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AI models for automated 
segmentation of engineered 
polycystic kidney tubules
Simone Monaco 1, Nicole Bussola 2,3, Sara Buttò 4, Diego Sona 2, Flavio Giobergia 1, 
Giuseppe Jurman 2, Christodoulos Xinaris 4* & Daniele Apiletti 1*

Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic, rare disease, characterized 
by the formation of multiple cysts that grow out of the renal tubules. Despite intensive attempts to 
develop new drugs or repurpose existing ones, there is currently no definitive cure for ADPKD. This 
is primarily due to the complex and variable pathogenesis of the disease and the lack of models that 
can faithfully reproduce the human phenotype. Therefore, the development of models that allow 
automated detection of cysts’ growth directly on human kidney tissue is a crucial step in the search 
for efficient therapeutic solutions. Artificial Intelligence methods, and deep learning algorithms in 
particular, can provide powerful and effective solutions to such tasks, and indeed various architectures 
have been proposed in the literature in recent years. Here, we comparatively review state-of-the-art 
deep learning segmentation models, using as a testbed a set of sequential RGB immunofluorescence 
images from 4 in vitro experiments with 32 engineered polycystic kidney tubules. To gain a deeper 
understanding of the detection process, we implemented both pixel-wise and cyst-wise performance 
metrics to evaluate the algorithms. Overall, two models stand out as the best performing, namely 
UNet++ and UACANet: the latter uses a self-attention mechanism introducing some explainability 
aspects that can be further exploited in future developments, thus making it the most promising 
algorithm to build upon towards a more refined cyst-detection platform. UACANet model achieves a 
cyst-wise Intersection over Union of 0.83, 0.91 for Recall, and 0.92 for Precision when applied to detect 
large-size cysts. On all-size cysts, UACANet averages at 0.624 pixel-wise Intersection over Union. The 
code to reproduce all results is freely available in a public GitHub repository.

The recent onset of a continuous symbiosis between biotechnology and artificial intelligence (AI) has proven to 
be particularly effective in areas of life sciences where classical approaches are not an option. Drug discovery is 
one of such activities, especially for diseases whose treatment options are dramatically limited, due to the intrinsic 
nature of the pathology as well as the lack of models that can faithfully reproduce the human phenotype. This 
is indeed the case here, where a novel drug testing strategy is introduced, combining an in vitro experimental 
setup with deep learning modeling into a pipeline aimed at accelerating the testing of novel compounds. The 
target condition is the Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common inherited 
monogenic kidney disorder that affects 1/500− 1/2500 individuals1,2 worldwide. ADPKD distinctive phenotype 
is the formation and the progressive growth of multiple cysts that gradually replace the kidney parenchyma, 
thus leading to an impairment of kidney structure and function and, eventually, to end-stage kidney disease3. 
In particular, cytogenesis involves a large number of diverse signaling cascades and pathways, such as PC1/2 
(polycystin-1 and 2) signaling, cilia-related cascades, and growth factors-related signaling4.

Apart from the conventional anti-hypertensive strategies5, there are currently two drugs that have recently 
been repurposed and used sometimes to reduce the growth rate of cysts in ADPKD: Tolvaptan and Octreotide-
LAR6. However, these drugs are only available to patients at high risk of end-stage kidney disease (ESKD), while 
an important number of ADPKD patients progress to ESKD despite the treatments. There is currently no defini-
tive cure for ADPKD. This is mainly due to the high phenotypical and genotypical variability between patients, 
the complex pathobiology of the disease, and the lack of models that can faithfully mimic the human phenotype.

As such, there is an urgent need for developing patient-specific models that can replicate key aspects of poly-
cystic kidneys and be used for drug testing studies. Using 3D printing technologies and patients’ cells, we have 
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developed a platform that has enabled us to study the pathogenesis of the disease directly in human tissues and 
to identify novel therapeutic targets7,8. In essence, this system based on engineered kidney tubules displays sig-
nificant advantages over previous 2D models: (i) it provides patient-specific 3D tissues with polarized epithelium 
and lumen that can be quantifiably and quantitatively used to study drug toxicity on tissue anatomy, integrity, and 
anticystogenic efficacy; (ii) it allows evaluation of different patients’ responses to drugs in a personalized manner.

A measure of ADPKD response to drugs can be formulated in terms of cysts number and their dimension. 
However, the lack of an automated system to quantify cysts in engineered kidney tubules did not currently allow 
the platform to be further developed and used at a large scale. As a way to estimate these quantities, we introduce 
the main contribution of this study, i.e., the development of an artificial intelligence (AI) system to perform a 
fully-automatic segmentation of cysts on engineered kidney tubules to improve and automatize the detection 
and quantification of cyst number and size.

