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A collapse risk assessment method 
for subway foundation pit based 
on cloud model and improved 
Dempster–Shafer evidence theory
Bo Wu 1, Jiajia Zeng 2*, Ruonan Zhu 2, Fan Yang 1, Cong Liu 1,3* & Yundong Xie 4

Collapse is a major engineering hazard in open-cut foundation pit construction, and risk assessment 
is crucial for considerably reducing engineering hazards. This study aims to address the ambiguity 
problem of qualitative index quantification and the failure of high-conflict evidence fusion in risk 
assessment. Thus, a fast-converging and high-reliability multi-source data fusion method based on 
the cloud model (CM) and improved Dempster–Shafer evidence theory is proposed. The method can 
achieve an accurate assessment of subway pit collapse risks. First, the CM is introduced to quantify 
the qualitative metrics. Then, a new correction parameter is defined for improving the conflicts 
among evidence bodies based on conflict degree, discrepancy degree and uncertainty, while a fine-
tuning term is added to reduce the subjective effect of global focal element assignment. Finally, 
the risk assessment result is obtained according to the maximum affiliation principle. The method 
is successfully applied to Luochongwei Station, where the difference between the maximum value 
and the second largest value of the basic probability assignment is 0.624, and the global uncertainty 
degree is 0.087. Both values satisfy the decision evaluation condition; however, values of other 
methods only satisfy one or neither condition. In addition, the proposed method requires only four 
cycles to reach the steady state by fusing data of the same index, which has faster convergence 
compared with that of other methods. The proposed method has good universality and effectiveness 
in subway pit collapse risk assessment.

The subway is an important part of rail transportation; It attracts a high density of people and has a high capacity 
in urban areas, effectively relieving ground traffic congestion. However, unforeseen safety risks are associated 
with the complexity of a subway pit construction and the sensitivity of the surrounding environment. The 
open-cut method is widely used in subway pit excavation because of its low cost and high adaptability to the 
stratum. Owing to the numerous risk factors involved in pit construction, the pit is susceptible to collapses, 
which may result in economic losses and human casualties. Therefore, it is crucial to accurately assess the risks 
of pit construction collapse to ensure a safe subway pit construction1–3.

Common means of collecting data for a subway pit risk assessment exercise include survey and design, site 
inspection, and instrument-based monitoring. Owing to the complexity and sensitivity of the construction 
environment, a single data source may be considerably influenced by electromagnetic interference and human 
subjectivity. Additionally, a single data source cannot fully reflect the state of the construction site, and it may 
introduce fuzziness into the data. Therefore, multi-source information fusion methods are typically used to 
improve the reliability of the assessments4,5. For instance, the cloud model (CM) was used to quantify qualitative 
data in a study6. In another study, Yan used the CM to assess the tunneling risk of shield machines in soil–rock 
composite strata using monitoring data and relying on construction engineering experience7. Deng used the CM 
to characterize the uncertainty of evaluation factors and proposed a 3D urban geological suitability evaluation 
system8. These studies show that the CM can be used for data conversion in the information fusion assessment 
of subway pit risks.
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However, owing to the different focus points and data collection levels of different information sources, 
harmonizing the data obtained is often difficult, and the data are typically prone to bias as well as high conflicts 
and mutual exclusion. Dempster–Shafer (D–S) evidence theory is widely used in the fields of data fusion, 
reliability assessment, and fault identification9–11. Shen proposed a risk evaluation method that combines 
fuzzy sets with D–S evidence theory to analyze the risks of deep-foundation pit construction under conditions 
of incomplete information12. Huang considered the arbitrary selection of fuzzy operators and improved the 
credibility of the shield tunnel risk assessment by using D–S evidence theory for the uncertainty inference of 
the confidence function13. Mokarram combined fuzzy hierarchical analysis and D–S evidence theory to predict 
karst suitability zones, and the results showed that the proposed method was superior to using only the fuzzy 
hierarchical analysis14. Further, Park proposed a data integration framework based on D–S evidence theory for 
predicting landslide sensitivity, and the method effectively integrates multiple datasets while achieving a higher 
prediction accuracy than that of the traditional logistic regression15. However, the method does not consider the 
high conflicting pieces of information; hence, other scholars have improved on the method16–18. As only a single 
conflict metric is considered, different application scenarios may face weak immunity, and the generalization 
ability of the method is insufficient to characterize the high degree of mutual exclusion accurately.

Therefore, this paper proposes a subway pit collapse risk assessment method based on the CM and improved 
D–S evidence theory. Three data sources, including survey and design, site inspection, and instrumented 
monitoring, are used, and video surveillance data are introduced. The CM is introduced to quantify qualitative 
metrics, and a new correction parameter is defined according to conflict, discrepancy, and uncertainty degrees. 
Additionally, evidence focal element assignment is considered to adjust the fusion rules to solve the high-conflict 
multi-data fusion failure problem, providing a new optimized idea and approach to subway pit risk fusion 
assessment.

Methods
A multi-data fusion method based on the CM and improved D–S is proposed to improve the credibility and 
robustness of subway pit collapse risk assessments. The flow chart of the method is shown in Fig. 1. First, 
the risk assessment system and assessment set are constructed from an engineering case, and the numerical 
cloud characteristics and affiliation function of the assessment set are obtained using the CM. Conflict degree, 
discrepancy, and uncertainty are introduced as terms for the first type of conflict to obtain the credibility and 
weight coefficients of the different pieces of evidence. For the second type of conflict, fine-tuning terms are added 
to improve the fusion rules to adjust global conflicts. Finally, the overall risk assessment results of the foundation 
pit are derived according to the principle of maximum affiliation.

