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Next generation 
phenotyping for diagnosis 
and phenotype–genotype 
correlations in Kabuki syndrome
Quentin Hennocq 1,2,3,4,5,6*, Marjolaine Willems 7, Jeanne Amiel 1,4,8, Stéphanie Arpin 9, 
Tania Attie‑Bitach 1,4,8, Thomas Bongibault 1,5, Thomas Bouygues 1,5, Valérie Cormier‑Daire 1,4,8, 
Pierre Corre 10,11, Klaus Dieterich 12, Maxime Douillet 1, Jean Feydy 13, Eva Galliani 2,3,4, 
Fabienne Giuliano 14, Stanislas Lyonnet 1,4,8, Arnaud Picard 2,3,4, Thantrira Porntaveetus 15, 
Marlène Rio 1,4,8, Flavien Rouxel 7, Vorasuk Shotelersuk 16, Annick Toutain 9, Kevin Yauy 7, 
David Geneviève 7,17, Roman H. Khonsari 1,2,3,4,5,17 & Nicolas Garcelon 1

The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the 
development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP 
model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, 
KMT2D‑related) from KS2 (KS type 2, KDM6A‑related). We included retrospectively and prospectively, 
from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. 
After automatic preprocessing, we extracted geometric and textural features. After incorporation 
of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine 
learning classifier. The model was tested on an independent validation set. Finally, we compared the 
performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral 
facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of 
KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were 
able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% 
(78.9–99.9%, p < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 
0.805 (0.729–0.880, p < 0.001). We report an automatic detection model for KS with high performances 
(AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC 
of 0.805. These results outperform the current commercial AI‑based solutions and expert clinicians.
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Kabuki syndrome (KS) is a rare genetic disorder, with an estimated prevalence of 1:86,000 to 1:32,0001–3. The 
typical KS face includes long palpebral fissures associated with eversion of the lateral third of the lower eyelid; 
long and heavy lashes giving the impression of made-up eyes; broad, arched and interrupted eyebrows; broad, 
depressed nasal tip; and prominent, cupped  ears1,2,4. Extra-facial features include mild to moderate intellectual 
disability, visceral malformations, skeletal dysplasia and immunological  manifestations5. KS has been described 
in all ethnic  groups6,7.

More than 80% of KS patients have a pathogenic variant in the coding regions of KMT2D (KS type 1, KS1, 
OMIM147920), and around 10% of patients have a pathogenic variant in the KDM6A gene (KS type 2, KS2, 
OMIM300128)8–12.

Improving syndrome screening in clinical genetics is a crucial challenge in reducing diagnostic wandering. 
In France, the 7000 rare diseases identified to date represent 4.5% of the population, half of which affect children 
under the age of 5 with 10% of deaths between 0 and 5. Around 50% of patients are not diagnosed, and for the 
remaining 50%, diagnostic wandering reaches an average of 5  years13. Diagnostic wandering is defined by the 
failure to define the precise cause of a disease after having performed all available investigations. Applications 
of Artificial Intelligence (AI) are increasing in  healthcare14–17. The field of dysmorphology has been changed by 
these new methods, under the name of Next Generation Phenotyping (NGP)18. Publications comparing human 
performances to NGP are  flourishing19–22, and some suggest that digital tools do it better than human experts 
in terms of diagnosis: Dudding-Byth et al.23 showed a better performance of NGP compared to clinicians in a 
group of ten genetic syndromes, not including KS; Rouxel et al.5 compared the performance of the DeepGestalt 
 technology18 using the Face2Gene online tool (FDNA Inc. Boston, MA, USA) to the performances of clinicians 
trained in the recognition of KS1 and KS2.

The aim of this study was to develop a NGP model for the diagnosis of KS and for distinguishing KS1 from 
KS2. We trained and validated the model on a large national and international multi-center cohort of patients 
of all ages and ethnicities. The specificity of this approach was the integration of lateral pictures, including the 
outline of the cranial vault and the position of the ears, as well as frontal pictures and the morphology of the 
external ear.

