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Deep‑WET: a deep learning‑based 
approach for predicting 
DNA‑binding proteins using 
word embedding techniques 
with weighted features
S. M. Hasan Mahmud 1,2*, Kah Ong Michael Goh 3*, Md. Faruk Hosen 4, Dip Nandi 1 & 
Watshara Shoombuatong 5

DNA‑binding proteins (DBPs) play a significant role in all phases of genetic processes, including DNA 
recombination, repair, and modification. They are often utilized in drug discovery as fundamental 
elements of steroids, antibiotics, and anticancer drugs. Predicting them poses the most challenging 
task in proteomics research. Conventional experimental methods for DBP identification are costly and 
sometimes biased toward prediction. Therefore, developing powerful computational methods that 
can accurately and rapidly identify DBPs from sequence information is an urgent need. In this study, 
we propose a novel deep learning‑based method called Deep‑WET to accurately identify DBPs from 
primary sequence information. In Deep‑WET, we employed three powerful feature encoding schemes 
containing Global Vectors, Word2Vec, and fastText to encode the protein sequence. Subsequently, 
these three features were sequentially combined and weighted using the weights obtained from 
the elements learned through the differential evolution (DE) algorithm. To enhance the predictive 
performance of Deep‑WET, we applied the SHapley Additive exPlanations approach to remove 
irrelevant features. Finally, the optimal feature subset was input into convolutional neural networks 
to construct the Deep‑WET predictor. Both cross‑validation and independent tests indicated that 
Deep‑WET achieved superior predictive performance compared to conventional machine learning 
classifiers. In addition, in extensive independent test, Deep‑WET was effective and outperformed 
than several state‑of‑the‑art methods for DBP prediction, with accuracy of 78.08%, MCC of 0.559, 
and AUC of 0.805. This superior performance shows that Deep‑WET has a tremendous predictive 
capacity to predict DBPs. The web server of Deep‑WET and curated datasets in this study are available 
at https:// deepw et‑ dna. monar catec hnical. com/. The proposed Deep‑WET is anticipated to serve the 
community‑wide effort for large‑scale identification of potential DBPs.

DNA-binding Proteins (DBPs) participate in many essential biological processes, including DNA replication, 
gene regulation, repair, and  modification1,2. Identification of DBPs is fundamentally important for understand-
ing characterizations of protein function and drug design. A number of large-scale proteomics experiments 
have been performed to identify DBPs based on biochemical methods, such as X-ray  crystallography3 and fast 
 ChIP4,5. Despite the increasing number of experimentally determined DBPs, the underlying mechanism of DBP 
specificity remains mostly unidentified, and these approaches are laborious, time-consuming, and sometimes 
biased toward prediction in the post-genome era, when large numbers of unannotated DBPs are rapidly being 
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sequenced and deposited. As an alternative, computational methods are accurate and cost-effective and can be 
used to complement the experimental efforts.

To date, several computational algorithms, including machine-learning (ML)-based and template-based 
methods, have been developed for in silico prediction of  DBPs6–17. DBPs can be predicted based on two types of 
protein data input: i sequence-driven (e.g., iDNA-Prot18, PseDNA-Pro19, iDNAPro-PseAAC 20, iDNA-Prot|dis14, 
Local-DPP21, PSFM-DBT22,  HMMBinder23, IKP-DBPPred24, iDNAProt-ES7, DPPPseAAC 10, and  TargetDBP25) 
and 3D-structure-driven (e.g., DBD-Hunter26,  iDBPs27, and SPOT-Seq (DNA)28) methods. Only protein sequence 
data is required for sequence-driven techniques. The 3D-structure-driven techniques require native or projected 
3D structure data from the query protein. In this case, 3D-structure-driven techniques cannot function correctly 
without 3D structure information. This method performs better when the protein’s native structure is known. On 
the other hand, sequence-driven techniques do not have this problem. Furthermore, due to the inherent chal-
lenges of measuring protein 3D structures in experimental studies, there is a significant gap between the quanti-
ties of sequences and 3D  structures29, which is currently expanding quickly in the postgenomic era. Recently, 
PSI-BLAST was utilized by Chowdhury et al.7 to derive polysaccharide storage myopathy, which revealed evolu-
tionary information to predict DBP. The secondary structure information of the protein sequences was extracted 
using SPIDER2. To retrieve protein sequence information, Nanni et al.30 utilized AAC and quasi residue couple 
(QRC). Meanwhile, the autocovariance method was used to derive physicochemical characteristics. In addition, 
evolutionary data was retrieved using the pseudo-position specific scoring matrix (PsePSSM), N-gram features 
(NGR), and texture descriptors (TD). Sang et al.31 calculated the HMM matrix for each sequence using the hid-
den Markov model (HMM). The HMM matrix was converted into feature vectors of the same length using AAC, 
autocovariance transformation (ACT), and cross-covariance transformation (CCT). Thus, designing sequence-
driven computational strategies is essential to accurate prediction of DBPs.

Choosing appropriate feature extraction methods and classification algorithms in order to select the best sub-
set of features is a key factor for the successful discovery of DBPs. In  TargetDBP25, four single-view features (AAC, 
PsePSSM, PsePRSA, and PsePPDBS) are used to extract the DNA-binding features and apply a learning-based 
technique to the weights of features to combine them for training an SVM classifier. In addition, an excellent 
feature subset was selected using SVM-REF + CBR from the non-redundant benchmark and new gold-standard 
dataset. Rahman et al.10 utilized the same feature selection (REF) and classifier (SVM) to develop a model DPP-
PseAAC for which the authors focused on Chou’s general PseAAC for generating features. Another proposed 
DBP predictor method is  DNAPred32, where authors use the E-HDSVM algorithm, which includes HD-US and 
EAdaBoost, to predict protein DNA binding sites. A similar ensemble-based method performed by Zhang et al.33, 
XGB-RFE, is used to attain effective features, after which the best features are fed to the stacked ensemble classifier 
(the combined form of LightGBM, XGBoost, and SVM) to build the proposed StackPDB model.

The above-mentioned algorithms have proven to be exemplary, but we opted to use convolutional neural 
networks (CNNs) to improve prediction performance. In the meanwhile, it is important to devise an appropri-
ate encoding scheme to represent the sequence fragments surrounding DBPs/non-DBPs to develop a ML-based 
predictor. In this study, we present a new convolutional neural network (CNN)-based predictor called Deep-
WET for accurately identifying DBPs from primary sequence information. Firstly, we applied three consecutive 
sequence encoding approaches, namely Global Vectors (GloVe), Word2Vec, and fastText, to extract the protein 
sequence patterns. Secondly, the DE is utilized to acquire the weights for three base features. With these obtained 
weights, we combined three base features in a weighted manner to create the super feature. In order to improve 
the predictive performance of Deep-WET, we employed SHapley Additive exPlanations (SHAP) approach to 
remove irrelevant features from super features and then inputted the optimal one into CNN algorithm for the 
final model construction. Experimental results demonstrated that Deep-WET achieved a accurate and robust 
performance as compared with conventional ML classifiers on both the training and independent test datasets. 
Moreover, comparative analysis on the independent test dataset showed that Deep-WET achieved improved 
performance compared with the existing approaches, highlight the effectiveness and robustness of the proposed 
Deep-WET. We also conducted a series of computational analyses to provide in-depth understanding of the 
DBPs. Finally, the proposed method, Deep-WET, was implemented as a user-friendly web server: at https:// 
deepw et- dna. monar catec hnical. com/.

Materials and methods
The overall framework of Deep‑WET
The construction process of Deep-WET is depicted in Fig. 1. Deep-WET consists of multiple steps, including 
data preparation, natural language processing (NLP)-based feature encoding, weighted features, optimal feature 
subset selection, best classifier selection, and final prediction. In the first stage, three NLP-based Word embedding 
feature encoding techniques were employed (GloVe, Word2Vec, and fastText), and then the optimal subset of 
features was selected using the SHAP technique from the weighted features. The selected feature subsets from 
each feature encoding were fed to four ML and one DL algorithms to build the final prediction models using 
the training and independent test datasets. Finally, the classifier having the highest cross-validation AUC was 
considered to construct the final predictor herein.