The development of automatic tools allowing for the precise detection and quantification of the structures of 
interest in medical images, going beyond a mere visual assessment, is of paramount importance in all medical 
imaging applications. Furthermore, this is particularly true when the data is made of many images containing 
many such structures that need to be measured. In recent years, several studies have explored the application 
of AI and Deep Learning (DL) techniques for the detection and characterization of diseases in physiological 
images9. A significant breakthrough in this area was the introduction of the UNet architecture by Ronneberger 
and coauthors10, a popular DL-based method for biomedical image segmentation. UNet has been widely adopted 
and adapted for various biomedical applications, including glands, lungs, and nuclei segmentation11–13. Based 
on this novel structure, many variations have been developed for medical image segmentation. Among the 
most widely used modified versions is the UNet++ architecture, which incorporates nested and skip pathways 
to enhance the model’s feature extraction capabilities14. This architecture has been applied to the segmentation 
of abdominal computed tomography (CT) scans and polyps, yielding improved performance over the original 
UNet. Another notable architecture is the UACANet15, which employs a self-attention mechanism to better 
capture the long-range dependencies within the input image, enabling the model to focus on the relevant regions 
for cyst segmentation. This self-attention mechanism also introduces a certain degree of explainability, which 
can be advantageous for the further development of the algorithm. The UACANet has demonstrated superior 
performance in polyp segmentation compared to other state-of-the-art architectures15. Focusing on imaging 
data of renal diseases, a long track record of publications16 can be found in the literature for segmentation17 
and other tasks18, but only in the last few years, the polycystic kidney emerged as a topic of interest19, even in 
the private sector beyond academia20. The segmentation of specific tissues in an image is a common problem in 
medical image analysis, and many algorithms have been developed and made available21–24. The most addressed 
image analysis task in ADPKD, justified by the potential clinical applications, is the segmentation of cysts and 
kidneys at the macro-scale in magnetic resonance (MR) and CT images. The aim is to calculate indexes like 
kidney volume25 and cysts ratio26, helping to identify the stage of the disease. This task has been addressed with 
various semi-automatic27 and automatic28,29 methods. Little efforts have also been made on problems at the 
mesoscale by segmenting cysts on histological samples30. To the best of our knowledge, no studies have been 
conducted at the micro-scale on fluorescent images of ADPKD. Nevertheless, the research in drug discovery 
would greatly benefit from developing high-throughput screening platforms based on the analysis of images at 
the cellular level31. Various solutions exploiting machine learning for cell image analysis have been proposed32, 
also for fluorescent image analysis33, mostly adopting standard image processing techniques in a semi-automatic 
framework. However, in the last decade, deep learning became the state-of-the-art solution in many domains34, 
including kidney care35 and more in detail, cellular imaging with both optical36 and confocal microscopes37. In 
this work we investigate whether the segmentation of cysts in microscope images of patient-derived polycystic 
tubules can be addressed with the most recent DL-based solutions through a quantitative comparison of the 
state-of-the-art architectures targeting such task. The final aim is the design of a high-throughput screening 
platform supporting the researcher with the automatic annotation of images, and this study represents an effec-
tive first step toward this goal.

Dataset and material
The dataset provided by Istituto di ricerche farmacologiche Mario Negri (Bergamo, Italy) is made of RGB immu-
nofluorescence images of tridimensional human tubules engineered from epithelial cyst-lining cells that were 
isolated from a single donor patient with a mutation in PKD1. Tubules are the result of 4 individual experiments 
conducted from July 2019 to December 2020 and are classified according to the treatment received.

Tubule engineering and cyst formation
Tubules were engineered by seeding huADPKD that were isolated from patient’s cysts on 3D printed PDMS 
scaffolds as previously described7. Briefly, huADPKD (purchased from Discovery BioMed Inc., Birmingham, 
AL, USA) were expanded on permeable, clear polyester filter supports ( Cat#3450 , Corning) in DBM RenalCyte 
Specialty Medium (Discovery BioMed Inc.). When cells were confluent, they were harvested using 0.05% (1x) 
Trypsin-EDTA ( Cat#15400054 , Invitrogen), resuspended in 2.4mg/ml rat tail collagen type I ( Cat#354236 , Corn-
ing, Corning-Costar, NY, USA) on ice at a concentration of 2 · 105 cells/uL collagen, and seeded in Polydimethyl-
siloxane (PDMS) scaffold’s channels (Sylgard 184 Silicone elasto-mer kit, Dow Corning, Midland, MI). Tubules 
were cultured under static conditions for up to 2 days in a standard incubator at 37 o C with 5% CO2 and 20% O2 
in DMEM/F12 + GlutaMAX supplemented with 1% Fetal Bovin Serum (FBS) ( Cat#10270 , Invitrogen Corpora-
tion, Carlsbad, CA, USA) and 40ng/ml hepatocyte growth factor (HGF) ( Cat#100− 39 , PeproTech), and then 
transferred onto polyester Transwell membranes (Corning) containing 200uL of 2.4mg/ml rat tail collagen type 
I. Cyst formation were induced by adding 10µM forskolin ( Cat#F6886 , Sigma-Aldrich) to the culture medium 
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(DMEM/F12 + GlutaMAX supplemented with 1% FBS) for 2 days. Finally, tubules were treated for the follow-
ing three days with specific compounds to revert cystogenesis. Control samples were stimulated with forskolin 
for 2 days and then maintained in culture medium for additional 3 days. For more technical details and visual 
representation of the protocol read Refs.7,8.

Immunofluorescence and image acquisition
Engineered tubules were fixed with 4% paraformaldehyde (PFA) ( Cat#157− 8 , Electron Microscopy Sciences) 
and permeabilized in 100% cold methanol for 10 minutes. After washing, tubules were incubated with mouse anti-
E-cadherin ( Cat#610182 , BD Biosciences, 1:50) overnight at 4◦C and then with the specific secondary antibody 
(Jackson ImmunoResearch Labs, 1:50) overnight at 4◦C . DAPI (Sigma-Aldrich) was applied for 10 minutes to 
staining the nuclei of the cells, and then the samples were mounted with Dako Fluorescence Mounting Medium 
(DAKO Corporation). Digital z-stack images of the whole tubular surface were acquired for both sides of the 
tubules using an inverted confocal laser microscope (Leica Biosystems). For each acquired image, cysts were 
manually annotated by using Labelme38 through a polygonal segmentation. Images composing the dataset and 
related information are intellectual properties of Istituto Mario Negri.