Materials and methods
The study was approved by the Comité Éthique et Scientifique pour les Recherches, les Études et les Évaluations 
dans le domaine de la Santé (CESREES), №4570023bis, the Commission Nationale Informatique et Libertés 
(CNIL), №MLD/MFI/AR221900, the Institutional Review Board, Faculty of Medicine, Chulalongkorn University 
(IRB 264/62), and in accordance with the 1964 Helsinki declaration and its later amendments. Informed and 
written consents were obtained from the legal representatives of each child or from the patients themselves if 
they were of age.

Photographic dataset
We included most pictures from the photographic database of the Maxillofacial surgery and Plastic surgery 
department of Hôpital Necker—Enfants Malades (Assistance Publique—Hôpitaux de Paris), Paris, France. This 
database contains 594,000 photographs from 22,000 patients, and all pictures since 1995 were taken by a profes-
sional medical photographer using a Nikon D7000 device in standardized positions.

We included retrospectively and prospectively, from 1995 to 2023, all frontal and lateral pictures of patients 
diagnosed with KS. The photographs were not calibrated. All patients had genetic confirmation of KS (KMT2D 
or KDM6A). We excluded all photographs taken after any surgerical procedure that could have modified the 
craniofacial morphology. Multiple photographs per patient corresponded to different ages of follow-up. Dupli-
cates were excluded.

Controls were selected among patients admitted for lacerations, trauma, infection and various skin lesions, 
without any record of chronic conditions. More precisely, follow-up for any type of chronic disease was consid-
ered as an exclusion criterion. The reports were retrieved using the local data warehouse Dr  Warehouse24. For 
each patient, the best lateral view was included.

Data from five other medical genetics departments were also included according to the same criteria: (1) 
Montpellier University Hospital (n = 32), (2) Grenoble University Hospital (n = 1), (3) Tours University Hospital 
(n = 1), (4) King Chulalongkorn Memorial Hospital Bangkok, Thailand (n = 8), and (5) Lausanne University 
Hospital, Lausanne, Switzerland (n = 1).

Validation set
For designs №1 and №2, we randomly selected a group of individuals corresponding to 10% of the number of 
patients with KS, and the equivalent number of control patients. These patients were removed from the training 
set. The two sets were therefore independent.

Landmarking
We used three different templates based on 105 landmarks for the frontal views, 73 for the lateral views and 41 
for the external ear pictures. We developed an automatic annotation model for each template following a pipeline 
including: (1) detection of the Region Of Interest (ROI) and (2) automatic placement of the landmarks.

For ROI detection, a Faster Region-based Convolutional Neural Network (RCNN) model was trained after 
data augmentation (images and their + 10° and  10° rotations), with a learning rate of 0.001, a batch size of 4, 
a gamma of 0.05 and 2000 iterations, optimized and split into two stages: ROI detection and determination of 
profile laterality.
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(1) ROI detection—Faster RNN trained on 15,633 images, after data augmentation (images and their + 10° 
and − 10° rotations): 6186 frontal images (2062 × 3) and 9447 right and left profile images (3159 × 3). The batch 
size was 2, learning rate was 0.0025, and the maximum number of iterations was 2800.

(2) Determination of profile laterality—Pre-trained ResNet50  network25 using the Pytorch  library26. The train-
ing images included 1570 left profiles and 1579 right profiles. The batch size was 16, an Adam  optimizer27 was 
used with a learning rate of 0.001, a step of 7, and a gamma of 0.1, trained over 25 epochs.