Data preparation
Developing a reliable, comprehensive, and stringent dataset is the first important step of statistical predictor 
development. Here, the curated dataset denoted with S was presented as:

(1)S = Sposi ∪ Snega

https://deepwet-dna.monarcatechnical.com/
https://deepwet-dna.monarcatechnical.com/
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where, Sposi denotes the positive subset containing DBPs or positive samples, while, Snega denotes the negative 
subset containing non-DBPs or negative samples, and ∪ symbol resembles the union of the following sets. The 
Sposi and Snega datasets were collected and primarily used by Jun Hu et al.25, who collected both DBP and non-DBP 
chains from PDB Data Bank. There are two main reasons why we used the dataset established by Jun Hu et al.25 as 
follows. Firstly, this dataset applied a lower CD-HIT34 threshold of 0.25 to exclude the redundant protein chains. 
Secondly, this dataset exclude the protein chain sequences having below 50 residues and unknown residues. For 
the the Sposi and Snega datasets, they were randomly selected to create the training and independent test datasets. 
The training dataset consists of 1052 DBPs and 1052 non-DBPs, while The independent test dataset consists of 
148 DBPs and 148 non-DBPs. More details on the training and independent test datasets are provided in an 
article of Jun Hu et al.25.

Feature encodings
Word embedding (WE), in which the vocabulary of words can be represented as vectors using large text as an 
input, is the most popular technique in the area of natural language processing (NLP). WE techniques are able to 
convert amino acids in a fixed-length vector, where a user needs to define the fixed feature dimensions that can 
provide adequate prediction results. In this study, we implemented three unsupervised embedding techniques 
to encode protein sequences:  GloVe35,  Word2Vec36, and  fastText37–39.

Word2Vec
Word2Vec, a model developed by Tomas Mikolav at Google, computes and generates high-quality, distributed, 
and continuous dense representations of  words36. These are unsupervised models that can take in massive tex-
tual corpora, create a vocabulary of possible word combinations, and generate dense word embeddings on the 
vector space. The size of the vocabulary determines the size of the word embedding vectors. This decreases the 
dimensionality of the following dense vector, compared to high-dimensional sparse vector generation using the 
traditional bag of words (BOW). To construct word embedding, Word2Vec employs two different methods: (1) 
common bag of words (CBOW) and (2) the Skip-gram model. Notably, the CBOW is faster than the Skip-gram 

Figure 1.  The flowchart illustrates our proposed methodology. The upper part represents data pre-processing, 
the middle part depicts feature extraction with various classifiers, and the lower part showcases classification 
using the CNN model.
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model and generates a better representation of more frequent  words34. On the other hand, the Skip-gram model 
performs well with a relatively small amount of data and generates a better representation of rare  words34.

Finding the target word wt through n predictions using the CBOW model can be accomplished by the fol-
lowing equation:

Here, w(t−1) to w(t+n) sequence of words represents the context words. The following equation can further 
simplify the above equation since the hidden layer can be equivalent to a softmax layer:

Here, the output weight matrix between hidden layers is denoted as W, and after matrix operation, the average 
value of input vectors is represented as ht.

GloVe
GloVe is an unsupervised learning vectorization technique. It is a log-bilinear regression model that incorpo-
rates both local statistics and global  statistics36. The training of this model is performed on non-zero entries of 
global word-to-word co-occurrence statistics that tabulates how frequently words are co-occurring within a 
given corpus. For collecting statistics, the following matrix needs a single pass through the entire corpus. These 
passes can be expensive for large corpora. Moreover, its resulting representations show the interesting linear 
substructures of those word vector spaces.

Here, vi , vj correspond to the word embedding of i, j; X represents the word-to-word co-occurrence matrix; 
and ith number of co-occurrences of word j is denoted by Xij . Furthermore, the probability of word j occurring 
in the context i is the following:

fastText
fastText, proposed by  Facebook38, is an extension of Word2Vec. It provides tools to learn word representation 
and sentence classifications of ML. Word vectors are a more organized, numerical, and efficient representation 
of words and sentences. fastText provides a supervised module to build a model for text classifications. It tech-
nique breaks an individual word into a bag of n-grams or sub-words and feeds them into the network, which 
also generates vector representation for rare or unseen  words37. Since the technique uses the same architecture as 
Word2Vec, the following equation minimizes the loss of softmax layer, l over N sequences using CBOW model:

Here, xn represents the bag of one-hot encoded vectors and yn represents the label of the nth sequence of 
words. The purpose of using FastText in the present study is to find the partial information single DNA sequence 
order.

Weight learning for weighted features
Single-view features represent the discriminative information for each sequence, but combing single-view fea-
tures to make a weighted feature is critical in ML-based DBP prediction. The most common technique involves 
serially adding (’+’) single features. However, this straightforward combination technique lacks a guarantee to 
represent discriminative capability and may overlook the relative importance of the base sequence. To address 
this issue, we employ a differential evolution (DE) method to determine the optimal weights for each feature. 
DE algorithm variants of evolutionary algorithms and applied in various  works40,41 to show the positive effect. 
The process we followed for DE algorithm to learn feature weights from a single feature is illustrated as follows: 

Step 1:  I n i t i a l i z a t i o n  R a n d o m l y  c r e a t e  a n  i n i t i a l  p o p u l a t i o n 
Po = {FWg
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Step 3:  Crossover For the diversity of each solution, a trial vector TVg
i = (TV

g
i,1,TV

g
i,2,TV

g
i,3 . . . . . . TV

g
i,D) 

of crossover is established in the DE technique as follows: 

 where j = 1, 2, 3 . . . ,D, jr represent randomly produced integer with [1, D]; Rj means uniformly distributed 
range [0,1] and CR ∈ (0, 1) indicate crossover rate.
Step 4:  Selection Find the better vector from trial TVg

i  and target FWg
i  using the following way: 

Step 5:  Termination g = g + 1 and repeat steps 2 to 4 until g is greater the Gmax .

After concluding the DE procedure, we can get the final results. In this study, We have generated a novel super 
feature, represented as GloVe + fastText + Word2Vec, by the weighted and sequential fusion of GloVe, fastText, 
and Word2Vec features. DE is a powerful optimization algorithm; however, using it for feature weighting in 
ML presents certain limitations and challenges. DE may struggle with slow convergence, susceptibility to local 
optima, and sensitivity to parameter choices. Additionally, the algorithm may violate constraints, lack robust-
ness across diverse datasets, and exhibit computational intensity. To avoid these challenges, we have performed 
parameter tuning (population− size, mutation rate, crossover probabilities) in experiments, considering adaptive 
strategies for mutation and crossover rates. Furthermore, exploring parallelization methods helps alleviate com-
putational burdens, while strategies like diversity maintenance mechanisms aim to address convergence issues.

SHAP‑based feature selection scheme
SHAP is an additive feature attribution method introduced by Lunberg and  Lee42 in which each individual pre-
diction is interpreted by the contribution of the features and then ordered according to their  importance43. SHAP 
allocates each feature an importance value for a particular prediction. This SHAP feature selection approach is 
based on game  theory44; SHAP values break down a prediction to show the impact of each individual feature. 
Suppose each feature is xi , is replaced by zi for determining whether the feature value xi exists or not. SHAP 
represents the explanation as:

In the above equation, g represents the explanation model; z ∈ 0, 1M represents the coalition vector; 0 and 1 
indicate that the corresponding feature is absent or present, respectively; the number of input features included 
in the model is denoted as M; and φi ∈ R,φi represents the feature attribution values for a feature i. Considering 
the game theory concept, Shapley values can be calculated using the following equation:

In the above equation, M represents the set of features in the model; all feature subsets achieved from M 
are represented as S; the function computes the total contribution of a given features set S; S ⊂ M \ {i} repre-
sents the value of the corresponding feature when i is known, versus when the corresponding feature value i is 
unknown for all subsets.

One of the important features of the SHAP is the barplot in the form of rectangular horizontal bars, where 
the length of the bars represents the importance of a given feature. As we need the global significance, we sum 
the contribution of each feature, or absolute Shapley values.