Data characterization
The dataset consists of 1076 images of microscope acquisitions with a fixed scale and fixed size of 1024× 1024 
pixels. The total number of annotated cysts is 5042. Table 1 shows the cardinality separated by period.

Each of the four experiments comprises the study of various treatments (not always the same ones) and a 
control group. For each treatment or control, up to two tubules have been produced. For each tubule, various 
images have been acquired at different depths and viewpoints over the tubule. Each experiment used a different 
distance between the z-stacks of the acquisitions. Figure 1 shows the relationship between experiments, treat-
ments, tubules, and images.

Table 1.   Summary of the experiments. Some treatments are duplicated across experiments, the total value 
counts the unique treatments.

Experiment Period # Treatments # Tubules # Images # Cysts

1 September 2019 6 9 117 490

2 October 2019 7 7 103 216

3 July–September 2020 5 8 349 1589

4 December 2020 4 8 507 2767

Total 2019–2020 11 32 1076 5062

Figure 1.   Experimental layout across different treatments. The treatments vary across experiments, but a 
treatment may be repeated multiple times. For each treatment or control, a maximum of 2 tubules are gathered. 
Each tubule is exclusively linked to a single experiment. Therefore, for example, tubule 1 in experiment 1, 
treatment 1, is distinct from tubule 1 in experiment 1, treatment 2, as well as tubule 1 in experiment 3, treatment 
1. Multiple images are collected for each tubule.
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Cyst‑scale problem
The cyst dimensions span a broad range of values over different images. The upper part of Fig. 2 shows the 
distribution over the whole dataset, depicting that smaller cysts located around 30 µm2 , while the biggest ones 
reach 1900 µm2 . The median of the distribution is around 78 µm2 , which means it is highly peaked near the 
lower part of the graph. To address this peculiarity, we defined six adjacent zones with the same cardinality, i.e., 
approximately 840 cysts each, following the cyst area distribution: cysts with a size smaller than 34.7 µm2 fall 
into zone 1, the other zones start at 34.7 µm2 , 53.3 µm2 , 78.7 µm2 , 120.9 µm2 and 207.5 µm2 , respectively. The 
last zone includes cysts with a size up to 2000 µm2 . The zones of the smallest cysts are around 20-30 µm2 large, 
whereas the zone range significantly increases for bigger cysts. A similar behavior is also reflected in the number 
of cysts per image, reported on the right side of Fig. 2. Generally, the number of cysts in an image is close to the 
distribution median of four. However, there are some images with a very high number (e.g., more than 10) and 
others with no cysts at all. In the following sections, we will mitigate this imbalance by aggregating evaluation 
metrics over all images within a tubule.

A closer look at these features shows that such a large variance is to be attributed to the difference between 
treatments. Figure 3 collects the previously discussed statistics separated by experiment and treatment. We can 
observe from the top row that a significant component of the large-sized cysts comes from TREAT_2 in experi-
ment 1. Such an experiment has a diverging distribution also concerning the number of cysts per image. Such a 
large variance in the dataset is potentially challenging for the deep learning models. Hence the model evaluation 
will have to address this issue.

Figure 2.   Dataset statistics. Statistics for cyst size (left side) and number of cysts per image (right side) on the 
whole dataset.

Figure 3.   Statistics for treatment and experiment. Columns of the plot collect the data over the different 
experiments, each bar is an administered treatment. In the upper row we evaluate the cyst area, in the lower row 
the number of cysts is reported.
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Method
Deep learning algorithms can provide powerful and effective solutions for automated segmentation of polycystic 
kidney tubules. Different architectures have indeed been proposed in the literature in the last few years. Here 
we comparatively review some of the state-of-the-art segmentation approaches, using as a testbed the suite of 
RGB sequential immunofluorescence images from 4 in vitro experiments consisting of 32 engineered polycystic 
kidney tubules.

The experimental pipeline is presented in Fig. 4. It consists of three main steps: (i) an initial pre-processing 
phase that is aimed at data cleaning and augmentation, (ii) the application of a cyst segmentation model aimed 
at identifying the cysts, and (iii) a post-processing phase to support the analysis by a domain expert for the final 
evaluation. Each of these steps is described in further detail in the following subsections.

Preprocessing
The preprocessing steps are applied to the input images to prepare them for the training of the cyst segmenta-
tion model. This data preparation is aimed at removing noise that is potentially contained in the images and 
augmenting them: we want the final model to be invariant to some operations, such as image rotations, orienta-
tions, and brightness.

Green channel removal
The images composing the dataset are generated after the application of highlighting fluorophores to the tissues 
to emphasize the most relevant components concerning the background. Human annotators generally recognize 
cysts as void globular holes surrounded by nuclei in the cell tissue. In order to help in the identification task, a 
red fluorophore is applied to spotlight the tissues and, as a consequence, the overall shape of the tubule. A blue 
fluorophore is then applied to stain the nuclei. Other markers are applied to some tubules to emphasize dif-
ferent points of the acquisition, but they are not relevant to the proposed analysis. Because of the colors of the 
fluorophores applied, we make the assumption that the most relevant information is found in the red and blue 
channels of the RBG images (Red Green Blue), with the green channel mostly containing noise or information 
that is unnecessary for the segmentation. The first preprocessing step applied is thus the removal of the green 
channel from the input images. The removal of the green channel can be accomplished in two ways: either by 
preserving the green channel and setting all of its values to 0 or by removing the channel altogether (i.e. produc-
ing RB images). Although the two approaches conceptually reach the same result, we decided to preserve the 
“muted” green channel for compatibility with later segmentation models that have been pretrained on (and thus 
expect as input) 3-channel images. Figure 5 shows two examples of unprocessed images, green channel, and 
output images after removing the green channel. We refer to this strategy as no-G preprocessing in the following.