For the automatic placement of landmarks, we used a patch-based Active Appearance Model (AAM) using the 
menpo library on Python 3.728. We have previously reported the relevance of this  approach29. We used two-scale 
landmarking: the model for frontal pictures was trained on 904 manually annotated photographs, with a first 
stage of dimensioning (diagonal = 150), a patch shape of [(15, 15), (23, 23)] and 50 iterations and a second stage 
without resizing, with a patch shape of [(20, 20), (30, 30)] and 10 new iterations. The model for profile pictures 
was trained on 1,439 manually annotated photographs, with a first stage of dimensioning (diagonal = 150), a patch 
shape of [(15, 15), (23, 23)] and 25 iterations and a second stage without resizing, with a patch shape of [(15, 
15), (23, 23)] and 5 new iterations. The model for ears was trained on 1221 manually annotated photographs, 
with a first stage of dimensioning (diagonal = 100), a patch shape of [(15, 15), (23, 23)] and 50 iterations and a 
second stage without resizing, with a patch shape of [(20, 20), (30, 30)] and 20 new iterations. All three models 
used the Lucas Kanade  optimizer30.

Each automatically annotated photograph was checked by two authors blinded for the diagnosis, QH and 
MD, and landmarks were manually re-positioned when necessary, using landmarker.io31. The Intraclass Correla-
tion Coefficient (ICC) was computed between the raters. ICC values greater than 0.9 corresponded to excellent 
reliability of the manual  annotation32.

Geometric morphometrics
We performed Generalized Procrustes Analysis (GPA)33 on all landmark clouds using the geomorph package 
on  R34. Since the data were uncalibrated photographs, ROI sizes were not available: shape parameters only were 
assessed and not centroid sizes. Procrustes coordinates were processed using Principal Component Analysis 
(PCA) for dimension reduction. We retained the principal components explaining 99% of the total variance in 
cumulative sum. The last 1% was considered as negligible information.

Texture extraction
We partitioned the frontal and profile pictures into key areas and applied textural feature extraction methods 
to each zone, allowing to check the results and determine which zone had contributed most to the diagnosis.

We defined 14 key areas that could potentially contribute to diagnosis: 11 on frontal views (right/left eyes, 
right/left eyebrows, glabella, forehead, nasal tip, philtrum, right/left cheeks, and chin) and 3 on lateral views 
(pre-auricular region, eye, and zygoma relief). Each zone was extracted automatically using the previously 
placed landmarks.

We used the Contrast Limited Adaptative Histogram Equalization (CLAHE) algorithm for histogram equali-
zation, as previously reported before the use of feature  extractors35,36. CLAHE enhanced contrast by evenly 
dispersing gray  values37 and by reducing the influences of illumination during picture capture and of skin color. 
Kiflie et al. recommended CLAHE as a first choice equalization  method38.

Gray-Level Co-occurrence Matrix (GLCM) methods, as proposed by  Haralick39, are based on the estimation 
of the second-order joint conditional probability density functions, which characterize the spatial relation-
ships between pixels. GLCM is commonly used in texture  analysis40,41, for instance in radiomics on CT-scan 
or MRI  images42–44 or for skin texture  assessment45. In GLCM, the co-occurrence matrix contains information 
on entropy, homogeneity, contrast, energy and correlation between pixels. GLCM includes 28 features, taking 
into account the average and range for each item of information and for each zone, representing 28 × 14 = 394 
textural features for each patient.

Stratification using metadata
The textural features and the geometric principal components were combined for further analysis. To consider 
associated metadata (age and gender) and the fact that we included more than one photograph per patient (that 
is the non-independence of the data), a mixed model was designed for each feature. The variables to be explained 
were the features (geometric and textural), with age, gender and ethnicity considered as explanatory variables. 
A random effect on age and individuals was introduced. The equation of the mixed model was:

where age.β1,i corresponded to a random slope for age per individual, and εi,j was a random error term. We did 
not use an interaction term between age and gender and age and ethnicity as it did not increase the likelihood 
of the model. Age, gender and ethnicity are significant factors in  dysmorphology46,47.

