR2 maintains a lower value over 50 h. As a result, special attention should be paid to these two trucks during 
the daily inspection and maintenance. The reliability of all trucks reaches zero approximately in 50 h. Preventive 
maintenance should be implemented on all trucks if high reliability is expected. Reliability analysis of the fleet 
of trucks indicates that the reliability of the fleet of trucks maintains a high value over 10 h. The fleet reliability 
degrades to 0.952 during 10 h period. This means that after these times onwards, the failure probability of the 
haulage fleet increases to 4.8%. The reliability of the haulage fleet reaches zero in 80 h.

Regarding the critical analysis, the shock absorber, pipes, and connectors of fuel injection and switch and 
sensors of the steering system are the most critical root nodes for the failure occurrence of the truck TR1. 
Regarding the results, pipes and connectors of the fuel injection systems have the most contribution to the 
failure occurrence of trucks TR2 that is consistent with past studies14,16,17. In the following order, air hoses 
and connectors of the brake pneumatic system, pipes and connections of the hydraulic body hoist system, and 
gearbox have a high relative importance on the occurrence of the failures. As seen from Fig. 13, sensors of the 
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Table 1.   ID, systems, and sub-systems of the dump truck.

System/sub-system Component ID

Engine system (ES)

Engine major (ES1)

Crankcase ES 1.1

Cylinder head ES 1.2

Engine block ES 1.3

Turbocharger ES 1.4

Oil pump ES 1.5

Air manifold ES 1.6

Fuel injection (ES2)

Pipes and connectors ES 2.1

Exhaust ES 2.2

Fuel Pumps ES 2.3

Injectors ES 2.4

Sensors ES 2.5

Other ES 2.6

Engine cooling (E3)

Pipes and connectors ES 3.1

Water pump ES 3.2

Cooling fan ES 3.3

Radiator ES 3.4

Engine electrical system (ES4)

Switches and sensors ES 4.1

Starter ES 4.2

Battery ES 4.3

Alternator (Dynamo) ES 4.4

Drive system (DS)

Brake (DS1)

Brake hydraulic system (DS 1.1)

Retarder DS 1.1.1

Hoses and connectors DS 1.1.2

Hydraulic valves DS 1.1.3

Brake pneumatic system (DS 1.2)

Relief valve DS 1.2.1

Air compressor DS 1.2.2

Air hoses and connectors DS 1.2.3

Other DS 1.2.4

Brake block DS 1.3

Steering (DS 2)

Oil pump DS 2.1

Switch and sensors DS 2.2

Pipe and connection DS 2.3

Shock absorber DS 2.4

Transmission system (TS)

Gear Box TS 1

Rear drive shaft TS 2

Front drive shaft TS 3

Power take-off unit TS 4

Planetary gear TS 5

Connectors TS 6

Tire (Tr.)

Front tire Tr. 1

Rear tire Tr. 2

Wheels and rims Tr. 3

Body and chassis (BC)

Cab (BC 1)
Air condition (BC 1.1)

Cooler compressor BC 1.1.1

Fan BC 1.1.2

Air lines and connections BC 1.1.3

Water pipe and connections BC 1.1.4

Seat BC 1.2

Body hoist (BC 2)

Hydraulic hoist pump BC 2.1

Pipes and connections BC 2.2

Hoist cylinders BC 2.3

Chassis BC 3

Electrical system (El.)

Cables El. 1

Switches and sensors El. 2

Lights El. 3
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Figure 4.   Reliability block diagram of the studied truck.

Figure 5.   Block diagram of the fleet of mining trucks.

Figure 6.   Fault tree of fleet of trucks.
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fuel injection system, battery, and the air hoses and connectors of the brake pneumatic system are recognized as 
the most critical reasons for the failure of truck TR3. Figures 14 and 15 show that pipes and connectors of the fuel 
injection systems are the most critical components of the trucks TR4 and TR5. These results are consistent with 
previous studies14,14,17. From Fig. 16, air hoses and connectors of the brake pneumatic system, shock absorber, 
and gearbox are the most critical components of truck TR6, respectively.