Random transformations
Since deep learning solutions should learn the relevant features of the images neglecting non-fundamental ones, 
such as the direction of the tubules and the acquisition luminance, we applied data augmentation techniques 
to improve generalizability. This is a commonly adopted technique in computer vision to increase the number 
of available samples and train models to acquire some desired invariance properties39. Images used for training 
are thus subject to random transformations with different probability rates – as summarized in Table 2. A final 
augmentation step is applied to all images to normalize them so that they end up having the same RGB distribu-
tion as images from ImageNet40. Although this normalization does not affect the overall performance obtained, 
we achieved faster model convergence in this way. This happens because, after normalization, the inputs follow 
the same distribution as the data (ImageNet) already used for the pre-training the models. The last column of 
Fig. 5 shows two examples of augmented images.

Cyst segmentation model
The augmented images are used to train a deep-learning model that performs a segmentation task. The target 
for this segmentation task is a binary mask that labels each pixel as either belonging to a cyst or not. The ground 
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truth was obtained through manual labeling. We compared 5 state-of-the-art image segmentation models to 
identify the best-performing deep-learning model, as described in the following.

•	 UNet10, a widely used model in medical image segmentation thanks to its effectiveness in combining low- 
and high-level features, and thus balancing the trade-off between architecture complexity and segmentation 
performance41,42. This model consists of two macro-blocks, the encoder and the decoder, connected through 
a series of extra convolutional blocks which act as skip connections between the encoder and the decoder. 
As in many other similar architectures, U-Net uses an initial contracting path (used to capture meaningful 
information) followed by an expanding one (to build an output with a similar shape as the input). Skip con-
nections are used as stabilizers, reducing the loss of information that may incur in the encoding-decoding 
procedure and providing bypasses for the backpropagation of gradients.

•	 UNet++14, an improvement of the original U-Net model. It exploits the skip-connection strategy benefits 
by adding extra paths connecting the encoder and the decoder, thus further reducing the gap between the 
two blocks. Both UNet and UNet++ architectures are implemented with a ResNet50 encoder, pretrained on 
ImageNet40.

•	 HardNet-MSEG43, a HarDNet-based44 segmentation model, which uses Receptive Field Blocks for the decod-
ing phase. HardNet-MSEG has been used for the task of medical image segmentation in the identification 
of colorectal adenomatous polyps.

•	 PraNet45 (Parallel Reverse Attention Network) is a model that follows a different paradigm than that used 
in previous networks. Input features are aggregated by a parallel partial decoder that generates a global map 

Figure 5.   Tubule acquisitions and preprocessing. Rows represent 2 sample tubule acquisitions. The first column 
shows the raw images, and the second and the third are the associated green channel and the output image after 
muting the green channel. The last column shows the final image that is provided as input to the segmentation 
model after applying additional image augmentation techniques.

Table 2.   Random data augmentation techniques applied to dataset images to improve generalizability during 
the deep-learning model training.

Augmentation Parameters Probability

Horizontal flip – 0.5

Random rotate ±90◦ 0.5

Random brightness Brightness limit: 0.2 1.0

Random contrast Contrast limit: 0.2 1.0

Random gamma correction Gamma limit: (80, 120) 0.5

Contrast limited adaptive histogram equalization (CLAHE) Contrast limit: 4.0 0.5

Normalize ImageNet mean and stdev for each RGB channel 1.0
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that is passed to a set of recurrent reverse attention modules. These modules are beneficial for extracting 
relationships between boundaries and areas. Similar to HardNet-MSEG, PraNet was also tested on a polyp 
segmentation task.

•	 UACANet15 is a model based on the PraNet architecture. It differs from PraNet mainly by using Uncertainty 
Augmented Context Attention (UACA) modules instead of Reverse Attention modules. UACA modules 
introduce a self-attention mechanism that incorporates uncertain regions to extract rich semantic features 
without introducing additional boundary guidance. UACANet has been shown to perform better than PraNet 
on a number of polyp segmentation tasks.

The output of each segmentation model is a 1-channel image with the same shape as the input, representing the 
predicted probability for each pixel to be a cyst. To obtain a binary mask, we discretized with a threshold of 0.5. 
This value is a good compromise between the accuracy of the model against unwanted cysts and the recognition 
of actual cysts.

Figure 6 showcases some examples of segmentations performed by the various models adopted. For each 
image, the original tubule and the manually annotated ground truths are reported, as well as the binary masks 
produced by each of the models. It can be observed how, despite minor behavioral differences, the models are 
primarily consistent with one another in their predictions. The experimental section will present quantitative 
results regarding the quality of the segmentation outputs.

Training and tuning
Each model was trained using a binary cross- entropy function between the predicted mask and the expected 
binary output. We used an Adam optimizer and cosine annealing with warm restart to periodically decrease 
the learning rate and restart from its initial value across training epochs. This strategy was shown to improve 
the training speed46. Hyperparameters (e.g., learning rate) were set separately for each network configuration. 
Following a Bayesian search strategy, we found that the models with a learning rate of 10−4 and a stack size of 
8 images achieved optimal performance within the available computational resources. An early stop strategy 
(with a maximum number of epochs of 100) was applied to stop training when no further improvement in 
Intersection-over-Union (IoU) was observed in the validation set. A summary of the main hyperparameters 
used for all models is shown in Table 3.