Then, we plot each of the features by sorting them in decreasing order. Figure 2A shows the important fea-
tures based on SHAP contributions for the XGBoost trained before predicting DBPs. The SHAP summary plot 
gives a high-level composite view that displays the importance of features with feature effects. Each point in the 
plot represents a SHAP value for a specific feature of an instance. The values that pull the prediction power of 
the model downwards are on the left, and the values that push the prediction further up are on the right. On the 
y-axis, the features are placed in descending order, and on the x-axis, there is a scale representing the Shapley 
value with a vertical line at point zero. The positive and negative values are to the right and left part of that verti-
cal line, respectively. Here the colors separate the relative size of the features between instances. Specifically, low 
values are colored blue and high values are colored red. Overlapping more data points in the y-axis direction 
shows the distribution of SHAP values for each individual feature. Moreover, in the summary plot, we clearly 
observe the relationships between the value of a feature and the effect on the prediction. Figure 2B shows the 
SHAP summary plot, which orders important features for identifying DBPs.
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Implementation of convolutional neural network
CNNs are a type of deep learning model commonly used in applications including recommender systems, image 
and video recognition, and natural language  processing45,46. In CNN architecture, the deeper convolutional layers 
(CLs) lead to learning high dimension features using sliding convolution kernels on the upper part of previous 
layers with different hyper-parameter settings such as filters, control layer outputs, stride, and zero-paddings. 
Pooling layers (PLs) are able to reduce the input feature size and offer translation invariance by local non-linear 
 operations45. Fully connected layers (FCLs) utilized to classify the tasks, consisting of an equal number of output 
neurons as artificial neural networks.

Each neuron is completely linked to all of the nodes in the preceding and subsequent  levels47. After adding 
one additional CL and max-PL to the process, the technique demonstrated a significant improvement in terms 
of computational complexity and program runtime. The following equation may be used to compute the outputs 
of each convolutional layer:

The layer index is l, while the input and output feature maps are m and k, respectively. Specifically, ylk denotes 
the kth feature map of the l layer’s input, while y(l−1)

m  denotes the m− th feature map of layer l − 1 output. The 
weight tensor and bias term, respectively, are W and b. Back-propagation and adaptive estimating approaches 
were used to reduce cross-entropy  loss47. Our model’s output layer is essentially a logistic regression classifier. It 
takes ylk as an input and computes the following:

The output ŷ is the final predicted score; W is the weight matrix; b is the bias vector. Each output size is 2, 
denoting positive or negative classes for the binary classification task of DNA binding predictions. In order 
to discover suitable parameters, we want to minimize cross-entropy loss by adaptive moment estimation and 
back-propagation techniques:

To improve the model’s efficiency, batch normalization and dropout  techniques48 were employed. The dropout 
in FCLs decreases by a few units during the training phase, whereas batch normalization helps to standardize the 
inputs into unit standard deviation and zero means. Furthermore, dropout was able to overcome the problem of 
overfitting, and batch normalization supported the model with sufficient learning ratios.

To achieve a better performance, hyperparameter optimization plays a vital part in the implementation of 
the proposed methodology. The following hyperparameters are optimized before training the model: learning 
rate, number of filters, kernel size, batch size, number of hidden layers, optimizers, dropout layers, and activation 
function. Here, three convolutional layers are used as hidden layers in the CNN model architecture. In addition, 
32, 48, 64 filters and kernel sizes of 3, 4, 5 are used. Using ReLu as an activation in the hidden layers and Sigmoid 
in the fully connected layer results in the desired outcome. Dropout layers with dropout rates of 0.2, 0.3, and 
0.5 are used to prevent overfitting. With extensive experimentation, employment of the Adam optimizer with a 
learning rate of 0.00001 and binary cross-entropy loss function shows the optimal result. Table 1 comprehensively 
illustrates the hyperparameters used in our method. Detailed parameter settings of the other three classifiers for 
different feature encoding are also listed in Table 6.

Performance evaluation
The performance of Deep-WET was evaluated in terms of six standard performance metrics for the binary clas-
sification problem including accuracy (ACC), sensitivity (Sen),specificity (Spe), Matthew’s coefficient correlation 
(MCC), and precision (Pre).

(13)ylk = f
(

∑

m

Wl
m,ky

l−1
m + blk

)

(14)ŷ = f (Wlyl + bl)

(15)loss = − 1

N

N
∑

i=1

yilogŷl + (1− yi)log(1− ŷl)

Table 1.  Hyperparameters setting of CNN classifiers.

Hyperparameters Range

Learning rate [0.00001, 0.01, 0.001, 0.0001]

Number of filters [32, 48, 64]

Kernel size [3, 4, 5]

Batch size [16, 32, 64, 128]

Number of hidden layers [2, 3]

Optimizer [‘Adam’]

Dropout rate [0.2, 0.3, 0.5]

Activation function [’relu’, ’sigmoid’]



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2961  | https://doi.org/10.1038/s41598-024-52653-9

www.nature.com/scientificreports/

where TP, FP, TN,  and FN respectively represent the number of true positives (correctly classified positive), 
false positives (incorrectly classified as positive), true negatives (correctly classified negative), and false nega-
tives (incorrectly classified as negative), respectively. Furthermore, the AUC metric was also used to evaluate 
the performances of the proposed DeepWET model, where the curve is plotted by TPR (sensitivity) and FPR 
(1 – specificity) with different threshold settings.

Experimental setup and packages
All tests in this study were carried out on three independent computers with the following settings, using Python 
version 3.7.7 or above:

• A desktop computer with Intel Core i5 CPU @ 2.71GHz x 4, Windows 10, 64-bit OS and 8 GB RAM.
• A desktop computer with Intel Core i5 CPU @ 2.11GHz x 4, Windows 10, 64-bit OS and 8 GB RAM.
• A server machine with Intel Core i5-3320M CPU @ 2.60GHz x 4, Ubuntu 18.04.2 LTS, 64-bit OS, 13 MB L3 

cache and 64 GB RAM.

CNN classifier and SHAP technique were employed for model learning and feature selection on TensorFlow 
2.0 and SHAP 0.39.0 Python libraries to implement them. We utilized improved parameter settings of the CNN 
algorithm such as batch size 16, kernel size 4, 2 hidden layers, and dropout rate 0.5. Several graphs were plotted 
in this experiment using  Matplotlib49,  Seaborn50, and  Plotly51, in addition to pre-installed Python tools.

Results and discussion
Performance comparison of different feature encodings
In this section, we systematically evaluated the effect of various feature encodings, including single-feature 
(GloVe, fastText, and Word2Vec) and weighted-feature (GloVe + fastText, GloVe + Word2Vec, fastText + Word-
2Vec, and GloVe + fastText + Word2Vec) encodings in DBP identification. These features were inputted to a 
CNN classifier to evaluate their corresponding models using the 5-fold cross-validation test. The cross-validation 
performance of variant CNN classifiers trained with different features are provided in Table 2 and Fig. 3A. It is 
worth noting that the parameters of CNN classifiers were carefully determined to improve their performance 
under the 5-fold cross-validation process.

Among single-based features, GloVe outperformed fastText and Word2Vec in terms of all performance met-
rics. The AUC, ACC, Sen, Spe, and MCC of GloVe were 0.810, 75.00%, 71.15%, 77.63% and 0.485, respectively. 

(16)ACC = TP + TN

TN + TP + FN + FP

(17)Sen = TP

TP + FN

(18)Spe = TN

FP + TN

(19)MCC = (TP × TN)− (FP × FN)√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

(20)Pre = TP

TP + FP

(21)F1 score =2× (Precision× Recall)

Precision+ Recall

Table 2.  Performance comparison of CNN classifiers trained with different feature encodings on the training 
dataset.

Feature AUC ACC (%) Sen (%) Spe (%) MCC Pre (%) F1

GloVe 0.810 75.00 71.15 77.63 0.485 68.52 0.698

fastText 0.785 73.44 67.24 78.57 0.462 72.22 0.696

Word2Vec 0.793 71.09 73.13 68.85 0.420 72.06 0.726

fastText + Word2Vec 0.826 75.78 70.18 80.28 0.508 74.07 0.721

GloVe + Word2Vec 0.820 76.64 71.96 85.00 0.523 77.50 0.713

GloVe + fastText 0.839 78.12 72.96 89.19 0.549 80.95 0.738

GloVe + fastText +Word2Vec 0.864 79.07 75.10 91.49 0.585 86.21 0.740
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Interestingly, AUC, ACC, and MCC of GloVe were 2.5–1.7%, 1.56–3.91%, and 2.3–6.5% higher than fastText 
and Word2Vec, respectively. A weighted feature was created by adding different combinations of the single 
feature extraction methods in order to improve the predictive performance. As can be seen from Table 2, we 
observe that the performance the combination of GloVe, fastText and Word2Vec is better than those of other 
three weighted features in terms of all performance metrics. The ACC, Sen, Spe, and MCC of the combination 
of GloVe, fastText and Word2Vec are 79.07% 64.10%, 91.49% and 0.585, respectively, which are 0.95–3.29%, 
2.14–4.92%, 2.30–11.91%, 0.036–0.077%, 5.26–12.14% and 0.002–0.027% higher than other combination fea-
tures, respectively. Figure 3A shows that the AUC value of GloVe+fastText+Word2Vec 0.864, which is larger 
than the other three weighted features. Overall, we observed that the Sen value of individual features was slightly 
higher than that of the corresponding weighted features in some cases. Moreover, the performance of the top 
weighted features (GloVe + fastText + Word2Vec) is significantly higher than the single-view feature in terms of 
all evaluation metrics. Weighteds features archive higher prediction performances to the single-view feature in 
terms of all evaluation metrics. Therefore, in this study, the GloVe + fastText + Word2Vec feature outperformed 
other single and weighted features and is considered as the optimal one in termes of computational cost and 
predictive performance.