The relative contributions of each truck to the occurrence of the fleet failure probability show that truck TR5 
is the most critical truck in the mineral transportation fleet. These results are inconsistent with the results of the 

Table 2.   Sample of TBF data of the engine’s component of the truck TR1.

No. of failure TBF (h) No. of failure TBF No. of failure TBF No. of failure TBF

1 12 6 43 11 756 16 58

2 22 7 587 12 1294 17 478

3 99 8 755 13 399 18 74

4 227 9 366 14 1257 19 323

5 207 10 435 15 1486 20 895

Table 3.   Failure rate of the basic events for truck TR1.

ID Failure rate ID Failure rate ID Failure rate ID Failure rate

ES 1.1 0.0008 DS 1.2.1 0.0021 ES 2.1 0.0084 ES 4.2 0.0025

ES 1.2 0.0031 DS 1.2.2 0.0022 ES 2.2 0.0030 El. 1 0.0056

ES 1.4 0.0026 DS 1.2.3 0.0050 BC 1.2 0.0015 El. 3 0.0030

ES 1.5 0.0010 DS 2 0.0024 ES 2.3 0.0058 El. 4.1 0.0030

BC 2.1 0.0059 DS 2.4 0.0107 ES 2.4 0.0019 ES 4.2 0.0025

BC 2.2 0.0050 ES 4.1 0.0030 ES 3.1 0.0028 ES 4.3 0.0005

Tr. 1 0.0012 BC 1.1.1 0.0053 BC 1.1.4 0.0065 El. 4.4 0.0010

Tr. 2 0.0039 BC 1.1.2 0.0010 TS 1 0.0018 TS 4 0.0013

Tr. 3 0.0014 BC 1.1.3 0.0016 TS 2 0.017 TS 5 0.0036

Figure 7.   Bayesian network for the studied truck.
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reliability analysis. The reliability of the fleet of trucks is most sensitive to truck TR5 because this truck has the 
highest reliability compared to other trucks.

Reliability modeling is an appropriate approach for preventive maintenance (PM) planning to minimize 
operation-stopping breakdowns. In this approach, PM intervals are estimated considering the reliability level 
we wish to have in our operation. In many engineering operations, 80% reliability assures both efficiency and 
performance6,10. In this study, considering 80% as the target reliability, the reliability-based PM intervals for all 
trucks were obtained and given in Table 5. Regarding Table 5, all subsystems of trucks should be subjected to PM 
activities at their planned time interval. However, to optimize the maintenance program, all tasks with similar 
intervals can be carried out in one acceptable interval to all related subsystems. The combined PM intervals for 
all trucks’ subsystems were calculated using this approach and given in Table 6. As can be seen from Table 6, 
the drive system of truck TR1 and the body and chassis of trucks TR1 and TR2 have the shortest PM interval 
and should be inspected every 7 h. The transmission system of trucks TR5, and TR6 and tire of truck TR6 have 
the highest maintenance intervals and should be serviced and inspected in 33 and 60 h, respectively. After 11 h 
operation, the engines of trucks TR1, TR2, and TR4, the drive system of trucks TR5 and TR6, and the electrical 
system of all trucks except TR5 should be checked and serviced. The engine system of trucks TR3, TR5, and 
TR6, the drive system of trucks TR2, TR3, and TR4, and the transmission system of trucks TR1, TR2, TR3, and 

Figure 8.   Reliability of all studied trucks.

Figure 9.   Fault tree and corresponding Bayesian network for a fleet of six trucks.

Figure 10.   Reliability of the fleet of trucks.
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TR4, and all trucks tires except truck TR 6 should be checked and inspected every 16 h. After 24-h operation, 
the body and chassis of trucks TR3, TR4, TR5, and TR6 and the electrical system of trucks should be serviced 
and maintained together.

Figure 11.   Importance sore of components for truck TR1.

Figure 12.   Importance sore of components for truck TR2.