The residuals of each feature were computed to consider potential biases linked to the metadata:

Classification model
The inputs to the model were the residuals from the linear models described above, for each geometric or tex-
tural feature. We used eXtreme Gradient Boosting (XGBoost), a supervised machine learning classifier, for all 
the  analyses48. We chose a tree-based booster, and the loss function to be minimized was a logistic regression 

Featuresi,j ∼ α + age.β1 + gender.β2 + ethnicity.β3 + age.β1,i + εi,j

εi,j = Featuresi,j − α + age.β1 + gender.β2 + ethnicity.β3 + age.β1,i
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for binary classification. We set several hyperparameters to improve the performance and effect of the machine 
learning model: learning rate = 0.3, gamma = 0, maximum tree depth = 6. The model with the lowest error rate was 
chosen for analysis. We separated the dataset into a training set and a testing set, and a five-fold cross-validation 
was used to define the ideal number of iterations to avoid overfitting.

The chosen model with the ideal number of iterations was then used on the independent validation set to 
test performances, by plotting accuracy and AUC. The Receiver Operating Characteristics (ROC) curves were 
plotted in R using the plotROC  package49. We used the DeepGestalt tool proposed by Face2Gene CLINIC on 
our validation set, to be able to compare its performance (accuracies).

Uniform Manifold Approximation and Projection (UMAP) representations
The residuals εi,j were represented using UMAP for visual clustering, a nonlinear dimension reduction 
 technique50. We retained the residuals associated with features with a classification gain (in their cumulative 
sum) > 0.75 in the importance matrix associated with the XGboost model. A k (local neighborhood size) value 
of 15 was used. A cosine metric was introduced to compute distances in high dimensional spaces: the effective 
minimal distance between embedded points was 10−6 . The three conditions of UMAP, namely uniform distri-
bution, local constancy of the Riemannian metric and local connectivity were verified. UMAP analyses were 
performed using the package umap on  R51 (Fig. 1).

Classification designs

1. Design №1, syndrome diagnosis support: KS was tested against controls in a binary classification.
2. Design №2, genotype–phenotype correlations: KS1 and KS2 were tested in binary classifications.
3. Design №3, genotype–phenotype correlations: KS1 Protein-Altering Variants (PAVs) and Protein-Truncating 

Variants (PTVs) were tested in binary classifications.

Ethics approval
This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the 
CESREES (17/06/2021, 4570023).

Consent to participate
Written informed consent was obtained from the parents.

Consent to publish
The authors affirm that human research participants provided informed consent for publication of the images 
in Figs. 1, 4 and 7.

Results
Population description
Ranging between 1998 and 2023, we included 1448 frontal and lateral facial photographs, corresponding to 634 
patients. The mean age was 7.2 ± 4.2 years and ranged from 0 to 40.2 years; 52% were girls. Ethnicity was 92% 
Caucasian, 6% African or Caribbean, and 3% Asian.

The control group comprised 1084 photographs, corresponding to 527 patients with a mean age of 
7.0 ± 4.6 years. Fifty-four percent were girls and ethnicities were 93% Caucasian, 5% African/Caribbean, and 
2% Asian.

The KS group comprised 364 photographs, corresponding to 107 patients with a mean age of 7.8 ± 6.7 years. 
Forty-two percent were girls and ethnicities were 85% Caucasian, 7% African/Caribbean, and 8% Asian. Seventy-
eight percent of patients were KS1 (Table 1).

Two patients had a genetically confirmed diagnosis of KS, but we had no information on the causal gene. We 
thus collected information on genetic variation for 105 KS individuals with 82 (78%) and 23 (22%) with varia-
tions in KMT2D (KS1) and KDM6A (KS2) respectively.

In the KS1 group, 74% of variants were PTVs, with 49% nonsense variants leading to a premature stop codon 
(24% non-sense, 24% frameshift) and 26% splice donor site variants. Eighteen percent were PAVs, with 17% 
missense variants and 1% in-frame indel.

In the KS2 group, 78% of variants were PTVs, with 43% nonsense variants leading to a premature stop codon 
(30% non-sense, 13% frameshift), 30% splice donor site variants and 4% a large deletion. Nine percent were 
missense PAVs (Table 2).