Feature section approaches improve the predictive performance
The original feature subsets extracted from feature encoding techniques might contain noisy and redundant infor-
mation that can affect the classifiers’ performance. Therefore, we utilized feature selection methods to determine 
important features from the original feature subsets. Here, three feature selection techniques, including  RFE52, 
 LASSO53, and  SHAP42, were utilized for determining the important features from GloVe + fastText + Word2Vec 
feature encoding. In our experiment, we ranked all features using its importance obtained from RFE, LASSO, 
and SHAP and then established the six feature subsets that consisted of the top-ranked features ranging from 
top 200 to the top 450 features with an interval of 50. Then, for each feature selection technique, the six feature 
subsets were fed to develop individual CNN classifiers whose corresponding prediction results based on a 5-fold 
cross-validation were provided in Table 3.

As seen in Table 3, the optimal subsets containing top 300, 400, and 400 optimal features derived from the 
RFE, LASSO and SHAP techniques, respectively, outperformed other feature sets in terms of both ACC and 
AUC. In the meanwhile, the performance of the optimal subsets from the SHAP technique outperformed than 
the RFE and LASSO techniques. To be specific, the AUC, ACC, Sen, Spe, MCC, Pre, and F1 of the optimal sub-
set from the SHAP technique were 0.883, 82.56%, 69.44%, 92.00%, 0.641, 86.21, and 0.769, respectively. Thus, 
the optimal subset derived from the SHAP technique was considered to develop our proposed model. To check 
the effectiveness of the optimal subset, we compared its performance with the original feature set. As shown in 
Tables 2 and 4, the ACC, Sen, MCC and F1 of the optimal subset were 3.49%, 5.34%, 5.60%, and 3.40% higher 
than the original feature set. For convenience of discussion, the CNN classifier combined with the optimal subset 
from the SHAP technique is referred herein as Deep-WET.

Altogether, the SHAP technique was a powerful approach for implementing DNA binding protein datasets. 
To make a clear comparison of prediction effects, the results of the SHAP importance bar graph on the GloVe + 
fastText + Word2Vec dataset for 400 feature dimensions are shown in Fig. 2A. In Fig. 2A, the bar plot generated 
by SHAP shows the important features in the form of horizontal bars, with length representing the importance 

Table 3.  Performance comparison of various feature sets derived from different feature selection techniques. 
Significant values are in bold.

Feature selection No. of features AUC ACC (%) Sen (%) Spe (%) MCC Pre (%) F1

RFE

200 0.859 76.74 58.82 88.46 0.503 76.92 0.667

250 0.853 79.69 65.38 89.47 0.574 80.95 0.723

300 0.866 82.55 71.87 88.89 0.621 79.31 0.754

350 0.853 80.23 85.11 74.36 0.600 80.00 0.825

400 0.876 81.40 67.57 91.83 0.622 86.20 0.758

450 0.866 79.10 62.50 88.89 0.541 76.92 0.690

Lasso

200 0.837 77.57 69.05 83.07 0.526 72.50 0.707

250 0.869 81.25 82.86 79.31 0.622 82.86 0.829

300 0.867 81.35 87.50 76.09 0.581 76.09 0.814

350 0.856 79.10 81.82 76.19 0.581 78.26 0.800

400 0.882 81.40 64.71 92.30 0.607 84.61 0.733

450 0.877 79.68 65.38 89.47 0.574 80.95 0.723

SHAP

200 0.873 76.56 60.00 91.18 0.544 85.71 0.706

250 0.866 80.25 65.79 91.67 0.604 86.21 0.746

300 0.883 81.31 66.66 91.89 0.616 85.70 0.750

350 0.880 81.40 68.57 90.19 0.611 82.76 0.750

400 0.883 82.56 69.44 92.00 0.641 86.21 0.769

450 0.863 80.23 66.67 90.00 0.591 82.76 0.739
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of features. We summarized the most significant features by sorting them in decreasing order based on absolute 
Shapley values. In addition, the SHAP summary plot for 400 feature dimensions is shown in Fig. 2B. It represents 
a high-level composite look that indicates the important features and effects. Each point depicts a SHAP score 
in the plot for a particular feature instance. Notably, we can observe the relationship between the feature value 
and the effect on prediction in the SHAP summary plot.

From the above-mentioned observations and discussion, we concluded that the SHAP technique was a more 
powerful and effective feature selection one; therefore, this technique was chose for selecting a subset of features 
for predicting DBPs herein. In addition, we also applied the SHAP technique in other types of features whose 
corresponding prediction results were summarized in Table 4 and Fig. 3. By comparing the performance of the 
models without feature selection (Table 2 along with Fig. 3A and C) and with the SHAP-based feature selection 
(Table 4 along with Fig. 3B and D), the models with the SHAP-based feature selection achieve better performance 
than those of the models without feature selection.

Hyperparameter of CNN
The hyperparameter learning rate controls how the model changes according to estimated error each time the 
weights are updated. Finding the optimal learning rate can be challenging, because a higher learning rate makes 
the gradient drop faster, and a lower learning rate leads to the gradient hardly converging. Here, the faster rate 

Table 4.  Performance comparison of CNN classifiers trained with different optimal feature sets on the 
training dataset.

Feature AUC ACC (%) Sen (%) Spe (%) MCC Pre (%) F1

GloVe 0.852 75.70 63.46 87.27 0.524 82.50 0.717

fastText 0.826 77.91 63.89 88.00 0.542 79.31 0.708

Word2Vec 0.806 74.22 66.67 81.54 0.488 77.78 0.718

fastText + Word2Vec 0.857 77.57 68.18 84.13 0.532 75.00 0.714

GloVe + Word2Vec 0.856 79.44 70.45 85.71 0.571 77.50 0.738

GloVe + fastText 0.850 80.37 69.39 89.66 0.608 85.00 0.764

GloVe + fastText +Word2Vec 0.883 82.56 69.44 92.00 0.641 86.21 0.769

Figure 2.  The SHAP importance bar graph results for the GloVe + fastText + Word2Vec dataset with 400 
feature dimensions are presented. (A) bar plot generated by SHAP shows the important features in the form of 
horizontal bars (B) SHAP summary plot for the 400 feature dimensions.
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of gradient drop results in informative and meaningful features failing to get extracted over each iteration, and 
the lower rate of gradient convergence results in a longer training time. Therefore, five learning rates in a range 
of 1e–6 to 1e–2 are implemented for the proposed model to find the optimal performance. From Table 5, the 
learning rate of 0.00001 gives the highest performance compared to implementing the remaining four learning 
rates. However, the sensitivity value of using the 0.00001 learning rate is suboptimal compared to the value of 
the 0.0001 and 0.001 learning rates.

Comparison of Deep‑WET with conventional ML classifiers
To evaluate the performance of the proposed Deep-WET, we compared its predictive performance with conven-
tional ML classifiers. Herein, the conventional ML classifiers were built using four well-known ML classifiers (i.e., 
 SVM40,  XGBoost41,  LightGBM44, and  CNN54) and the three NLP-based word embedding techniques (i.e., GloVe, 
fastText, and Word2Vec). In total, 11 conventional ML classifiers were created in this study. It is noteworthy 
that the parameters of all ML classifiers were carefully optimized to improve their prediction capability under 
a 5-fold cross-validation procedure. In these experiments, classifiers have been trained a total of 24 times. The 
prediction performance based on both 5-fold cross-validation and independent tests are listed in Tables 7-8. In 
addition, their respective graphs are shown in Figs. 4, 5, 6.

Figure 3.  ROC curves and AUPR curves of CNN classifiers are depicted for both single and hybrid feature 
spaces without feature selection (A, C) and with SHAP-based feature selection (B, D).

Table 5.  Cross-validation results of CNN classifiers trained with different learning rates. Significant values are 
in bold.