BPA function construction based on CM
Let U be a quantitative theoretical domain expressed numerically and C be a qualitative concept in the theoretical 
domain U. If there exists a quantitative value x (x ∈ U), x is a random realization in C, and the affiliation μ(x) 
(μ(x) ∈ [0,1]) of C is a random number with a stable tendency, then the distribution of μ(x) in the theoretical 
domain U is simply called a cloud, and each value of μ(x) is called a cloud drop19,20. Ex is the expected value 
of the cloud drops’ distribution in U, and it describes the qualitative concept of cloud drops. En represents the 
qualitative concept of uncertainty, and it reflects the discrete degree of cloud drops. He is the uncertainty level 
of En, and it represents the degree of dispersion of En.

(1)







Ex = (a− + a+)/2
En = (a+ − a−)/2.355
He = 0.01

Figure 1.   Flow chart of subway foundation pit collapse risk.
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where a− and a+ denote the lower and upper bounds of the assessment interval ([a−, a+]), respectively. As the 
attribute values given by the decision maker are stable, the degrees of dispersion are essentially the same. He is 
generally obtained empirically and is taken as 0.01 in this study.

Let the CM parameter of the risk level Ak obtained from the s-th indicator of the i-th data source be Exisk, 
Enisk, and Heisk, and the corresponding affiliation degree is μis(Ak). The affiliation degree is transformed into the 
basic probability assignment (BPA, mis(Ak)), and the global uncertainty is m(Θ).

where En′isk is a normal random number that satisfies an expectation of Enisk and a standard deviation of Heisk. i 
denotes the number of data sources. s denotes the number of indicators for the data source. k denotes the number 
of risk levels, and the value is taken as 4 in this study.

Improved evidence conflict method
Evidence conflicts can be categorized into two types according to the evidence conflict fusion process. The first 
type is a conflict between evidence bodies, which results from the bodies of evidence themselves. The second type 
is the flaw of the fusion rule21,22. For the risk assessment in this study, two types of evidence bodies are considered: 
different indicator evidence bodies of the same data source (Internal Evidence Body, IEB) and different data-
source evidence bodies (External Evidence Body, EEB). In this study, IBE is used to illustrate the fusion process.

For the first type of conflicts, multiple indicators are considered, including conflict degree (α), variance degree 
(β), and uncertainty degree (γ). Conflict degree (α) is expressed as a conflict factor, which indicates the overall 
conflict between evidence bodies. Let αst

i  be the conflict degree between the s-th and t-th indicator evidence 
bodies of the i-th data source.

where ms
i and mt

i denote the mass function of the s-th and t-th indicator of the i-th data source, respectively.
The variance degree (β) is expressed in terms of Euclidean distance, which describes the similarity between 

the pieces of evidence. Let βst
i  be the difference degree between the s-th and t-th indicators of the i-th data source.

To maintain the same monotonicity among conflict degree α, variance degree β, and uncertainty degree 
γ, the focusing degree θ is introduced to represent the uncertainty degree γ. The focusing degree θ indicates 
the uncertainty of a single evidence body itself. The greater the focusing degree θ, the smaller the uncertainty 
degree γ. Let θ si  denote the focusing degree of the s-th indicator of the i-th data source, and its corresponding 
uncertainty degree is γ s

i .

where |Θ| is the cardinality of the subset Θ.
The conflict degree (α), variance degree (β), and uncertainty degree (γ) have the same monotonicity. The 

larger the values of the three indicators above, the greater the value of the evidence conflict. The stereoscopic 
space is introduced to optimize the D–S evidence theory by projecting α, β, and γ onto the x-axis, y-axis, and 
z-axis, respectively, as shown in Fig. 2. The dynamic weight coefficient method is used to determine the weight 
coefficients of different pieces of evidence. The spatial distance from (α, β, γ) to (0, 0, 0) is introduced in this 
study. A new conflict parameter ( dissi ) can be obtained after monotonicity consistency processing. Since the new 
parameter ( dissi ) varies with evidence, it is normalized to obtain the weight coefficients (ws).

where ( ms
i(Ak))′ denotes the BPA of the s-th indicator evidence body of the i-th data source to the k-th target Ak 

after correction, and 0 ≤ (ms
i(Ak))′ ≤ 1, 0 ≤ (ms

i(Θ))′ ≤ 1, s = 1, 2,…, q, k = 1, 2,…, p.
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The above correction method solves the weight proportion of the BPA and eliminates the differences among 
evidence bodies. However, the method fails to solve the global focal element assignment among evidence bod-
ies, making the allocation of global focal elements more subjective. Therefore, the L(Ak) is added to decompose 
the global conflicts to local conflicts, which can eliminate the difference among pieces of evidence. Let (m(Ak))″ 
denote the mass function of the s-th and t-th indicator evidence of the i-th data source fused against the target 
Ak. L(Ak) is the corresponding fine-tuning term.

where C and D denote subevents of event Ak.
After fusion, the mass matrix is [(ms

i(A1))″, ( ms
i(A2))″, …, ( ms

i(Ak))″, …, ( ms
i(Ap))″, ( ms

i(Θ))″]. Additionally, 
( ms

i(Θ))″ ≤ 0.1, max((ms
i(Ak))″)–max((ms

i(Ap))″) ≥ 0.2, k ≠ p.