Design №1 : KS vs controls

1. Phenotype

We confirmed the usual characteristics described in KS: high and arched eyebrows, long palpebral fissures, 
and large and prominent ears (Fig. 2).
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Figure 1.  Analysis pipeline, from the initial photograph to diagnostic probability. ROI, Region Of Interest; 
AAM, active appearance model; Faster RCNN, Faster Region-based Convolutional Neural Network; 
CLAHE, Contrast Limited Adaptative Histogram Equalization; GLCM, Gray-Level Co-occurrence Matrix; 
XGboost, eXtreme Gradient Boosting.
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2. Classification

We were able to distinguish KS vs controls in the independent validation group with an accuracy of 95.8% 
(78.9–99.9%, p < 0.001). AUCs were comparable in the training set (0.994) and in the validation set (0.993) 
(Fig. 3, Table 3).

Ten out of eleven patients were correctly predicted as KS with our model, and this performance was the same 
using Face2Gene CLINIC (Supp. Table 1). In addition, we were able to predict all control patients (Fig. 4, Table 4).

Design №2 : KS1 vs KS2

1. Phenotype

KS2 individuals had a rounder face (HP:0000311), a shorter nose (HP:0003196), a thicker upper lip 
(HP:0000215), anteverted nostrils (HP:0000463), and a shorter midface (HP:0011800). There was no obvious 
difference in the eyebrows and eyes. The external ears were more elongated vertically in KS2 (HP:0400004), 
with a hypoplastic lobe (HP:0000385), and with a counter-clockwise rotation. The conch seemed more vertical 
in KS1 (Fig. 5).

2. Classification

The model was able to distinguish KS1 from KS2 with an empirical AUC of 0.805 (0.729–0.880, p < 0.001) 
(Figs. 6, 7). This trend was found in the validation group, with an accuracy of 70% without reaching the signifi-
cance threshold (Tables 5 and 6).

Design №3: PTV vs PAV in KS1
The model was unable to detect a difference in facial phenotype between KS1 patients with a PTV compared to 
KS1 patients with a PAV (0.555 [0.419–0.690], p = 0.786) (Fig. 8).

Discussion
The model we report distinguished KS from controls in the independent validation group with an accuracy of 
95.8% (78.9–99.9%, p < 0.001). Only 1 patient out of 24 was classified as ‘control’ while she had KS (accuracy 96%). 
In the KS group, 10 out of 11 patients were correctly classified (accuracy 91%). Using the Face2Gene CLINIC tool 
on KS patients (because DeepGestalt technology is not capable of recognizing non-syndromic patients) 1 patient 
out of 11 could not be analyzed and could not be classified as KS (accuracy 91%). Performances were therefore 
comparable. Interestingly, the patient not recognized by our model and by Face2Gene CLINIC was of African 
ethnicity, highlighting the lack of training data for non-Caucasian patients. The distribution of ethnic groups 

Table 1.  Clinical description of the cohort. SD, standard deviation; KS, Kabuki Syndrome; KMT2D, Lysine 
(K)-specific methyltransferase 2D; KDM6A, Lysine (K)-specific demethylase 6A.

Total Controls KS

N

Consultations 724 542 (75%) 182 (25%)

Photographs 1448 1084 (75%) 364 (35%)

Patients 634 527 (83%) 107 (17%)

Gender

Female 331 (52%) 286 (54%) 45 (42%)

Male 303 (48%) 241 (46%) 62 (58%)

Age (years)

Mean ± SD 7.2 ± 4.2 7.0 ± 4.6 7.8 ± 6.7

Median 6.8 7.1 6.0

Minimum 0 0.1 0

Maximum 40.2 22.1 40.2

Ethnicity

African/Caribbean 35 (6%) 27 (5%) 8 (7%)

Asian 18 (3%) 10 (2%) 8 (7%)