Learning rate AUC ACC (%) Sen (%) Spe (%) MCC Pre (%) F1

1e–2 0.835 79.06 64.29 86.21 0.515 69.23 0.667

1e–3 0.803 81.39 72.73 84.38 0.543 61.54 0.667

1e–4 0.838 81.25 69.57 87.80 0.586 76.19 0.727

1e–5 0.883 82.56 69.44 92.00 0.641 86.21 0.769

1e–6 0.874 79.07 61.11 92.00 0.571 84.62 0.710
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As can be seen from Table 6, Deep-WET achieved the overall best performance compared with the com-
pared ML classifiers in terms of almost performance metrics, with the only exception of the Sen. Meanwhile, 
CNN-fastText and CNN-Word2Vec were the second-best and third-best classifiers in terms of ACC. To be 
specific, the ACC values of Deep-WET, CNN-fastText, and CNN-Word2Vec were 82.56%, 80.37%, and 77.91%, 
respectively. In addition, Deep-WET’s AUC, ACC, Spe, and MCC were 3.40%, 2.19%, 2.34% and 3.30%, respec-
tively, higher than the second-best method CNN-fastText. In case of the independent test results, Deep-WET 
still outperformed the compared ML classifiers in terms of ACC, Spe, MCC, Pre and F1. Deep-WET’s ACC, 
Spe, MCC, Pre, and F1 were 1.37%, 3.84%, 2.60%, 5.13% and 2.10%, respectively, higher than the second-best 
method CNN-fastText.

To further the comparison, Figs. 4, 5 and 6 illustrate the cross-validation and independent test performance 
for our proposed Deep-WET approach along with four robust classifiers with all the evaluation metrics. From 
Tables 7, 8 and Figs. 4, 5 and 6, we can summarize several observations as follows: (i) GloVe features obtained the 
highest predictive results as compared to fastText and Word2Vec; however, these three feature-encoding tech-
niques all achieved promising performance for the CNN classifiers, followed by LightGBM, XGBoost, and SVM 
classifier. Word2Vec achieved relatively lower performance, whereas fastText was slightly better than Word2Vec, 
(ii) CNN classifier consistently achieved the highest results compared to the other three classifiers for all three 
feature-encoding techniques, and (iii) Finally, our proposed Deep-WET achieved better performance than other 
conventional ML classifiers, highlighting its superior discriminative power.

Comparison of Deep‑WET with the state‑of‑the‑art methods
To further validate the discriminative power of Deep-WET method, we compared its prediction performance 
against other existing DBP methods, including DPP-PseAAC 10, PseDNA-Pro19, iDNA-Prot18, iDNA-Prot|dis14, 
PSFM-DBT22, Local-DPP11,  HMMBinder23, iDNAProt-ES7, IKP-DBPPred24 Xiuquan et al.55, iDRBP-MMC56 and 
 TargetDBP25, on the independent test data. The prediction performance of the existing methods were obtained 
by submitting protein sequences in the independent test dataset (148 DBPs and 148 non-DBPs) to their own 
webservers. Since the web sever of iDNAProt-ES was not functional, the prediction results of iDNAProt-ES were 
obtained from the reimplementation of iDNAProt-ES and the standalone version of  HMMBinder23, respectively. 
Table 8 shows the prediction results of Deep-WET and other existing methods.

According to the F1 and MCC values, these two evaluation metrics of binary predictions, recorded in Table 8, 
we can see that Deep-WET has superior performance over other exiting methods in terms of ACC, MCC, Pre, 
and F1. Notably, by comparing the proposed Deep-WET approach with the second-best predictor TargetDBP in 
terms of ACC, we observe that Deep-WET achieved improvements of 1.39%, 1.70%, 2.50%, 5.18%, and 3.40% on 

Figure 4.  Performance comparison of three feature groups for SVM, XGBoost, LightGBM, and CNN classifiers 
under 5-fold cross-validation test on various evaluation metrics: (A) GloVE, (B) Word2Vec, and (C) fastText.
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ACC, Sen, MCC, Pre, and F1, respectively. Although, iDNAProt-ES obtained the highest Sen value of 91.89%, 
this method provided the lowest Spe value of 51.35%. The main reason behind this high Sen is that iDNAProt-ES 
has lower false negative (FN) prediction. In contrast, Local-DPP obtained the highest prediction performance in 
terms of Spe (93.92%) and shows much lower Pre scores (35.71%) producing many false negatives (FN) during 
prediction, but Acc values of iDNAProt-ES and Local-DPP are lower than those of Deep-WET. Taken together, 
these results demonstrated that Deep-WET has a great potential for DBP prediction.

Ablation study
Our CNN model has key components such as convolutional filters, pooling strategies, kernel sizes and fully 
connected layers, etc. Here, we have conducted ablation studies using the GloVe + fastText + Word2Vec dataset 
under 5-fold CV, assessing how each individual component influences the predictive performance of Deep-WET:

• Remove Specific Convolutional Filters (RSCF): we removed specific filters in the convolutional layers respon-
sible for capturing sequence motifs or patterns linked to DNA binding.

• Variation in Pooling Strategies (VPS): adjust the baseline model by altering pooling strategies to evaluate 
how these changes affect the recognition of relevant sequence features.

• Variation in Kernel Sizes (VKS): Explore diverse kernel sizes within the convolutional layers to capture 
sequence motifs associated with DNA binding of different lengths.

• Removal of Fully Connected Layers (RFCL): create a modified version of the baseline model by removing 
one or more fully connected layers to examine the significance of global features in the classification task.

Figure 7 show the performance comparison of Deep-WET and its four variants in terms of AUC on GloVe + 
fastText + Word2Vec dataset. We can observe that our CNN has better performance than CNN-RSCF, CNN-VPS, 
CNN-VKS and CNN-RFCL on experiment datasets Here, our-CNN obtains the best AUC score of 0.883, and it 
is 0.085%, 0.135%, 0.105% and 0.165% higher than that of CNN-RSCF, CNN-VPS, CNN- VKS and CNN-RFCL, 
respectively, which can illustrate that these parts in our design can improve the predictive performance. Among 
them, CNN-VPS and CNN-RFCL have the lowest performance. This shows that it is very important to perform 
the hyperparameters setting of CNN classifiers (see Table 1), that can effectively improve the performance of 
CNN.

Figure 5.  Performance comparison of three feature groups for SVM, XGBoost, LightGBM, and CNN classifiers 
under independent test on various evaluation metrics: (A) GloVE, (B) Word2Vec, and (C) fastText.
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Web server, data and software availability
We used Apache (2.4.48), Python (3.8.0), and Laravel (8.16.1) to develop a web server for Deep-WET at https:// 
deepw et- dna. 000we bhost app. com/. Users can upload or input DNA binding protein sequences of viruses and 
humans in FASTA format to predict DBPs with probability scores. After clicking the submit button, the server 
will evaluate the protein sequence and check the format for processing. Prediction results will be generated in 
a tabular format with detailed information on the word serial number and predicted probability of DBPs and 
predicted class (DBPs/non-DBPs). Detailed instructions for the webserver can be found on the README option. 
After the final job, users will get a job ID to be used for further queries. The Deep-WET web server applica-
tion stores this job ID for fifteen days. Deep-WET may have a long computational time when users input large 
protein sequences files, since Deep-WET needs to perform NLP-based word embedding packages to generate 
discriminative features and fix the suitable parameters for the CNN classifier to predict. We strongly suggest 

Figure 6.  Performance comparison of various machine learning classifiers trained with three feature groups, 
utilizing different classifier and feature representations, is presented in terms of AUC and MCC evaluation 
metrics under 5-fold cross-validation (A, B) and independent testing (C, D).

Table 6.  Cross-validation results of different ML classifiers and feature encoding schemes. Significant values 
are in bold.

Feature Classifier AUC ACC (%) Sen (%) Spe (%) MCC Pre (%) F1

GloVe

SVM 0.822 74.42 58.14 90.69 0.517 86.21 0.694

XGBoost 0.805 76.63 66.67 83.87 0.516 75.00 0.706

LightGBM 0.817 77.90 63.16 89.58 0.554 82.76 0.716

CNN (Deep-WET) 0.883 82.56 69.44 92.00 0.641 86.21 0.769

fastText

SVM 0.823 73.26 57.50 86.96 0.469 79.31 0.667

XGBoost 0.800 76.74 81.58 72.92 0.541 70.45 0.756

LightGBM 0.825 75.58 61.11 86.00 0.492 75.86 0.677

CNN 0.849 80.37 69.39 89.66 0.608 85.00 0.764

Word2Vec

SVM 0.805 74.21 69.81 77.33 0.470 68.52 0.692

XGBoost 0.806 75.69 65.91 82.54 0.493 72.50 0.691

LightGBM 0.810 74.77 64.44 82.26 0.477 72.50 0.683

CNN 0.826 77.91 63.89 88.00 0.542 79.31 0.708

https://deepwet-dna.000webhostapp.com/
https://deepwet-dna.000webhostapp.com/
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inputting a low number of DBP sequences at a time. The experimental datasets for this study are available at: 
https:// deepw et- dna. 000we bhost app. com/ data.