Figure 6.   Segmentation results generated by the different models. The original tubule and ground truth 
mask are given for each of the 4 example images (one for each line row). The models’ predictions mostly agree 
with each other and the ground truth, especially for larger cysts. Smaller cysts are sometimes not detected or 
incorrectly predicted even though none are present.
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Model evaluation
Results for the best models are validated using a cross-validation strategy designed to both preserve the various 
levels of stratification of data and avoid data leakage. This second aspect stems from the observation that images 
from the same tubules are significantly correlated with one another. For this reason, we enforce placing all the 
same-tubule images in the same fold. The policy of separation was to keep together each image from the same 
experiment with the same treatment. Images belonging to the same experiment but different treatments (or vice 
versa) may be assigned to different folds: this is a necessary measure to guarantee same-size folds. This results in 
32 folds, each containing images of one single tubule. We arrange them to form the train-validation-test split fol-
lowing a LOTO (Leave One Tubule Out) separation. This means that in each training pipeline, a model is trained 
and validated on 31 tubules (splitted in 80% training and 20% validation sets) and tested on the remaining one. 
In this process, the validation set is used to identify the early stopping point over the IoU curve for epochs, and 
final model weights are assigned based on this metric. Given the limited size of the dataset available, the LOTO 
approach (a specialization of the leave-one-out one) can be used with only limited computing power and provides 
the best possible estimate of the quality of the model on unseen data (i.e. how well the model can generalize to 
tubules other than the ones already seen).

We are interested in predicting both the number of cysts and their size accurately. Segmentation models are 
generally evaluated in terms of pixel-wise metrics, such as Intersection over Union (IoU), Recall (Re), and Preci-
sion (Pr). These metrics can be computed based on the ground truth value of each pixel (i.e. whether it is a cyst 
or not) and the value predicted by the model for the pixel (i.e., whether the model predicted that that pixel was 
a cyst or not). Table 4 shows the definitions for pixel-wise IoU, precision, and recall. In this context, true posi-
tives (TP) are cyst pixels that have been correctly labeled as cyst pixels, false positives (FP) are non-cyst pixels 
that have been erroneously labeled as cysts and false negatives (FN) are cyst pixels that have not been detected 
as being cysts (i.e., they have been labeled as non-cysts).

Pixel-wise metrics provide useful information about the overall quality of the model. However, we note that 
these metrics tend to weight cysts with larger areas: Since these larger cysts consist of a larger number of pixels, 
their correct detection has a greater impact on the metrics than smaller cysts.

For this reason, we additionally propose the use of cyst-based metrics by extending the used pixel-wise met-
rics to a cyst-based granularity level. In this way, we can weight all cysts equally regardless of their area. In our 
previous work, we have also introduced and discussed these metrics47.

We first define a notion of overlap: a predicted cyst and a ground truth cyst are considered to be overlapping 
if they have some pixels in common (e.g., as a threshold value on their pixel-wise IoU). We will study the impact 
of this choice of threshold in the experimental section. Based on this notion, we can identify a ground truth 
cyst as being detected (DT) if it overlaps with at least one predicted cyst. If no predicted cyst overlaps with it, the 
ground truth cyst is instead referred to as missed (MS). If a predicted cyst does not overlap with any of the ground 
truth cysts, it is labeled as wrong (WR). These values are the counterparts of true positives, false negatives, and 
false positives respectively. We note that a cyst may be detected multiple times (i.e. it may overlap with multiple 
predicted cysts). To avoid inconsistencies, we consider this situation as one detected (DT) cyst and the rest as 
wrong (WR). Similarly, a predicted cyst that overlaps N ground truth ones is considered as one detected (DT) 
cyst and N-1 missed (MS) ones.

Figure 7 exemplifies the various types of situations that can occur between predicted and ground truth cysts. 
Figure 8 additionally illustrates some examples of cyst predictions and ground truths, with examples of detected, 

Table 3.   Values of the main hyperparameters. All models have been fine-tuned using the same configuration.

Hyperparameter Value

Batch size (images) 8 images

Pretraining data ImageNet

Optimizer Adam

Learning rate 10−4

Learning rate scheduler Cosine Annealing with warm restart

Scheduler parameters T0 = 10 , Tmult = 2

Early-stopping patience 10 epochs

Maximum number of epochs 100 epochs

Binary threshold 0.5

Table 4.   Pixel- and cyst-wise evaluation metrics considered from the confusion matrix.

Metric Pixel-wise Cyst-wise

Intersection over Union (IoU) TP

TP+FN+FP

DT

DT+MS+WR

Precision (Pr) TP

TP+FP

DT

DT+WR

Recall (Re) TP

TP+FN

DT

DT+MS
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missed, and wrong cysts. Table 4 additionally contains the definitions of IoU, precision, and recall when com-
puted at the cyst level.

Postprocessing
After obtaining a binary mask from the segmentation model, we apply two postprocessing steps to make the 
segmentation output more useful for the domain expert who will assess and evaluate the result. The first post-
processing step consists in filling holes that may occur within some of the segmented images. We reasonably 
assume that cysts do not typically contain holes within them. Based on this, all pixels of the predicted mask con-
taining “non-cyst” pixels surrounded by “cyst” pixels are automatically switched to “cyst” pixels. We accomplish 
this through a simple flood-fill algorithm.

The second (optional) postprocessing step consists in either applying an opening or a closing morphological 
operation, which act as follows:

•	 Closing consists in applying a dilation operation followed by an erosion one. The two operations are applied 
pixel-wise and consist in replacing each pixel value with either the maximum (dilation) or minimum (ero-
sion) that are found within a neighborhood of the pixel itself. The closing operation results in an image where 
neighboring clusters of pixels (cysts) are merged together.