Caucasian 581 (92%) 490 (93%) 91 (85%)

Genetic variation

KMT2D (KS1) 82 (78%)

KDM6A (KS2) 23 (22%)
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Amino-acids Nucleotides Exon N (%)

KMT2D 82 (78%)

PTV 61 (74%)

Nonsense 40 (49%)

Nonsense 20 (24%)

p.Cys247* c.741T>A 7 1

p.Ser286* c.855_856del 7 1

p.Gln1773* c.5317C>T 22 1

p.Gln1949* c.5845C>T 27 1

p.Gln2109* c.6325C>T 31 1

p.Arg2645* c.7933C>T 31 1

p.Arg2801* c.8401C>T 34 1

p.Gln3910* c.11728C>T 39 1

p.Gln3942* c.11824C>T 39 1

p.Gln4223* c.12667C>T 39 1

p.Gln4230* c.12688C>T 39 2

p.Arg4484* c.13450C>T 39 1

p.Arg4904* c.14710C>T 48 1

p.Arg5282* c.15844C>T 49 1

p.Tyr5321* c.15963T>G 50 1

Frameshift 20 (24%)

p.Leu656Profs*12 c.1966dup 10 1

p.Glu1224Argfs*26 c.3669dup 11 1

p.Gly1235Valfs*95 c.3699del 11 1

p.Met1379Valfs*52 c.4135_4136del 14 1

p.Asp1876Glyfs*38 c.5627_5630del 25 1

p.Ser2039Glnfs*8 c.6115del 29 2

p.Ala2119Argfs*36 c.6354dup 31 1

p.Pro2330Serfs*47 c.6987_6988insT 31 1

p.Phe3672Leufs*76 c.11016_11019del 39 1

p.Met3894Trpfs*85 c.11679del 39 1

p.Glu4039Glyfs*17 c.12116_12117del 39 1

p.Ser4138Cysfs*29 c.12413_12414del 39 1

p.Leu4483Cysfs*36 c.13446del 39 1

p.Tyr5113Leufs*25 c.15337dup 48 1

p.Lys5139Gly c.15415_15418del 48 1

p.Leu5318Serfs*14 c.15953_15956del 50 1

Splice donor site 21 (26%)

c.674-1G>A 1

c.1258+1G>A 1

c.2797+1G>C 1

c.13531-2A>C 1

c.14516-1G>C 1

PAV 15 (18%)

Missense 14 (17%)

p.Ala2182Thr 10 1

p.Glu1391Lys c.4171G>A 14 1

p.Arg5048Cys c.15142C>T 48 1

p.Arg5048His c.15143G>A 48 1

p.Arg5154Gln c.15461G>A 48 2

p.Arg5179His c.15536G>A 48 2

p.Arg5214Cys c.15640C>T 48 1

p.Gly5295Ala c.15884G>C 49 1

p.Arg5340Gln c.16019G>A 50 3

p.Arg5432Trp c.16294C>T 51 1

Indel 1 (1%)

p.Val275Ser c.822_825delinsGTA GGC T 7 1

Continued
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Table 2.  Molecular description of the cohort. KMT2D , Lysine (K)-specific methyltransferase 2D; 
KDM6A, Lysine (K)-specific demethylase 6A; PTV, protein-truncating variant; PAV, protein-altering variant.

Amino-acids Nucleotides Exon N (%)

KDM6A 23 (22%)

PTV 18 (78%)

Nonsense 10 (43%)

Nonsense 7 (30%)

p.Tyr109* c.327_333del 3 1

p.Arg172* c.514C>T 6 1

p.Gln692* c.2074C>T 17 1

p.Gln1037* c.3109C>T 20 1

p.Trp1221* c.3663G>A 25 1

p.Arg1279* c.3835C>T 26 2

Frameshift 3 (13%)

p.Gln607Alafs*25 c.1818_1819del 16 1

p.Thr613Tyrfs*8 c.1846_1849del 16 1

p.Ser1091Metfs*12 c.3270_3273del 17 1

Splice donor site 7 (30%)

c.564+1G>T 1

c.619+6T>C 1

c.620-2A>G 1

c.875+1G>A 1

c.2939-1G>T 1

c.2988+1G>C 1

c.3366-8_3366-4del 1

Large deletion 1 (4%)

exons 1 and 2 1

PAV 2 (9%)