Results
Engineering background
This study was based on the Luochongwei Station of Guangzhou Metro Line 13. The BPA of different data 
sources was constructed using the CM. To verify the effectiveness of the proposed method, the improved D–S 
theory was applied to assess the risk of construction safety. The station is an underground three-level side station 
with a total length of 220 m, a total construction area of 24,570 square meters, and a standard section width 
of 34 m. Open excavation is performed in the project at an excavation depth of approximately 24 m. The main 
enclosure structure adopts the system of a 1-m underground diaphragm wall and internal support. The station 
has a complex surrounding environment, and the station plan is shown in Fig. 3a. Additionally, the station has 
poor geological conditions, a nearby fracture zone, and abundant groundwater. The section view of the station 
is shown in Fig. 3b.

Survey and design index system
The survey and design index is semi-qualitative. Original data were obtained through expert scoring for a 
semi-qualitative index. To establish the risk assessment model, the assessment score was set to 10 points. The 
higher the score, the greater the risk. The assessment level was divided into four risk levels: I, II, III, and IV. The 
risk increases sequentially from I to IV23. The risk index grading criteria based on the survey and design are 
presented in Table 1.

The foundation excavation has an impact on the surrounding environment, which can be determined by the 
foundation excavation parameters, the location and state of the surrounding buildings, and the hydrogeological 
conditions. Such influences are determined when the engineering survey and design are completed, which are 
also closely related to the risk of pit construction24. Risk indicators based on survey and design can be divided 
into three categories25, namely, the inherent properties of the pit (E1), which can reflect the disaster losses; 
hydrogeological indicators (E2), which can reflect the possibility of damage to the pit; and the conditions of the 
surrounding structures (E3), which can reflect the possibility of damage to the structures. The statistical results 
are presented in Table 2.

Instrument monitoring index system
The instrument monitoring index is quantitative. Original data were obtained from on-site measurements for 
the quantitative index. The risk assessment indicators selected were surface settlement (F1), groundwater level 
(F2), horizontal displacement of wall top (F3), and vertical displacement of column (F4)23,26,27. These four indexes 
depend on both cumulative values and change rates, as shown in Table 3. As the results of the risk assessment 
and the actual monitoring values had the same trend, the early-warning value was used as a baseline, and the 
index was converted to a dimensionless quantity by K to harmonize risk indicators. K is the ratio of the actual 
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Figure 2.   Improved evidence correction parameter 3D space vector.
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monitoring value to the early-warning value. The risk indicators were divided into four levels using 60%, 80%, 
and 100% of the early-warning value, as shown in Table 4.

Site inspection index system
The site inspection index is qualitative. Original data were obtained from expert scoring for the qualitative index; 
the criteria for expert scoring are presented in Table 1. The instrument monitoring data cannot fully reflect the 
construction risks, such as cracks and water seepage in the foundation pit. The site inspection indicators are an 
extension of the instrument monitoring indicators, which focus on the items that are difficult to quantify. The risk 
assessment indicators considered were construction work conditions (G1), support structure (G2), surroundings 
(G3), and monitoring facilities (G4)28–30. The risk-level classification criteria for the site inspection indicators are 
consistent with the survey and design indicators, which are also classified into four levels23, as shown in Table 5.

Video surveillance index system
The video surveillance index is qualitative. The original data were obtained from expert scoring for the qualitative 
index; the criteria for expert scoring are presented in Table 1. Video surveillance was introduced to assess the 
management risk of construction sites, which are divided into remote monitoring, medium-range monitoring, 

Figure 3.   (a) Station plan. (b) Section view of station.

Table 1.   Risk indicator grading criteria and acceptance guidelines based on survey and design.

Risk level Level I Level II Level III Level IV

Score [0, 2.5) [2.5, 5) [5, 7.5) [7.5, 10]

Acceptance guidelines Acceptable No expectations Hard to accept Unacceptable

Processing measures Less risky, can maintain status quo Higher risk, need to pay close atten-
tion

High risk, need to identify causes and 
control risks

The risk is very high, need to start 
the emergency plan, take immediate 
measures to reduce the risk
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and near-range monitoring for different construction scenarios31,32. The large-scenario risk monitoring (H1) is 
characterized by a high number of risk target subjects, a wide spatial scope of risk distribution, and a scattered 
distribution of risk sources. The medium-scenario risk monitoring is characterized by a clear and limited number 
of risk target subjects, a more fixed risk distribution area, and a more concentrated distribution of risk sources. 
The small-scenario risk monitoring is characterized by uniquely identified risk target subjects, uniquely identified 
risk distribution locations, and risk sources concentrated in very small spatial areas. The unsafe factors of the 
pit contain five aspects: human, machine, material, method, and environment33. The risk indicators and level 
classification of different scale scenes were obtained according to the characteristics of monitoring scenes, as 
shown in Table 6.

BPA generation for different data sources
Survey and design data were collected before pit excavation, which was finalized after the design was completed. 
Instrument monitoring, site inspection, and video surveillance were performed after pit excavation, and the 
data were collected once daily. The data from one day after pit excavation are used as an example to illustrate the 
process of the proposed method.

Table 2.   Risk indicators and ranking table based on survey and design data (E).