Conclusions
Identifying DBPs is vital to discovering fundamental protein-DNA mechanisms and understanding their bio-
logical interactions. Here, we develop a new deep learning-based approach termed Deep-WET,to achieve more 
accurate and improved prediction of DBPs. In Deep-WET, we extracted three NLP-based word embedding 
features to generate single features then combined them sequentially, and assigned weights learned through 
the use of the DE algorithm. The SHAP technique was utilized to gain the effective feature subsets, and a deep 
learning-based CNN algorithm was used as a model classifier for predicting DBPs. Comparative analysis on the 
independent test dataset showed that Deep-WET achieved improved performance compared with conventional 
ML classifiers and the existing methods, highlight the effectiveness and robustnessof the proposed Deep-WET. 
The improved performance of Deep-WET is mainly due to the utilization of NLP-based word embedding features 
that can effectively capture the characteristics of DBPs. A user-friendly web server for Deep-WET is available 
at https:// deepw et- dna. royal it. agency/. Deep-WET is anticipated to be a powerful tool to serve the community-
wide effort for the accurate and large-scale identification of potential DBPs from sequences information. Deep 
learning shows advanced prediction abilities in various fields of computational biology such as hERG  blockers57 
, disease-related  metabolites58,59, single-cell60 and human lncRNA-miRNA  interactions61,62. Most studies propose 
deep learning based  models63 for prediction tasks. To enhance the predictive capabilities of our Deep-WET 
model, our future efforts will focus on three key areas: (1) although our NLP-based feature extraction is now 
commonly used for extracting distinct features, there may be some limitations, such as ambiguities, lexical 
gaps, and structural gaps. It would be interesting to use deep learning-based  autoencoders59,60,64 to effectively 
convey the hidden information within DBPs sequences; (2) implementing a small-loss approach and integrating 

Table 7.  Independent test results of different ML classifiers and feature encoding schemes. Significant values 
are in bold.

Feature Classifier AUC ACC (%) Sen (%) Spe (%) MCC Pre (%) F1

GloVe

SVM 0.803 73.52 76.25 71.11 0.473 70.11 0.731

XGBoost 0.787 73.97 79.41 69.23 0.486 69.23 0.740

LightGBM 0.802 75.34 78.37 72.22 0.507 74.36 0.763

CNN (Deep-WET) 0.805 78.08 78.05 78.13 0.559 82.05 0.800

fastText

SVM 0.812 73.20 78.26 68.63 0.470 69.23 0.735

XGBoost 0.804 73.77 75.41 72.13 0.476 73.02 0.742

LightGBM 0.783 74.59 72.22 78.00 0.494 82.54 0.770

CNN 0.816 76.71 78.95 74.29 0.533 76.92 0.779

Word2Vec

SVM 0.778 73.19 66.67 77.05 0.433 63.16 0.649

XGBoost 0.773 75.25 69.44 78.69 0.476 65.79 0.676

LightGBM 0.797 73.98 81.08 66.67 0.483 71.43 0.760

CNN 0.807 75.35 74.42 76.67 0.504 82.05 0.781

Table 8.  Performance comparisons of DeepWET with the state-of-the-art methods on the independent test 
dataset. Significant values are in bold. a The prediction performance of the existing methods were obtained 
by submitting protein sequences in the independent test dataset (148 DBPs and 148 non-DBPs) to their own 
webservers.

Predictora AUC Sen (%) Spe (%) MCC Pre (%) F1

DPP-PseAAC 61.15 55.41 66.89 0.225 62.60 0.588

iDNA-Prot 62.16 63.51 60.81 0.243 61.84 0.627

iDNA-Prot|dis 68.24 72.30 64.19 0.366 66.88 0.695

PseDNA-Pro 67.23 78.38 56.08 0.354 64.09 0.705

PSFM-DBT 68.58 71 .62 65.54 0.372 67.52 0.695

IKP-DBPPred 58.11 52.70 63.51 0.163 59.09 0.557

Local-DPP 48.65 3.38 93.92 – 0.06 35.71 0.062

iDNAProt-ES(on PDB1075) 71.62 91 .89 51.35 0.473 65.38 0.764

TargetDBP 76.69 76.35 77.03 0.534 76.87 0.766

Xiuquan et al. 77 – – – – –

iDRBP-MMC 70 – – – – –

Deep-WET 78.08 78.05 78.13 0.559 82.05 0.800

https://deepwet-dna.000webhostapp.com/data
https://deepwet-dna.royalit.agency/
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probabilistic local outlier factor (pLOF) with the extracted features to tackle the challenge of label noise in the 
dataset, ensuring a trustworthy application; (3) developing a graph-based deep learning model for predicting 
DBPs with unknown structures.

Cellular death is a fundamental and complex biological process that is an underlying driver for many dis-
eases. Authors  in65,66, worked for cell death. Our CNN model can be used to classify cells undergoing cell death. 
This deep learning network has the ability to highly predict cell death. Finally, it is possible to provide a simple 
Python tool that can be broadly used to detect cell death. Furthermore, our CNN model can recommend specific 
drugs for the disease.

Data availability
All the data used in this study are available at https:// deepw et- dna. monar catec hnical. com/ data.

Received: 25 November 2023; Accepted: 22 January 2024

References
 1. Liu, J.-M. & Yan, X.-P. Competitive aptamer bioassay for selective detection of adenosine triphosphate based on metal-paired 

molecular conformational switch and fluorescent gold nanoclusters. Biosens. Bioelectron. 36, 135–141. https:// doi. org/ 10. 1016/j. 
bios. 2012. 04. 015 (2012).

 2. Ren, B. et al. Genome-wide location and function of dna binding proteins. Science 290, 2306–2309. https:// doi. org/ 10. 1126/ scien 
ce. 290. 5500. 2306 (2000).

 3. Gurova, K. New hopes from old drugs: Revisiting dna-binding small molecules as anticancer agents. Future Oncol. 5, 1685–1704. 
https:// doi. org/ 10. 2217/ fon. 09. 127 (2009).

 4. Leung, C.-H., Chan, D.S.-H., Ma, V.P.-Y. & Ma, D.-L. Dna-binding small molecules as inhibitors of transcription factors. Med. Res. 
Rev. 33, 823–846. https:// doi. org/ 10. 1002/ med. 21266 (2013).

 5. Eisenberg, D., Marcotte, E. M., Xenarios, I. & Yeates, T. O. Protein function in the post-genomic era. Nature 405, 823–826. https:// 
doi. org/ 10. 1038/ 35015 694 (2000).

 6. Fang, Y., Guo, Y., Feng, Y. & Li, M. Predicting dna-binding proteins: Approached from chou’s pseudo amino acid composition and 
other specific sequence features. Amino Acids 34, 103–109. https:// doi. org/ 10. 1007/ s00726- 007- 0568-2 (2008).

 7. Chowdhury, S. Y., Shatabda, S. & Dehzangi, A. idnaprot-es: Identification of dna-binding proteins using evolutionary and structural 
features. Sci. Rep. 7, 14938. https:// doi. org/ 10. 1038/ s41598- 017- 14945-1 (2017).

 8. Xu, R. et al. endna-prot: Identification of dna-binding proteins by applying ensemble learning. BioMed Res. Int.https:// doi. org/ 10. 
1155/ 2014/ 294279 (2014).

 9. Xu, R. et al. Identifying dna-binding proteins by combining support vector machine and pssm distance transformation. BMC Syst. 
Biol. 9, 1–12. https:// doi. org/ 10. 1186/ 1752- 0509-9- S1- S10 (2015).

 10. Rahman, M. S., Shatabda, S., Saha, S., Kaykobad, M. & Rahman, M. S. Dpp-pseaac: A dna-binding protein prediction model using 
Chou’s general pseaac. J. Theor. Biol. 452, 22–34. https:// doi. org/ 10. 1016/j. jtbi. 2018. 05. 006 (2018).