Missense 2 (9%)

p.Arg481His c.1442G>A 14 1

p.Arg1255Trp c.3763C>T 26 1

Figure 2.  Average shapes in KS and controls and comparisons after Procrustes superimposition of frontal 
views, profile views, and external ears for three age groups. Blue = controls, Dark red = KS.
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Figure 3.  (A) Empirical ROC curves (training set) for KS with AUC in design №1. (B) ROC curves (validation 
set) for KS with AUC in design №1. AUC, area under the curve; KS, Kabuki Syndrome.

Table 3.  Classification performances for design №1 (KS vs controls) in the validation group. AUC,  area under 
the curve. *Statistically significant (p < 0.05).

Design №1

Accuracy 0.958 [0.789–0.999] p < 0.001*

AUC 0.993 [0.974–1.000] p < 0.001*

F1 score 0.963

Figure 4.  Classification using design №1 for proband 3 of the validation set. (A) and (B) Frontal and profile 
views of proband 3. (C) UMAP representation of the training data according to the two groups, with positioning 
of proband 3. (D) Histogram of predictions by the model. This child was also detected as KS by Face2Gene 
CLINIC. KS, Kabuki Syndrome.

Table 4.  Confusion matrix for design №1 (KS versus controls) in the validation group. Bold values: True 
Positives (TP). KS, Kabuki Syndrome.

Reference

Control KS

Prediction
Control 13 1

KS 0 10
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Figure 5.  Average shapes in KS1 and KS2 and comparisons after Procrustes superimposition of frontal views, 
lateral views, and external ears for three age groups. Orange = KS1, Dark red = KS2.

Figure 6.  Empirical ROC curve (training set) for KS2 with AUC in design №2. AUC, Area Under the Curve; 
KS, Kabuki Syndrome.
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varies greatly from one center to another, which is why we believe it is important to encourage international 
collaborations in the field of Next Generation Phenotyping.

The model we report was also capable to distinguish KS1 from KS2 with an empirical AUC of 0.805 
(0.729–0.880, p < 0.001). Rouxel et al.5 showed that the Face2Gene RESEARCH tool distinguished KS1 from 
KS2 in a cohort of 66 patients with an AUC of 0.722 (p = 0.022). The same team showed a classification accuracy 
of 61% (20/33) by clinical genetics experts between KS1 and KS2. The performance of our model was at least 
comparable to Face2Gene RESEARCH and seemed to outperform that of clinical experts.

Rouxel et al.5 explained that KS1 patients had a longer face and nose, a thin upper lip vermilion and a longer 
midface in comparison to KS2 patients, who have a rounder face, a thicker vermilion and anteverted nostrils. Our 
study reports new phenotypic features not seen on frontal images alone for KS2, such as a particular morphology 
of the external ear, longer along the vertical axis and with counter-clockwise rotation.

Figure 7.  Classification using design №2 for two probands of the training set. (A, B, E and F) Frontal and 
profile views of the two probands. (C and G) UMAP representations of the training data according to the two 
groups, with positioning of probands 3. (D and H) Histograms of predictions by the model. The phenotype 
included a reduced height of the midface, a thicker upper lip, and a vertical elongation of the external ear in the 
KS2 group (E and F). KS, Kabuki Syndrome.

Table 5.  Classification performances for design №2 (KS1 versus KS2) in the validation group. Significant 
values are in [italics]. AUC, area under the curve.

Design №2

Accuracy 0.700 [0.348–0.933] p = 0.172

AUC 0.660 [0.314–1.000] p = 0.221

F1 score 0.727

Table 6.  Confusion matrix for design №2 (KS1 versus KS2) in the validation group. Bold values: True 
Positives (TP). KS, Kabuki Syndrome.