Indicators

Risk level

Level I Level II Level III Level IV

Inherent properties of pit 
(E1)

Excavation depth (E11) H < 7 m 7 ≤ H < 13 m 13 m ≤ H < 17 m H ≥ 17 m

Excavation area (E12) S < 10 km2 10 km2 ≤ S < 20 km2 20 km2 ≤ S < 50 km2 S ≥ 50 km2

Hydrogeology (E2)

Groundwater type and 
burial conditions (E21) No effect Pressurized water; clear 

burial conditions
High pressurized head; 
more complex burial

High pressurized head; 
complex burial

Soil quality and stratifica-
tion (E22)

High soil strength; simple 
layering

Average soil strength; clearer 
layering

Lower soil strength; more 
complex layering

Very low soil strength; com-
plex layering conditions

Corrosion of materials by 
soil and water (E23) Micro corrosive Weakly corrosive Medium corrosive Strong corrosive

Surrounding buildings and 
structures (E3)

Ratio of distance to pit depth 
(E31) K > 2 1 < K ≤ 2 0.5 < K ≤ 1 K ≤ 0.5

Adjacency type (E32) None Shorter Longer Horizontal projection with 
crossover

Initial deformation (E33) Minor Moderate Large Extremely large

Initial leakage (E34) No seepage Small leakage Multiple water seepage Multiple drips and thin 
streams

Table 3.   Foundation pit monitoring control value standard.

Monitoring Items

Early-warning value

Cumulative value Rate of change

Surface settlement 24 mm 2.5 mm/d

Groundwater level 1.6 m 0.5 m/d

Horizontal displacement of wall top 24 mm 2 mm/d

Vertical displacement of column 12 mm 1.4 mm/d

Table 4.   Risk indicators and ranking table based on instrument monitoring data (F).

Indicators

Risk level

Level I Level II Level III Level IV

Surface settlement (F1)
Cumulative value (F11)

0 < K < 0.6 0.6 < K < 0.8 0.8 < K < 1 1 < K < 1.2

Rate of change (F12)

Groundwater level (F2)
Cumulative value (F21)

Rate of change (F22)

Horizontal displacement of wall top (F3)
Cumulative value (F31)

Rate of change (F32)

Vertical displacement of column (F4)
Cumulative value (F41)

Rate of change (F42)
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Table 5.   Risk indicators and level classification table based on site inspection data.

Indicators

Risk level

Level I Level II Level III Level IV

Construction work condi-
tions (G1)

Consistency of soil with 
Survey Report (G11) Exactly the same Basically the same Inconsistent Completely inconsistent
Geotechnical stability (G12)

Precipitation, recharge facili-
ties status (G13)

Qualified Basic pass Unqualified Completely unqualifiedPiling around the pit (G14)

Interception and drainage 
effect (G15)

Support structure (G2)

Support structure (G21)
Qualified Basic pass Unqualified Completely unqualifiedSupport pile (wall) cracks 

(G22)

Column, support tilt defor-
mation (G23)

Minor Moderate Large Extremely large
Quicksand, pit bottom rises 
(G24)

Leakage of water stop cur-
tain (G25)

Little water, no mud and 
sand

Little water, little mud and 
sand

Little water, large mud and 
sand

Large water, large mud and 
sand

Timeliness of support erec-
tion (G26) On time Mostly timely Untimely Very untimely

Surroundings (G3)

Surrounding buildings 
(G31)

Qualified Basic pass Unqualified Completely unqualified

Surrounding river banks 
(G32)

Surrounding road (G33)

Leakage of underground 
pipelines (G34)

Surrounding activities (G35)

Water seepage of under-
ground structures (G36) No seepage Small leakage Multiple water seepage Multiple drips, thin streams

Monitoring facilities (G4)

Complete status of monitor-
ing points and elements 
(G41)

Complete Basically complete Incomplete Very Incomplete

Monitoring frequency, time-
liness of warning (G42) On time Mostly timely Untimely Very untimely

Monitoring data errors 
(G43) No error Smaller Larger Very large

Table 6.   Risk indicators and level classification table based on video surveillance data (H).

Indicators

Risk level

Level I Level II Level III Level IV

Large scenario risk (H1)

Worker’s safety equipment wear (H11)

Qualified Basic pass Unqualified Completely unqualified

Worker’s irregularities and violations (H12)

Lighting in the work area (H13)

Hygiene in the work area (H14)

Loading and unloading of transport machinery 
(H15)

Medium scenario risk (H2)

Raw material storage (H21)

Hazardous materials storage (H22)

Construction waste deposition (H23)

Protective facilities in hazardous areas (H24)

Warning signs set in hazardous areas (H25)

Small scenario risk (H3)
Construction process specification (H31)

Large machinery and equipment parking, oper-
ating norms (H32)
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(1)	 For the survey and design, site inspection, and video surveillance, the main processes are as follows. 
First, the experts score the indicators. The scoring results from three experts are averaged to obtain the 
score corresponding to each indicator. Next, according to Eq. (1), the set of survey and design rubrics is 
converted to digital cloud features. Then, according to Eq. (2), the scores are converted to an affiliation. 
Finally, according to Eq. (2), the affiliation is converted to BPA.