•	 Opening applies an erosion followed by a dilation. This order of operation makes small clusters of pixels 
disappear due to the application of the erosion operation. This operation can be useful to remove noisy 
segmentations (i.e., predicted cysts that are only a few pixels in size)

Both operations rely on the notion of a neighborhood. This neighborhood is defined through a structuring ele-
ment, whose size and shape determine the specific properties of the openings and closings. More specifically, we 
let the size of the structuring element k as a parameter that the domain expert can control to decide the extent 
of the desired behavior. Instead, we define the shape of the structuring element as circular, given the assumption 
that we expect cysts to have a circular shape.

Figure 9 shows the application of an opening or closing application on a sample image, using different k val-
ues. We observe how applying a closing can mitigate the overcounting problem, which occurs when the model 
segments one of the real cysts as multiple ones. Closing can be used to make the various predicted cysts merged 
into a single one.

The opening operation can be used instead to remove small (noisy) segmented cysts. For example, in the 
zoomed mask, a small cyst can be seen in the upper right corner of the image. While this cyst cannot be removed 
by closing it, it quickly disappears when opened with a small value for k. Using this example, we can also see 
some problems that can occur when opening and closing. Excessive closing can cause cysts that were previously 
correctly separated to be incorrectly merged (as with the lower cyst in the example image). Excessive closing, on 
the other hand, could result in small – but correctly identified – cysts no longer being recognized as such. Based 
on these considerations, we believe that both opening and closing cysts can be a helpful support if used carefully. 

Detected
Detected

Missed

Missed

Missed Wrong

Detected

Wrong

Wrong

Figure 7.   Cases of overlap between real (blue) and predicted (red) cysts. Examples of overlaps between ground 
truth cysts (in blue) and predicted cysts (in red). Each situation is identified with the type of label that is 
assigned to it.

Figure 8.   Predictions from four different input images. For each image, contours of manually annotated (DT 
and MS) and predicted cysts (DT, WR) are highlighted. Yellow contours identify the ground truth cysts, they are 
DT if there is a predicted (green) contour over them, MS otherwise. Incorrect predictions are marked as WR.
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In this paper, we leave the option of applying these steps (and, if so, the extent to which they are applied) to the 
expert analyzing the results. We additionally present some results of applying either approach in the experimental 
section. However, we are aware that this post-processing could be applied differently in different sections of the 
image (e.g. different operations, different k values): one of the future directions of this work will be to automate 
this post-processing step.

Experimental results
In this section, we present the results of the LOTO cross-validation applied to each segmentation model. The 
main results show the performance of the various segmentation models without postprocessing. We additionally 
study the behavior of the best-performing model as a function of the size of the cysts. We show that the proposed 
method has a consistent behavior throughout treatments, which implies that the proposed methodology is robust 

Figure 9.   Example of postprocessing on a sample image. The first row includes the original image, the ground 
truth, and the mask predicted with UACANet. The second and third rows show the effect of applying the closing 
technique, whereas the fourth and fifth rows show the effect of applying opening. The results are shown both 
for the entire image (second and fourth rows) and for a close-up of an interesting case (third and fifth rows). A 
red square is used in the top row to identify the portion of the image used for the close-up. For all images, the 
ground truth is shown in grey, the prediction is shown in white.
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to changes in the distribution of cysts’ number and size. Finally, we observe how applying the proposed opening 
and closing postprocessing techniques impacts the performance.

Deep learning model comparison
Table 5 reports the model performance in terms of IoU, precision, and recall for both the pixel- and cysts-wise 
metrics. We can observe that all the models can reach comparable results in terms of pixel- and cyst-wise metrics. 
UACANet is the model that generally performs best regarding IoU and recall. In terms of precision, we instead 
observe the best results with UNet++. Looking at the cyst-wise measures, the interpretation is that UACANet 
tends to over-estimate the presence of cysts (thus achieving higher recall and lower precision), whereas UNet++ 
makes more conservative estimates, only predicting cysts when there is high confidence (resulting in lower recall, 
but higher precision).

Most confidence intervals of the results overlap with one other. Concerning IoU-like metrics, UNet, UNet++, 
and PraNet get values close to UACANet. For the precisions, all models except PraNet approach the best-
performing one, i.e., UNet++. PraNet is close to the best model in the recall metrics. Even though all the models 
achieved comparable results, UACANet is found to be, on average, the best-performing architecture overall. For 
this reason, in the following, we elect UACANet to be our reference model.

Overlaps between predictions and ground truth
When defining the cyst-wise metrics, we made the assumption that a cyst is detected (DT) if the overlap between 
a predicted cyst and a real one (as quantified by the IoU between them) is above some threshold value.

To identify a meaningful IoU threshold for the definition of detected cases (and, as a consequence, the other 
metrics), we study the distribution of IoU values between predicted and ground truth cysts. Figure 10 shows the 
distribution (as modeled with a kernel density estimation) of values for all detected cysts (assuming a minimum 
overlap of 1 pixel). We observe that most cysts are detected with a large overlap (95% of cysts are detected with 
an IoU greater than 0.2, and 80% of the cysts are detected with an IoU greater than 0.6). This implies that, if the 
model detects the presence of a cyst, its segmentation of the cyst itself will be particularly accurate. We addition-
ally note that 65% of the cysts predicted with an IoU smaller than 0.2 are the smallest ones (zone sizes 1 to 3). As 
we will discuss, these cysts are the most problematic to detect. Larger cysts (i.e., those that are more relevant in 
terms of cyst size) are generally well segmented (i.e., they have a large IoU). Because of this, and with the overall 
goal of achieving good performance in terms of recall, we decide to consider a cyst detected if the predicted and 
ground truth cysts overlap at least 1 pixel.