Reference

KS1 KS2

Prediction
KS1 4 2

KS2 1 3



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2330  | https://doi.org/10.1038/s41598-024-52691-3

www.nature.com/scientificreports/

Phenotype-genotype correlations have been reported in KS for extra-facial anomalies. Cardiovascular abnor-
malities, namely ventricular septal defects, coarctation of the aorta, atrial septal defects, bicuspid aortic valve, 
patent ductus arteriosus, and hypoplastic left heart  syndrome52,53,53–55 are more prevalent in KS2 compared to 
 KS11,56. Persistent hypoglycemia due to pituitary hormone deficiency, adrenal insufficiency, growth hormone 
deficiency and dysregulated insulin secretion by the pancreatic β-cells57,58 are also more frequent in  KS210, pos-
sibly because the inhibition of KDM6A increases the release of insulin from pancreatic islet cells, as suggested 
by mouse  models1,59. Urinary tract anomalies, such as horseshoe kidneys and renal hypoplasia, seem to be more 
frequent in KS1, and genital defects such as cryptorchidism and hypospadias could be more frequent in  KS256,60,61.

Rouxel et al.5 underline the lack of Asian patients in their evaluation, and proposed that larger series were 
needed to better define phenotypical differences between KS1 and KS2, and the general dependance of the 
phenotype with  ethnicity6,12. The collaboration with an Asian clinical genetics center (Bangkok) is thus a strong 
point of this study.

The use of textural feature extraction allowed our model account for typical KS characteristics not recognized 
by geometric analysis (Procrustes) alone. The lateral sparsening of the eyebrows and heavy lashes giving the 
impression of make-up eyes were thus included into in the classification.

Barry et al.1 reported a large meta-analysis including 152 articles and 1369 individuals with KS and assessed 
the prevalence of the different types of pathogenic variation per gene. The majority of KMT2D variants were 
truncating (non-sense 34%, frameshift 34%), then missense (23%) and finally splice site variants (9%). The 
majority of KDM6A variants were truncating (frameshift 36% > non-sense 27%), followed by splice site (20%), 
and missense (18%). We found similar results, with a higher prevalence of truncating non-sense variants for both 
genes. There was a higher prevalence of splice donor site variants, with 26% for KMT2D and 30% for KDM6A. 
Some authors report a more severe clinical outcomes in patients with non-sense variants than in patients with a 
frameshift  variant1. Faundes et al.56 found more severe neurodevelopmental anomalies in patients with protein-
truncating mutations in the KS2 group. Shah et al.62 reported ophthalmological anomalies such as strabismus, 
blue sclerae, microphthalmia and refractive anomalies that were more severe in patients with a non-sense vari-
ant, and less frequent in patients with a frameshift variant. Our model did not find any significant difference in 
facial phenotype between PTV and PAV.

Figure 8.  Empirical ROC curve (training set) for KS1 PAV with AUC in design №3. AUC, Area Under the 
Curve; KS, Kabuki Syndrome; PAV, protein-altering variant.
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Conclusion
Here we report an automatic detection model for KS including the face, profiles and ears, with performances 
(AUC 0.993 and accuracy 95.8%) comparable to those of Face2Gene, on an independent validation set. These 
performances were achieved using an international cohort of 107 patients with a confirmed molecular diagnosis 
of KS. Using the same model, we were able to separate patients with KS1 (KMT2D) from KS2 (KDM6A), with 
an AUC of 0.805. These results seem to at least outperform Face2Gene and support the possibility of using a 
phenotype-first strategy to diagnose KS and detect its two causal genes.

Data availability
The code is available to readers on the website https:// frama git. org/ imagi ne- plate forme- bdd/ mfdm/. The data-
sets (photographs) supporting the current study have not been deposited in a public repository because of their 
identifiable nature.
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