	   Taking the survey and design as an example, we note that the survey and design index system contains 
three secondary indicators: E1, E2, and E3. The corresponding tertiary indicators are E11, E12, E13, E21, 
E22, E31, E32, E33, and E34. The set of risk identification levels are I, II, III, IV, and Θ, where Θ denotes 
the uncertainty of the global, which indicates the unknown levels. When E11 is taken as an example, first, 
the average of the scores assigned by the three experts is 8.1, as shown in Fig. 4. Next, the standard numer-
ical cloud characteristics (Table 7) and the cloud diagram (Fig. 5) can be obtained. As can be seen in Fig. 5, 
no overlap occurs between the sets of rubrics, which can be used for the conversion of data for each risk 

source. The cloud digital characteristics of the survey and design are 
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NORMINV(p, 1.062, 0.01) and p is rand(0,1), so En′ is [1.057, 1.057, 1.057, 1.057]. [u11(A1), u11(A2), u11(A3), 
u11(A4)] are [0, 0, 0.217, 0.828]. Finally, the affiliation is converted to BPA. BPA(E11) is [0, 0, 0.17, 0.657, 
0.173]. The BPA of other indicators can also be calculated using the above method, as shown in Table 8.

	   The cloud model solves the problem of transforming uncertainty between qualitative concepts and 
quantitative values. The comment set of risk sources is converted into cloud digital features, and, finally, 
the expert scoring results (survey and design, site inspection and video surveillance) are converted into 
BPA. The BPA value obtained is used to fuse the information from multiple sources.

Table 7.   Cloud digital characteristics of different data sources.

Data source Evaluation interval Cloud digital characteristics (Ex, En, He)

Survey and design (E)
Site inspection (F)
Video monitoring (H)

[0.0, 2.5] (1.25, 1.062, 0.01)

[2.5, 5.0] (3.75, 1.062, 0.01)

[5.0, 7.5] (6.25, 1.062, 0.01)

[7.5, 10] (8.75, 1.062, 0.01)

Instrument monitoring (G)

[0.0, 0.6] (0.30, 0.255, 0.01)

[0.6, 0.8] (0.70, 0.085, 0.01)

[0.8, 1.0] (0.90, 0.085, 0.01)

[1.0, 1.2] (1.10, 0.085, 0.01)
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Figure 4.   Cloud model. (a) Survey and design, site inspection, video monitoring. (b) Instrument monitoring.
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(2)	  For instrument monitoring, the main processes are as follows. First, according to Eq. (1), the set of 
instrument monitoring rubrics is converted to cloud digital features. Next, according to Table (4), the 
measured values are converted to K. Then, according to Eq. (2), K is converted to an affiliation. Finally, 
according to Eq. (2), the affiliation is converted to BPA.

The instrument monitoring index system contains four secondary indicators: F1, F2, F3, and F4. The 
corresponding tertiary indicators are F11, F12, F21, F22, F31, F32, F41, and F42. Each tertiary indicator 
corresponds to five monitoring points, and one moment of data is collected at each monitoring point. The set of 
risk identification levels are I, II, III, IV, and Θ. The Luochongwei Station contains a total of 20 monitoring sites. 
Figure 6 shows the monitoring points distribution, which has the same distribution principle for the monitoring 
points with a similar deformation. Therefore, five representative monitoring points (C2, C6, C8, C11, and C18) 
are selected for analysis in this paper. The corresponding measured data are shown in Fig. 7.

Taking monitoring point DC2 as an example, the cumulative value of the surface settlement is 13.9 mm. First, 
the standard cloud numerical characteristics (Table 7) and the cloud diagram (Fig. 5) can be obtained. As can 

Figure 5.   Expert scoring results of the survey and design indicators.

Table 8.   BPA of survey and design.

Indicators m(I) m(II) m(III) m(IV) m(Θ)

E11 0.000 0.000 0.170 0.657 0.173

E12 0.725 0.007 0.000 0.000 0.268

E13 0.000 0.003 0.440 0.225 0.332

E21 0.000 0.016 0.748 0.137 0.098

E22 0.000 0.004 0.487 0.215 0.293

E31 0.000 0.028 0.857 0.087 0.028

E32 0.000 0.006 0.511 0.216 0.267

E33 0.007 0.581 0.191 0.000 0.221

E34 0.000 0.009 0.649 0.170 0.172

Figure 6.   Monitoring point arrangement of Luochongwei station.
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be seen in Fig. 5, no overlap occurs between the sets of rubrics, which can be used for the data conversion of 

each risk source. The digital cloud characteristics of the instrument monitoring is 
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 . Next, the 

measured data of 13.9 mm is converted into K = 0.579. Then, En′ follows NORMINV(p, En, 0.01), p is rand(0,1), 
and En is [0.255, 0.085], so En′ is [0.258, 0.088, 0.088, 0.088]. [u21(A1), u21(A2), u21(A3), u21(A4)] is [0.558, 0.392, 
0.001, 0]. Finally, the affiliation is converted to BPA. BPA(F21) is [0.323, 0.248, 0.17, 0.002, 0.427]. The BPA of 
other indicators can also be calculated using the above method, as shown in Table 9.

Similarly, the cloud model converts the uncertainty between the qualitative concept (instrument monitoring 
value) and quantitative value. The difference is that for the survey and design, site inspection, and video moni-
toring, the value of K is obtained through expert scoring. In contrast, instrument monitoring does not require 
expert scoring, but measured values are used directly to obtain the value of K, which is ultimately converted 
into a basic probability assignment. The basic probability assignments obtained from instrument monitoring, 
as well as those from survey design, site inspection, and video surveillance, are used to fuse the information 
from multiple sources.