 11. Hwang, S., Gou, Z. & Kuznetsov, I. B. Dp-bind: A web server for sequence-based prediction of dna-binding residues in dna-binding 
proteins. Bioinformatics 23, 634–636. https:// doi. org/ 10. 1093/ bioin forma tics/ btl672 (2007).

 12. Lou, W. et al. Sequence based prediction of dna-binding proteins based on hybrid feature selection using random forest and gauss-
ian naive bayes. PLoS ONE 9, e86703. https:// doi. org/ 10. 1371/ journ al. pone. 00867 03 (2014).

 13. Wang, Y., Ding, Y., Guo, F., Wei, L. & Tang, J. Improved detection of dna-binding proteins via compression technology on pssm 
information. PLoS ONE 12, e0185587. https:// doi. org/ 10. 1371/ journ al. pone. 01855 87 (2017).

 14. Liu, B. et al. idna-prot| dis: Identifying dna-binding proteins by incorporating amino acid distance-pairs and reduced alphabet 
profile into the general pseudo amino acid composition. PLoS ONE 9, e106691. https:// doi. org/ 10. 1371/ journ al. pone. 01066 91 
(2014).

 15. Zhao, X.-W., Li, X.-T., Ma, Z.-Q. & Yin, M.-H. Identify dna-binding proteins with optimal chou’s amino acid composition. Protein 
Peptid. Lett. 19, 398–405. https:// doi. org/ 10. 2174/ 09298 66127 99789 404 (2012).

 16. Ahmad, S., Gromiha, M. M. & Sarai, A. Analysis and prediction of dna-binding proteins and their binding residues based on 
composition, sequence and structural information. Bioinformatics 20, 477–486. https:// doi. org/ 10. 1093/ bioin forma tics/ btg432 
(2004).

Figure 7.  Comparative analysis between Our CNN and its ablation experiments on the GloVe + fastText + 
Word2Vec dataset.

https://deepwet-dna.monarcatechnical.com/data
https://doi.org/10.1016/j.bios.2012.04.015
https://doi.org/10.1016/j.bios.2012.04.015
https://doi.org/10.1126/science.290.5500.2306
https://doi.org/10.1126/science.290.5500.2306
https://doi.org/10.2217/fon.09.127
https://doi.org/10.1002/med.21266
https://doi.org/10.1038/35015694
https://doi.org/10.1038/35015694
https://doi.org/10.1007/s00726-007-0568-2
https://doi.org/10.1038/s41598-017-14945-1
https://doi.org/10.1155/2014/294279
https://doi.org/10.1155/2014/294279
https://doi.org/10.1186/1752-0509-9-S1-S10
https://doi.org/10.1016/j.jtbi.2018.05.006
https://doi.org/10.1093/bioinformatics/btl672
https://doi.org/10.1371/journal.pone.0086703
https://doi.org/10.1371/journal.pone.0185587
https://doi.org/10.1371/journal.pone.0106691
https://doi.org/10.2174/092986612799789404
https://doi.org/10.1093/bioinformatics/btg432


16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2961  | https://doi.org/10.1038/s41598-024-52653-9

www.nature.com/scientificreports/

 17. Xu, R. et al. Identification of dna-binding proteins by incorporating evolutionary information into pseudo amino acid composition 
via the top-n-gram approach. J. Biomol. Struct. Dyn. 33, 1720–1730. https:// doi. org/ 10. 1080/ 07391 102. 2014. 968624 (2015).

 18. Lin, W.-Z., Fang, J.-A., Xiao, X. & Chou, K.-C. idna-prot: Identification of dna binding proteins using random forest with grey 
model. PLoS ONE 6, e24756. https:// doi. org/ 10. 1371/ journ al. pone. 00247 56 (2011).

 19. Liu, B. et al. Psedna-pro: Dna-binding protein identification by combining chou’s pseaac and physicochemical distance transfor-
mation. Mol. Inf. 34, 8–17. https:// doi. org/ 10. 1002/ minf. 20140 0025 (2015).

 20. Liu, B., Wang, S. & Wang, X. Dna binding protein identification by combining pseudo amino acid composition and profile-based 
protein representation. Sci. Rep. 5, 15479. https:// doi. org/ 10. 1038/ srep1 5479 (2015).

 21. Wei, L., Tang, J. & Zou, Q. Local-dpp: An improved dna-binding protein prediction method by exploring local evolutionary 
information. Inf. Sci. 384, 135–144. https:// doi. org/ 10. 1016/j. ins. 2016. 06. 026 (2017).

 22. Zhang, J. & Liu, B. Psfm-dbt: Identifying dna-binding proteins by combing position specific frequency matrix and distance-bigram 
transformation. Int. J. Mol. Sci. 18, 1856. https:// doi. org/ 10. 3390/ ijms1 80918 56 (2017).

 23. Zaman, R. et al. Hmmbinder: Dna-binding protein prediction using hmm profile based features. BioMed Res. Int.https:// doi. org/ 
10. 1155/ 2017/ 45906 09 (2017).

 24. Qu, K., Han, K., Wu, S., Wang, G. & Wei, L. Identification of dna-binding proteins using mixed feature representation methods. 
Molecules 22, 1602. https:// doi. org/ 10. 3390/ molec ules2 21016 02 (2017).

 25. Hu, J., Zhou, X.-G., Zhu, Y.-H., Yu, D.-J. & Zhang, G.-J. Targetdbp: Accurate dna-binding protein prediction via sequence-based 
multi-view feature learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 1419–1429. https:// doi. org/ 10. 1109/ TCBB. 2019. 28936 
34 (2019).

 26. Gao, M. & Skolnick, J. Dbd-hunter: A knowledge-based method for the prediction of dna–protein interactions. Nucleic Acids Res. 
36, 3978–3992. https:// doi. org/ 10. 1093/ nar/ gkn332 (2008).

 27. Nimrod, G., Schushan, M., Szilágyi, A., Leslie, C. & Ben-Tal, N. idbps: A web server for the identification of dna binding proteins. 
Bioinformatics 26, 692–693. https:// doi. org/ 10. 1093/ bioin forma tics/ btq019 (2010).

 28. Zhao, H., Wang, J., Zhou, Y. & Yang, Y. Predicting dna-binding proteins and binding residues by complex structure prediction and 
application to human proteome. PLoS ONE 9, e96694. https:// doi. org/ 10. 1371/ journ al. pone. 00966 94 (2014).

 29. Yang, J. et al. The i-tasser suite: Protein structure and function prediction. Nat. Methods 12, 7–8. https:// doi. org/ 10. 1038/ nmeth. 
3213 (2015).

 30. Nanni, L. & Brahnam, S. Set of approaches based on 3d structure and position specific-scoring matrix for predicting dna-binding 
proteins. Bioinformatics 35, 1844–1851. https:// doi. org/ 10. 1093/ bioin forma tics/ bty912 (2019).

 31. Sang, X. et al. Hmmpred: Accurate prediction of dna-binding proteins based on hmm profiles and xgboost feature selection. 
Comput. Math. Methods Med.https:// doi. org/ 10. 1155/ 2020/ 13847 49 (2020).

 32. Zhu, Y.-H., Hu, J., Song, X.-N. & Yu, D.-J. Dnapred: Accurate identification of dna-binding sites from protein sequence by ensem-
bled hyperplane-distance-based support vector machines. J. Chem. Inf. Model. 59, 3057–3071. https:// doi. org/ 10. 1021/ acs. jcim. 
8b007 49 (2019).

 33. Zhang, Q. et al. Stackpdb: Predicting dna-binding proteins based on xgb-rfe feature optimization and stacked ensemble classifier. 
Appl. Soft Comput. 99, 106921. https:// doi. org/ 10. 1016/j. asoc. 2020. 106921 (2021).

 34. Rose, P. W. et al. The rcsb protein data bank: Views of structural biology for basic and applied research and education. Nucleic 
Acids Res. 43, D345–D356. https:// doi. org/ 10. 1093/ nar/ gku12 14 (2015).

 35. Pennington, J., Socher, R. & Manning, C. D. Glove: Global vectors for word representation. in Proceedings of the 2014 Conference 
on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543 (2014).

 36. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compo-
sitionality. Adv. Neural Inf. Process. Syst. 26, 1–10 (2013).

 37. Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput. Ling. 
5, 135–146. https:// doi. org/ 10. 1162/ tacl_a_ 00051 (2017).