Figure 13.   Importance sore of components for truck TR3.
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Such information is helpful in identifying the weakest part of the truck that is most likely to cause material 
transportation failure directly. These are also helpful for maintenance and operation management to improve 
the availability level of the trucks.

Figure 14.   Importance sore of components for truck TR4.

Figure 15.   Importance sore of components for truck TR5.

Figure 16.   Importance sore of components for truck TR6.
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Conclusions
Application of Bayesian networks in the field of reliability analysis has increased during the last decade because 
this is an efficient method for analysis of the complex systems. In this paper, the dynamic Bayesian network 
approach is used for the reliability analysis of a fleet of mining trucks as a case study: Golgohar Iron Mine, Iran. 
To achieve this, the truck description was directly mapped to a Bayesian network by using GeNIe tools. In this 
approach, the truck failure probability was automatically calculated, and all relevant elements that affect the 
performance of the fleet of the mineral transportation system were identified. The results of this paper can be 
summarized as follows;

•	 Reliability of trucks TR1 and TR2 maintains a lower value in comparison to other trucks and the special 
inspections and maintenance activations should be considered for these trucks.

•	 Reliability of the fleet of trucks degrades to 0.972 after 10 h and the failure probability of the fleet of trucks 
reaches one at about 80 h.

•	 The fuel injection system of the truck’s engine is the most critical system that has the most contribution to 
the failure occurrence of the mineral transportation fleet.

•	 Truck TR5 is the most critical truck in the mineral transportation fleet of the Golgohar iron ore mine and 
requires less service and maintenance than other trucks.

Table 4.   Importance sore for each truck in the haulage fleet.

Truck I (BIM) I (RRW) Rank

TR1 0.0072 0.0003 6

TR2 0.0147 0.0079 5

TR3 0.0195 0.0127 2

TR4 0.0174 0.0106 3

TR5 0.0248 0.0180 1

TR6 0.0170 0.0102 4

Table 5.   Reliability-based PM interval for 80% reliability level.

Subsystem

Truck

TR1 TR2 TR3 TR4 TR5 TR6

Engine system 12.35 11.53 14.56 9.84 20.22 14.56

Drive system 6.18 15.17 15.83 18.20 13.48 11.74

Transmission system 16.48 11.03 20.2 13 33.09 33.06

Electrical system 11.16 8.47 14 11.74 24.27 9.58

Body and Chassis 10.18 3.43 24.27 28 33.09 26

Tires 15.73 10.71 26 15.17 19.16 60.66

Table 6.   The improved PM intervals for each truck’s subsystem.

Subsystem Truck Combined PM interval (h)

Engine system
TR1, TR2, TR4 11

TR3, TR5, TR6 16

Drive system

TR1 7

TR2, TR3, TR4 16

TR5, TR6 11

Transmission system
TR1, TR2, TR3, TR4 16

TR5, TR6 33

Electrical system
TR1, TR2, TR3, TR4, TR6 11

TR5 24

Body and chassis
TR1, TR2 7

TR3, TR4, TR5, TR6 24

Tires
TR1, TR2, TR3, TR4, TR5 16

TR6 60
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•	 According to the reliability-based maintenance optimization program, the proposed maintenance interval 
for the critical subsystems such as the engine, drive, power transmission, electrical, body and chassis, and 
tire are 13.5, 11, 24.5, 17.5, 15.5, and 38 h on average, respectively.

The results if this study help the maintenance planners and managers in the determination of better 
maintenance tasks and the prevention of catastrophic failures. It is also helpful to find the weak points of the 
system that significantly affect the reliability behavior of the system. However, considering the effect of the 
environmental factors and operational conditions such as haul road quality, weather condition, and operator 
skill level that influence the failure behavior of trucks’ subsystems and components was the limitation of the 
current study and therefore, a separate BN can be created to study the reliability of trucks under the operational 
conditions. Another limitation of this study is that the created BN could not model the statistical dependencies 
between the basic events which may lead to inaccurate results.

Data availability
The data presented in this study are available on request from the corresponding author.
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