Multi‑source data fusion
The accuracy of the collapse risk assessment from a single source of information is low and cannot provide 
accurate guidance for on-site construction because of reasons such as data errors that do not fully reflect the 
actual situation at the site. Therefore, this paper proposes a feature-based information fusion model, which can 
learn new-evidence correction parameters and reduce the impact of global uncertainty. Survey and design, site 
inspection, instrument monitoring, and video surveillance are used as the information sources for the collapse 
risk assessment, and the probability distribution of the corresponding collapse risk level is obtained from different 
information sources. To solve the problem of a large bias in the evaluation results of single information sources, 

Figure 7.   Instrument monitoring data.
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the improved D–S evidence theory is used to fuse the data from multiple information sources. The method 
combines the above three single information source features and obtains the overall collapse risk results by fusing 
the judgment of each evidence. Survey and design indicators E11 and E12 are selected to illustrate the fusion 
process within the same risk source to obtain survey and design fusion results. Similarly, on-site inspection fusion 
results, instrument monitoring fusion results, and video surveillance fusion results can be obtained. The survey 
design (E) and on-site inspection (G) are selected to illustrate the fusion process of different risk sources so as 
to obtain the final risk assessment results. The fusion results of the single information source and the improved 
D–S theory of this paper are compared, as shown in Table 10. The following conclusions can be obtained.

(1)	 The multi-source information fusion model has a good fault tolerance and can improve the error evaluation 
results by correcting the correction parameters of the correct evaluation results. The body of evidence of 
indicators from each data source is first fused sequentially to obtain the BPA for the four data sources, 
which are then fused sequentially to obtain the final fusion result. Nine tertiary indicators are used for the 
survey and design and need to be fused eight times. The results are shown in Fig. 8a. Site inspection needs 
to be fused 19 times, and the results are shown in Fig. 8b. Video surveillance needs to be fused 11 times, 
and the results are shown in Fig. 8c. The instrument monitoring contains eight tertiary indicators with five 
monitoring points for each indicator, creating a total of 40 sets of data that need to be fused 39 times. The 
results are shown in Fig. 8d.

	   The fusion process is also described by survey and design indicators. BPA(E11) is [0, 0, 0.17, 0.657, 0.173], 
and BPA(E12) is [0.725, 0.007, 0, 0, 0.268]. According to Eqs. (3–7), the conflict degree (α) is 0.605, the 
variance degree (β) is 0.998, the uncertainty degree (γ) is [0.725, 0.68], and the corresponding weighting 
coefficients are 0.485 and 0.515. The corrected fused BPA is [0.412, 0, 0.088, 0.27, 0.23] according to Eq. (8). 
Then, the fusion result is fused with E13, and the final fused BPA of the survey and design indicators is 
[0, 0.2, 0.71, 0, 0.09]. m(Θ) is 0.09, which is less than or equal to 0.1, and max(m(Ak))–max(m(Ap), k ≠ p) 
is 0.51, which is greater than or equal to 0.2. Therefore, the fusion results satisfy the decision assessment 
conditions, and the risk assessment level based on the survey and design data is level II. Similarly, the final 
fused BPA of the site inspection is [0.011, 0.93, 0.019, 0, 0.04], and its risk assessment level is II. The final 
fused BPA of the video surveillance is [0, 0.88, 0.1, 0, 0.02], and its risk assessment level is II. The final fused 
BPA of the instrument monitoring is [0.72, 0.1, 0.08, 0, 0.1], and its risk assessment level is I. The final risk 
assessment result is obtained by fusing the four pieces of evidence, as shown in Table 10.

	   The entire fusion process is explained as follows. The survey and design (E) and site inspection (G) are 
first integrated. BPA(E) is [0, 0.2, 0.71, 0, 0.09], and BPA(G) is [0.011, 0.93, 0.019, 0, 0.04]. According to 
Eqs. (3–7), α is 0.58, β is 0.951, γ is [0.745, 0.588], and the corresponding weighting coefficients are 0.453 
and 0.547. According to Eq. (8), the corrected fused BPA (BPA(E ⊕ G)) is [0.01, 0.62, 0.3, 0.01, 0.06]. This 
fusion result is then fused with the video surveillance evidence body (H). BPA(E ⊕ G) is [0.01, 0.62, 0.3, 0.01, 
0.06], and BPA(H) is [0, 0.88, 0.1, 0, 0.02]. α is 0.346, β is 0.331, γ is [0.73, 0.614], and the corresponding 
weighting coefficients are 0.476 and 0.524. Hence, the corrected fused BPA (BPA(E ⊕ G ⊕ H)) is [0.1, 0.83, 

Table 9.   BPA of surface settlement.

Indicator Monitoring points Indicators m(I) m(II) m(III) m(IV) m(Θ)

Surface settlement (F1)

DC2
Cumulative value 0.323 0.248 0.002 0.000 0.427

Rate of change 0.427 0.151 0.000 0.000 0.422

DC6
Cumulative value 0.456 0.167 0.000 0.000 0.377

Rate of change 0.530 0.117 0.000 0.000 0.353

DC8
Cumulative value 0.396 0.163 0.000 0.000 0.441

Rate of change 0.319 0.193 0.000 0.000 0.488

DC11
Cumulative value 0.254 0.378 0.001 0.000 0.367

Rate of change 0.265 0.315 0.002 0.000 0.417

DC18
Cumulative value 0.402 0.183 0.000 0.000 0.415

Rate of change 0.399 0.218 0.001 0.000 0.382

Table 10.   Final fusion results.