Table 5.   Performance of the cyst segmentation models in terms of Intersection over Union, Precision, and 
Recall, both pixel- and cysts-wise. Best values for each metric are in bold.

Model IoU Pr Re IoUcyst Prcyst Recyst

UNet 0.5845± 0.0451 0.8484± 0.0305 0.6607± 0.0522 0.6029± 0.035 0.7743± 0.0448 0.7463± 0.0353

UNet++ 0.5821± 0.0525 0.8591± 0.0288 0.6492± 0.0577 0.6059± 0.0493 0.8385± 0.0321 0.696± 0.0554

HardNet-MSEG 0.5311± 0.0527 0.8564± 0.0221 0.5893± 0.06 0.5664± 0.0453 0.787± 0.0324 0.6812± 0.0516

PraNet 0.5868± 0.0493 0.8108± 0.0311 0.6896± 0.0574 0.6224± 0.0369 0.7171± 0.0372 0.8276± 0.0323

UACANet 0.6239± 0.0359 0.8339± 0.0333 0.7128±0.0352 0.6464±0.0395 0.7406± 0.0411 0.8346±0.0262

Figure 10.   IoU between detected (DT) cysts and their real counterpart. The left figure shows the distribution, 
while the right one is the cumulative of the same quantity.
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Cyst size
Given the heterogeneous size range of the labeled cysts, we aggregated the results of the models by cyst size to 
determine if this affected the network’s learning ability. Focusing on the UACANet architecture, we evaluated 
the cyst-wise performance for the cysts in each of the 6 size zones (as described in Fig. 2) and presented the 
results in Fig. 11. For partitioning, the actual size is considered for DT and MS cysts, whereas the predicted 
size is considered for WR cysts (no information on the actual size is available because the predicted cyst does 
not exist). This means that a predicted cyst is considered for evaluation within the size zone of its ground-truth 
counterpart, if available, within its size zone otherwise.

We observe an increase in predictive power with larger cyst sizes. Precision and recall scores achieve similar 
performance throughout zones, except for the first zone, which contains the smallest cysts. In this case, the 
precision is significantly lower compared to the results for the other size categories. The recall for the smallest 
zone is still lower than for the other zones, but less significant. This can be explained by the fact that the model 
makes most false-positive (WR) predictions for small cysts. In other words, the cysts that the model incorrectly 
predicts are usually very small (mostly zone 1). We also note that some of the incorrectly-predicted zone-1 cysts 
were later accepted as valid cysts when reevaluated by human annotators, confirming that detection of small 
cysts is a difficult task even for humans.

Treatment invariance
This work aims to investigate the feasibility of an affordable cyst detection platform. Therefore, we need a model 
capable of producing excellent and stable results regardless of tubule treatment. In this way, the effect of predic-
tion error in evaluating treatments would be reduced if it is the same for all treatments. This property was evalu-
ated by separating the results by treatments and comparing them using the proposed metrics in Fig. 12. We find 
that the highest difference in performance between treatments is at most 0.2 points for each metric. Furthermore, 
there is no meaningful correlation between these results and the statistics of the treatments presented in Fig. 3. 

Figure 11.   Cyst-wise performance by size. Performance is reported on the test set for UACANet, aggregated by 
cyst size.

Figure 12.   Performance measures separated by treatment. The upper and lower rows show the pixel- and cyst-
wise metrics, respectively.
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In particular, the anomalous distribution of images from TREAT _2 does not affect the predictive capabilities 
of the network.

Preprocessing impact
In Section , we presented the concept of no-G preprocessing, which incorporates expert-guided supplementary 
information indicating that the green channel’s content is irrelevant to the task. Demonstrating the advantages 
of integrating this knowledge for enhanced performance, Table 6 displays the outcomes of UACANet, identified 
as the top-performing model for this task, across all the experiments.

We note a general improvement in performance in all the experiments, but the most substantial improve-
ment is seen in Experiment 3. In this particular experiment, it is worth noting that the experts involved in the 
acquisition of the tubules reported that the green channel shows additional fluorophores unrelated to the scope 
of this study. It should be reiterated that this technique is specifically tailored to this particular task. Nonetheless, 
these results highlight the advantages of using a custom pipeline over general segmentation algorithms that are 
readily available.

Postprocessing
The results presented so far were obtained without applying the opening or closing postprocessing effects. As 
discussed earlier, these effects can be used to find a better compromise between precision and recall. Although 
we leave the decision on whether to use these techniques to domain experts (as well as the extent to which they 
should be applied), we nevertheless report on the results that can be obtained by applying either technique with 
different kernel sizes (k). This is to provide a general overview of the effect that the opening and closing tech-
niques can provide. In particular, Fig. 13 shows the effect on precision and recall when using different k values, 
for both opening and closing. We observe two very different behaviors for opening and closing. When using 
closing, the effect is very small and not statistically significant across confidence intervals. However, we observe 
a slight increase in both IoU and precision, with a negligible effect on recall.

This behavior occurs because some of the wrong (WR) cysts are the result of an ”overcount” in which a 
single ground truth cyst is segmented as multiple smaller cysts (one such case is shown in Fig. 9). As closing is 
applied, the smaller cysts are merged into fewer larger ones (third line in Fig. 9). As expected, this reduces the 
total number of false cysts found.