 38. Joulin, A. et al. Fasttext.zip: Compressing text classification models. http:// arxiv. org/ abs/ 1612. 03651https:// doi. org/ 10. 48550/ arXiv. 
1612. 03651 (2016).

 39. Joulin, A., Grave, E., Bojanowski, P. & Mikolov, T. Bag of tricks for efficient text classification. http:// arxiv. org/ abs/ 1607. 01759https:// 
doi. org/ 10. 48550/ arXiv. 1607. 01759 (2016).

 40. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297. https:// doi. org/ 10. 1007/ BF009 94018 (1995).
 41. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd ACM sigkdd International Conference 

on Knowledge Discovery and Data Mining, 785–794. https:// doi. org/ 10. 1145/ 29396 72. 29397 85 (2016).
 42. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst.https:// doi. org/ 

10. 48550/ arXiv. 1705. 07874 (2017).
 43. Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S. & Mohammadian, A. K. Toward safer highways, application of xgboost 

and shap for real-time accident detection and feature analysis. Accid. Anal. Prev. 136, 105405. https:// doi. org/ 10. 1016/j. aap. 2019. 
105405 (2020).

 44. Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 1–10 (2017).
 45. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https:// doi. org/ 10. 1038/ natur e14539 (2015).
 46. Grinblat, G. L., Uzal, L. C., Larese, M. G. & Granitto, P. M. Deep learning for plant identification using vein morphological patterns. 

Comput. Electron. Agric. 127, 418–424. https:// doi. org/ 10. 1016/j. compag. 2016. 07. 003 (2016).
 47. Yen, S.-J. & Lee, Y.-S. Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36, 5718–5727. 

https:// doi. org/ 10. 1016/j. eswa. 2008. 06. 108 (2009).
 48. Wiatowski, T. & Bölcskei, H. A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans. 

Inf. Theor. 64, 1845–1866. https:// doi. org/ 10. 1109/ TIT. 2017. 27762 28 (2017).
 49. Hunter, J. D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9, 90–95. https:// doi. org/ 10. 1109/ MCSE. 2007. 55 (2007).
 50. Waskom, M. L. Seaborn: Statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
 51. Lumley, S. Interactive Visualization of Climate Change: Characteristics, Intentions, and Metrics for Success (McGill University, 2021).
 52. Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 

46, 389–422. https:// doi. org/ 10. 1023/A: 10124 87302 797 (2002).
 53. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288. https:// doi. org/ 10. 1111/j. 2517- 6161. 

1996. tb020 80.x (1996).
 54. Hu, S. et al. A convolutional neural network system to discriminate drug-target interactions. IEEE/ACM Trans. Comput. Biol. 

Bioinform. 18, 1315–1324. https:// doi. org/ 10. 1109/ TCBB. 2019. 29401 87 (2019).
 55. Du, X. & Hu, J. Deep multi-label joint learning for rna and dna-binding proteins prediction. IEEE/ACM Trans. Comput. Biol. 

Bioinform. 20, 307–320 (2022).
 56. Zhang, J., Chen, Q. & Liu, B. idrbp_mmc: Identifying dna-binding proteins and rna-binding proteins based on multi-label learning 

model and motif-based convolutional neural network. J. Mol. Biol. 432, 5860–5875 (2020).
 57. Wang, T., Sun, J. & Zhao, Q. Investigating cardiotoxicity related with herg channel blockers using molecular fingerprints and graph 

attention mechanism. Comput. Biol. Med. 153, 106464 (2023).
 58. Sun, F., Sun, J. & Zhao, Q. A deep learning method for predicting metabolite-disease associations via graph neural network. Brief. 

Bioinform. 23, 266 (2022).

https://doi.org/10.1080/07391102.2014.968624
https://doi.org/10.1371/journal.pone.0024756
https://doi.org/10.1002/minf.201400025
https://doi.org/10.1038/srep15479
https://doi.org/10.1016/j.ins.2016.06.026
https://doi.org/10.3390/ijms18091856
https://doi.org/10.1155/2017/4590609
https://doi.org/10.1155/2017/4590609
https://doi.org/10.3390/molecules22101602
https://doi.org/10.1109/TCBB.2019.2893634
https://doi.org/10.1109/TCBB.2019.2893634
https://doi.org/10.1093/nar/gkn332
https://doi.org/10.1093/bioinformatics/btq019
https://doi.org/10.1371/journal.pone.0096694
https://doi.org/10.1038/nmeth.3213
https://doi.org/10.1038/nmeth.3213
https://doi.org/10.1093/bioinformatics/bty912
https://doi.org/10.1155/2020/1384749
https://doi.org/10.1021/acs.jcim.8b00749
https://doi.org/10.1021/acs.jcim.8b00749
https://doi.org/10.1016/j.asoc.2020.106921
https://doi.org/10.1093/nar/gku1214
https://doi.org/10.1162/tacl_a_00051
http://arxiv.org/abs/1612.03651
https://doi.org/10.48550/arXiv.1612.03651
https://doi.org/10.48550/arXiv.1612.03651
http://arxiv.org/abs/1607.01759
https://doi.org/10.48550/arXiv.1607.01759
https://doi.org/10.48550/arXiv.1607.01759
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1016/j.aap.2019.105405
https://doi.org/10.1016/j.aap.2019.105405
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.compag.2016.07.003
https://doi.org/10.1016/j.eswa.2008.06.108
https://doi.org/10.1109/TIT.2017.2776228
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1109/TCBB.2019.2940187


17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2961  | https://doi.org/10.1038/s41598-024-52653-9

www.nature.com/scientificreports/

 59. Gao, H. et al. Predicting metabolite-disease associations based on auto-encoder and non-negative matrix factorization. Brief. 
Bioinform. 24, 259 (2023).

 60. Hu, H. et al. Gene function and cell surface protein association analysis based on single-cell multiomics data. Comput. Biol. Med. 
157, 106733 (2023).

 61. Wang, W., Zhang, L., Sun, J., Zhao, Q. & Shuai, J. Predicting the potential human lncrna–mirna interactions based on graph con-
volution network with conditional random field. Brief. Bioinform. 23, 463 (2022).

 62. Zhang, L., Yang, P., Feng, H., Zhao, Q. & Liu, H. Using network distance analysis to predict lncrna–mirna interactions. Interdiscipl. 
Sci. Comput. Life Sci. 13, 535–545 (2021).

 63. Chen, Z. et al. Dcamcp: A deep learning model based on capsule network and attention mechanism for molecular carcinogenicity 
prediction. J. Cell. Mol. Med. 27, 3117–3126 (2023).

 64. Meng, R., Yin, S., Sun, J., Hu, H. & Zhao, Q. scaaga: Single cell data analysis framework using asymmetric autoencoder with gene 
attention. Comput. Biol. Med. 165, 107414 (2023).

 65. Li, X. et al. Rip1-dependent linear and nonlinear recruitments of caspase-8 and rip3 respectively to necrosome specify distinct 
cell death outcomes. Protein Cell 12, 858–876 (2021).

 66. Jin, J., Xu, F., Liu, Z., Shuai, J. & Li, X. Quantifying the underlying landscape, entropy production and biological path of the cell 
fate decision between apoptosis and pyroptosis. Chaos Solitons Fract. 178, 114328 (2024).

Acknowledgements
This work was supported by the TM R&D Fund (Project no. RDTC/221054 and SAP ID: MMUE/220023) and 
the Multimedia University (MMU) IR Fund (Project ID MMUI/220041).

Author contributions
Project administration and supervision: K.O.M.G., W.S.; conceptualization, investigation, methodology and 
visualization: S.M. H.M., M.F.H. and D.N.; analysis, validation and software: S.M.H.M. and M.F.H.; web server 
development: M.F.H.; writing—original draft: S.M.H.M.; writing—review and editing: S.M.H.M., W.S., K.O.M.G., 
and D.N. All authors reviewed and approved the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.M.H.M. or K.O.M.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features
	Materials and methods
	The overall framework of Deep-WET
	Data preparation
	Feature encodings
	Word2Vec
	GloVe
	fastText

	Weight learning for weighted features
	SHAP-based feature selection scheme
	Implementation of convolutional neural network
	Performance evaluation
	Experimental setup and packages

	Results and discussion
	Performance comparison of different feature encodings
	Feature section approaches improve the predictive performance
	Hyperparameter of CNN
	Comparison of Deep-WET with conventional ML classifiers
	Comparison of Deep-WET with the state-of-the-art methods
	Ablation study
	Web server, data and software availability

	Conclusions
	References
	Acknowledgements