Data sources m(I) m(II) m(III) m(IV) m(Θ) Fusion level Actual level

Survey and design (E) 0.000 0.200 0.710 0.000 0.090 III

II

Site inspection (G) 0.011 0.930 0.019 0.000 0.040 II

Video monitoring (H) 0.000 0.880 0.100 0.000 0.020 II

Instrument monitoring (F) 0.720 0.100 0.080 0.000 0.100 I

Fusion results 0.160 0.750 0.000 0.007 0.083 II
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0.06, 0, 0.01]. Finally, the above fusion result is fused with the instrument monitoring evidence body (F). 
BPA(E ⊕ G ⊕ H) is [0.1, 0.83, 0.06, 0, 0.01], and BPA(F) is [0.72, 0.1, 0.08, 0, 0.1]. α is 0.731, β is 0.962, γ 
is [0.641, 0.701], and the corresponding weighting coefficients are 0.521 and 0.479. Hence, the corrected 
fused BPA (BPA(E ⊕ G ⊕ H ⊕ F)) is [0.16, 0.75, 0, 0.007, 0.083]. m(Θ) is 0.083, which is less than or equal to 
0.1. max(m(Ak))–max(m(Ap), k ≠ p) is 0.59, which is greater than or equal to 0.2. Therefore, the final fusion 
results satisfy the decision assessment conditions, and the final risk level is II. The values of the elements in 
the mass function are clearly distinguished, and no case of the values of the elements being similar in size 
exists; moreover, and the risk assessment results are accurate, indicating the effectiveness and stability of 
the proposed method.

(2)	 When assessing collapse risk, the results are often biased because of the uncertainty of the data from a 
single source of information. The proposed method synthesizes information from different sources (includ-
ing conflicting information) to provide a comprehensive view of construction, thereby reducing the data 
uncertainty and improving the assessment accuracy. Therefore, the results of multi-source information 
fusion assessments tend to have a higher accuracy than that of single-source information risk assessment 
methods.

The single-source information model cannot provide accurate decision-making opinions for on-site construc-
tion. This is because a single source of information does not adequately consider the risk factors of pit collapse; 
moreover, it contains errors and uncertainties, which ultimately leads to a slight deviation in the assessment 
results from the actual situation. The proposed method fully utilizes the available information and includes con-
flict information. The proposed model considers the four risk source data of survey and design, site inspection, 
instrument monitoring, and video surveillance; thus, the results of the evaluation model are closer to the actual 
situation while having an improved accuracy. These results prove the effectiveness and feasibility of applying the 
evaluation method in an actual construction process.

Figure 8.   Fusion results. (a) Survey and design. (b) Site inspection. (c) Video monitoring. (d) Instrument 
monitoring.
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Discussion
To compare different multi-source information fusion methods, the proposed method and other previous meth-
ods are used to evaluate the collapse risk of the same indicators. Site inspection data were selected for risk assess-
ment, and the model was evaluated from two perspectives: model validity and convergence, respectively. The 
analysis and conclusions are as follows.

(1)	 The fusion rules are improved by refining and decomposing the global conflict into local conflicts, which 
eliminates the differentiation in the body of evidence and improves the credibility of the fusion results. 
Comparative analysis results of the proposed method and other methods9,12,17,18 using field inspection 
data are shown in Table 11 and Fig. 9. The mass functions of levels I, II, and IV obtained in Ref.9 are 
close. Although the risk level can be identified and risk assessment can be performed normally, the mass 
functions are too close to each other. This closeness can easily cause risk assessment errors, and the fusion is 
susceptible to the influence of individual bodies of evidence and less resistant to interference. References12,17 
can effectively identify the risk level, and the difference in mass function for each risk level is large. The 
resistance to interference is high, but m(Θ) is higher than 0.2. This result indicates that the uncertainty 
of risk indicators for the global risk is too high, and more risk source data are often needed to ensure an 
accurate assessment. The mass function obtained in Ref.18 is essentially similar among all risk levels, and 
m(Θ) is higher than 0.2. Hence, the uncertainty of the global risk is too high for a valid risk assessment. 
However, the gap between the mass functions of each risk level is significantly larger, and m(Θ) is less than 
0.1 in this study. Thus, is has less impact on the global risk assessment as well as higher robustness and 
reliability.

(2)	 Three conflict indicators are considered to make the conflict feature extraction more comprehensive and 
improve the convergence speed of the fusion results. The above analysis shows that the proposed method 
obtains more realistic assessment results than those of other methods. The quality of a model is closely 
related to its convergence. BPA represents the certainty of the risk level. The faster BPA reaches stability, 
the faster the convergence speed of the model. Therefore, changes in the BPA can be used to analyze 
the convergence of the model. Here, the mass function is used as the objective function. When the BPA 
variation is less than the set threshold, the model can be considered to converge; the set threshold of this 

Table 11.   Results of different data fusion methods.