The opening postprocessing has instead the effect of removing the smallest cysts and separating the cysts 
that are close to each other and predicted to be together. We observe a steady increase in precision and a steady 
decrease in recall. Based on the previously stated consideration that many of the incorrectly predicted cysts are 
small, the observed increase in precision can be easily justified. The reduction in recall can be explained by the 
fact that the opening removes some of the small cysts that were correctly identified.

In summary, we can see that the effect of opening and closing can be beneficial in some cases, but detrimental 
in others. For this reason, we leave it to the expert to perform these operations as needed.

nnUNet comparison
Our solution addresses the challenges the cyst segmentation task specifically poses. We extend our experimental 
comparison here, including a more generic alternative, the nnUNet48.

Table 6.   Performance of the cyst segmentation models in terms of Intersection over Union, Precision, and 
Recall, both pixel- and cysts-wise. Best results for each experiment are in bold.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Without noG 0.6006 ± 0.0456 0.4757 ± 0.0667 0.4340 ± 0.0237 0.6960 ± 0.0153

With noG 0.6087  ± 0.0446 0.4786 ± 0.0653 0.4814 ± 0.0246 0.7037 ± 0.0143

Figure 13.   Effect of the opening and closing postprocessing at different values of k . The baseline result of the 
UACANet model without postprocessing is reported by the dashed red line.
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We conducted a thorough evaluation and found that our approach yields equal or superior results. Namely, 
our specific pipeline with the UACANet model reaches better performance in IoU ( +0.27% ) and recall ( +2.77% ), 
while nnUNet is superior in precision ( +6.48% ). Notably, nnUNet requires a fixed training regimen of 1000 
epochs, from which the best model is selected. This approach comes with substantial computational overhead, 
with average epoch times ranging from 50 seconds to a maximum of 200 seconds in some experiments, resulting 
in a minimum expected training time of at least 13 hours. In contrast, our pipeline with the UACANet model 
converges within just 30 epochs, with an average epoch time of 120 seconds. Saving almost 2 orders of magnitude 
in computational costs and reaching almost the same performance, we recognize the simplicity and flexibility 
of general models such as nnUNet, yet we consider that for the specific task, the proposed pipeline provides 
domain experts with a better overall experience thanks to the quick task completion (i.e., few minutes). LOTO 
cross-validation has been used to perform the comparison in an experimental setting as close to our framework 
as possible.

Discussion and conclusion
This work presents an end-to-end experimental pipeline for cyst segmentation in immunofluorescence images 
obtained from engineered polycystic kidney tubules. We compare 5 state-of-the-art deep learning segmentation 
models (UNet, UNet++, HardNet-MSEG, PraNet, UACANet) on a testbed of 5062 cysts on 1076 images of 32 
engineered polycystic kidney tubules from 4 in vitro experiments. The experimental design is based on a specific 
leave-one-out crossvalidation, named  LOTO  (Leave One Tubule Out): each model is trained and validated on 31 
tubules and tested on the remaining one. Model performance was evaluated using Precision, Recall, and Intersec-
tion over Union, each specialized at both pixel and cyst-wise levels, and focusing on overlapping cyst detection.

The experimental pipeline includes common preprocessing steps such as data augmentation by random 
transformations and specific preprocessing steps such as green channel removal. Optional post-processing steps 
are also included in our pipeline and are experimentally evaluated. They aim to reduce noise in the segmentation 
results, e.g., by removing very small cysts or merging clusters of small cysts into larger cysts. The results show 
a trade-off between precision and recall. For this reason, we currently leave these post-processing steps as an 
optional feature that can be applied by experts if needed.

The core of the experiments aims at comparing the deep learning models. The UACANet model performed 
best, while all other models produced comparable results. The best pixel-wise performance for Intersection over 
Union is 0.624 of UACANet, which is 0.037 higher than that of the second best, PraNet; for Recall, UACANet 
achieved 0.713, which is 0.023 higher than the second best, PraNet; for Precision, UNet++ achieved 0.859, which 
is only 0.03 higher than the second best, HardNet-MSEG. The results show that the segmentation models per-
form poorly in detecting small cysts, which is consistent with the degradation in segmentation quality achieved 
by human annotators for similarly sized cysts, as expected. The best performing model, UACANet, achieves a 
cyst-wise Intersection over Union as high as 0.83, 0.91 for Recall, and 0.92 for Precision when applied to detect 
large-size cysts (average over a full  LOTO  cross validation ). Cyst-wise metrics are robust to occasional pixel 
overlap, as 80% of the predicted cysts have an Intersection over Union with respect to the ground truth greater 
than 0.6. The results are robust to treatment changes, meaning that the models are consistent when confronted 
with variations in the underlying distribution of cyst number and size.

The source code to reproduce all experiments is freely available on a public GitHub repository. The dataset 
is the property of Istituto Mario Negri and is available upon request.

As a future research direction, we aim to automate the post-processing steps with a self-assessment mecha-
nism capable of selectively choosing different regions of the segmentation output for the application of appro-
priate parameters. We intend to extend the experiments to new polycystic kidney tubules to further assess the 
robustness and generalizability of the pipeline and the models themselves. Model extension is also part of our 
plans, in particular we are developing knowledge-based techniques capable of capturing cyst constraints and 3D 
mesh solutions for image segmentation.

Data availability
The code to reproduce all the experiments is available on a public GitHub repository at https://​github.​com/​
simon​e7mon​aco/​auto-​cysts-​segme​ntati​on. Data underlying the results presented in this paper are property of 
Istituto Mario Negri, Milano, Italy; they are not publicly available at this time, but may be obtained from the 
corresponding author upon request.
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