Fusion methods

Fusion results of site inspection indicators Final fusion results

Risk levelm(I) m(II) m(III) m(IV) m(Θ) m(I) m(II) m(III) m(IV) m(Θ)

Reference9 0.150 0.380 0.170 0.250 0.050 0.209 0.402 0.020 0.357 0.012 II

Reference12 0.000 0.600 0.100 0.000 0.300 0.010 0.580 0.100 0.008 0.302 II

Reference17 0.000 0.700 0.050 0.000 0.250 0.000 0.550 0.100 0.100 0.250 II

Reference18 0.240 0.310 0.120 0.150 0.180 0.287 0.262 0.112 0.137 0.202 I

Method in this paper 0.050 0.930 0.000 0.000 0.020 0.080 0.750 0.080 0.007 0.083 II

Figure 9.   (a) Fusion results of site inspection indicators. (b) Final fusion results.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2653  | https://doi.org/10.1038/s41598-024-52643-x

www.nature.com/scientificreports/

study is 0.05. The amount of data required for each method to reach performance stability is demonstrated 
below. The convergence of the model is only related to the BPA variation of the indicator, so the same 
results are obtained from using different risk sources to analyze the model convergence. Taking indicator 
F11 as an example, we see that the risk level of indicator F11 is level I. The BPA of level I becomes larger 
with the increase in the data fusion rounds, while the BPA of level II, level III, and level IV decreases. If 
the BPA variation is less than the threshold, the model can be considered to be convergent, whether the 
BPA increases or decreases. Twenty days of fusion results were obtained, as shown in Fig. 10. The BPAs of 
different methods are observed to maintain an upward trend before being stable. The BPA shows an upward 
trend before point A, but its fluctuation range remains within 0.05. Therefore, point A is the convergence 
point. Its abscissa indicates that the model convergence needs to be fused in four rounds. Points B, C, D, 
and E also represent convergence points. We can see that the proposed method requires minimal fusion 
rounds (four rounds). Its mass function oscillation can be maintained within 0.05, and its performance is 
relatively stable. However, in Ref.9, convergence begins after seven rounds of data fusion, whereas it begins 
after eight, ten, fourteen rounds for Refs.12,17,18, respectively. Therefore, the proposed method has good 
convergence.

The above analysis shows that the proposed method has high confidence and strong convergence compared 
to those of other methods. The global uncertainty of the proposed method is much lower, and the certainty of 
the assessment results is much higher, providing decision-makers with more accurate assessment results. The 
method can provide a timely warning of construction risks and prevent accidents. In summary, the proposed 
method can effectively reduce the incidence of construction accidents, improve the personal safety of workers, 
and promote the sustainable development of the construction industry.

Conclusions
This study aimed to address the ambiguity and conflicting information problems of multi-source data fusion in 
subway pit collapse risk assessment. Hence, a method with strong convergence and high confidence based on 
the CM and improved D–S evidence theory is proposed. The method defines a new parameter by introducing 
conflict degree, discrepancy degree, and uncertainty. To improve fusion rules, the evidence focal element assign-
ment is considered, and the risk level is obtained according to the maximum affiliation principle. Thus, a rapid 
and accurate assessment of the risk of pit collapse is realized, enabling construction workers to perceive the risk 
in time and providing decision-makers with more response time, which considerably reduces accidents. The 
proposed method was applied at Luochongwei Station of Guangzhou Metro Line 13. The following conclusions 
are obtained:

(1)	 Combined with actual engineering cases, the four major indicators of survey and design, site inspection, 
instrument monitoring, and video surveillance are considered, and a risk assessment index system is con-
structed in many aspects to provide a research basis for the multi-data-source fusion risk assessment of 
subway foundation pit construction collapse.

Figure 10.   Comparison of mass function of level I. A(4, 0.87) is the convergence point of the proposed method. 
B(7, 0.85) is the convergence point of the method in Ref.9. C(8, 0.84) is the convergence point of the method in 
Ref.12. D(10, 0.83) is the convergence point of the method in Ref.16. E(14, 0.85) is the convergence point of the 
method in Ref.17.
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(2)	 When a single information source is used to assess the collapse risk, the results often contain deviations 
due to the uncertainty of the data. The proposed multi-source information fusion method comprehensively 
considers four types of risk source data, including survey and design, instrument monitoring, site inspec-
tion and video surveillance. The proposed method more comprehensively considers the construction site, 
which can reduce the data uncertainty and improve the risk assessment accuracy. Therefore, compared with 
the single-information-source risk assessment method, the multi-source information fusion assessment 
results often have a higher accuracy.

(3)	 Conflicts between evidence bodies and conflicts caused by defects in fusion rules are considered simultane-
ously, which offers a high credibility and strong convergence. The risk assessment results obtained by the 
proposed method are such that the difference between the maximum value and the second largest value of 
the BPA is greater than 0.2. Moreover, the global uncertainty is less than 0.1. However, other methods can 
only satisfy one or neither, indicating that the proposed method has a high credibility. The convergence 
of the proposed model is only related to the variation in BPA, and similar results are obtained from using 
different risk source data to evaluate the model convergence. By analyzing the multi-period data of a single 
indicator (instrument monitoring), we find that the other existing methods need at least seven cycles of 
data fusion before convergence begins, whereas the proposed method reaches convergence in four cycles, 
indicating that the proposed method converges quickly.

Nevertheless, the proposed method also has some limitations. First, because the amount of data is relatively 
small, it is necessary to develop a set of risk assessment data acquisition systems for coastal cities such as Guang-
dong. In addition, the proposed method cannot predict the risk status of the next construction process, which 
necessitates further research.

Data availability
The datasets generated and analyzed during the current study are not publicly available but are available from 
the corresponding author on reasonable request.
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