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Identification of shared 
pathogenetic mechanisms 
between COVID‑19 and IC 
through bioinformatics and system 
biology
Zhenpeng Sun 1,6,7, Li Zhang 2,3,7, Ruihong Wang 4, Zheng Wang 5, Xin Liang 1 & 
Jiangang Gao 1*

COVID‑19 increased global mortality in 2019. Cystitis became a contributing factor in SARS‑CoV‑2 and 
COVID‑19 complications. The complex molecular links between cystitis and COVID‑19 are unclear. This 
study investigates COVID‑19‑associated cystitis (CAC) molecular mechanisms and drug candidates 
using bioinformatics and systems biology. Obtain the gene expression profiles of IC (GSE11783) and 
COVID‑19 (GSE147507) from the Gene Expression Omnibus (GEO) database. Identified the common 
differentially expressed genes (DEGs) in both IC and COVID‑19, and extracted a number of key 
genes from this group. Subsequently, conduct Gene Ontology (GO) functional enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the DEGs. Additionally, design 
a protein–protein interaction (PPI) network, a transcription factor gene regulatory network, a TF 
miRNA regulatory network, and a gene disease association network using the DEGs. Identify and 
extract hub genes from the PPI network. Then construct Nomogram diagnostic prediction models 
based on the hub genes. The DSigDB database was used to forecast many potential molecular 
medicines that are associated with common DEGs. Assess the precision of hub genes and Nomogram 
models in diagnosing IC and COVID‑19 by employing Receiver Operating Characteristic (ROC) curves. 
The IC dataset (GSE57560) and the COVID‑19 dataset (GSE171110) were selected to validate the 
models’ diagnostic accuracy. A grand total of 198 DEGs that overlapped were found and chosen for 
further research. FCER1G, ITGAM, LCP2, LILRB2, MNDA, SPI1, and TYROBP were screened as the 
hub genes. The Nomogram model, built using the seven hub genes, demonstrates significant utility 
as a diagnostic prediction model for both IC and COVID‑19. Multiple potential molecular medicines 
associated with common DEGs have been discovered. These pathways, hub genes, and models may 
provide new perspectives for future research into mechanisms and guide personalised and effective 
therapeutics for IC patients infected with COVID‑19.

Interstitial cystitis (IC) is a chronic nonbacterial inflammatory bladder disease of unknown etiology, affecting 
millions of American women with an incidence rate of approximately 2%1. Its primary clinical manifestations 
encompass symptoms of lower urinary tract hypersensitivity, including bladder pain or discomfort, urgency, 
and frequency of  urination2. The exact mechanisms of IC are not well comprehended, although there are several 
components thought to have major involvement, including changes in epithelial permeability, mast cell activa-
tion, upregulation of sensory afferent nerves, inflammation, and  autoimmunity3,4.

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)5, is an infectious disease that presents with symptoms such as fever, cough, muscle pain, and weariness. 
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It can also cause serious damage to many  organs6,7. According to data from the World Health Organization 
(WHO) (https:// covid 19. who. int/), as of July 20, 2023, COVID-19 had caused over 760 million infections and 
more than 6 million fatalities. It has been observed that SARS-CoV can be transmitted through  urine8. In the 
acute phase of a COVID-19 infection, individuals may experience sudden urinary frequency and urgency, 
persisting for several  weeks9,10. Lamb et al.11 found that patients with confirmed SARS-CoV-2 infection are 
accompanied by pronounced and enduring genitourinary symptoms. Furthermore, they observed elevated lev-
els of proinflammatory cytokines in the patients’ urine samples. These associated urinary symptoms are called 
COVID-19-Associated Cystitis (CAC).

Angiotensin-Converting Enzyme 2 (ACE2) is the primary receptor identified by SARS CoV-2. It is highly 
expressed in the bladder, making the bladder susceptible to assault during COVID-19  infection12. Previous 
reports have found that COVID-19 is linked to immune disorders and abnormal inflammatory  responses13,14. 
According to recent studies, SARS infection can activate neutrophils and exacerbate local inflammatory damage 
through the release of neutrophil extracellular traps (NETs)15,16. However, the relationship between COVID-19 
and cystitis remains unclear. It is necessary to further explore their potential associations and molecular mecha-
nisms to develop effective treatment approaches for cystitis caused by or aggravated by SARS-CoV-2 infection.

This study aimed to explore the pathogenesis and genetic correlation between cystitis and COVID-19. Herein, 
we selected the GSE11783 and GSE147507 datasets from the NCBI-Gene Expression Omnibus database (NCBI-
GEO). Bioinformatics and machine learning algorithms were used to identify common differentially expressed 
genes (DEGs) and determine the hub genes in the IC patients and COVID-19 patients. Protein–protein interac-
tion networks (PPI), transcription factor (TF) gene regulatory networks, and microRNA (miRNA) gene regu-
latory networks were constructed based on the shared DEGs, which contribute to the development of IC and 
COVID-19. Furthermore, we screened potential drugs targeting the DEGs. Finally, we analyzed the relationship 
between the hub genes and immune infiltration. The central genes may offer novel insights for future research 
on the biological mechanisms underlying both IC and COVID-19, and potentially lead to the discovery of new 
therapeutic targets. Figure 1 provides a detailed depiction of the study’s specific methodology.

Materials
Acquisition of the datasets
We accessed the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/; accessed on July 17, 2023) to procure 
RNA-sequencing datasets pertaining to IC and COVID-1917. The GSE147507 dataset comprises a transcrip-
tional study of 78 homo sapiens samples, consisting of 23 COVID-19 cases and 55 healthy control samples. The 
RNA sequence from these samples was obtained using the GPL18573 Illumina NextSeq 500. The other dataset, 
GSE11783, utilizes the GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array to conduct 
a transcriptional analysis. It includes a total of 16 samples, with 10 cases of IC and 6 healthy control samples. 
The above two datasets were selected as training sets. In addition, the GSE171110 and GSE57560 datasets were 
selected as the test sets for this study. Given that our study focuses exclusively on Homo sapiens, we excluded the 
high-throughput sequencing data of ferrets from the COVID-19 dataset, GSE147507, within this investigation.

Identification of DEGs and common DEGs between COVID‑19 and IC
To unveil DEGs in the GSE147507 and GSE11783 datasets, we scrutinized COVID-19 vs. non-COVID-19 and 
IC vs. normal states using the "limma" package (version 4.1.1) by  R18. The Benjamini–Hochberg False Discovery 
Rate (FDR) approach was employed to narrow down genes and maintain statistical significance. The criterion 
used was Padj < 0.05 and |log2FoldChange (FC)| > 1. The heatmaps and volcano plots were constructed using 
the "Pheatmap", "Enhancedvolcano”, and “ggplot2” packages. The common DEGs across the two datasets were 
identified using an online analysis tool called Venny2.1 (https:// bioin fogp. cnb. csic. es/ tools/ venny/).

Figure 1.  An illustration in schematic form of the study’s entire procedure.

https://covid19.who.int/
https://www.ncbi.nlm.nih.gov/geo/
https://bioinfogp.cnb.csic.es/tools/venny/
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Functional enrichment analysis of DEGs
In order to determine the biological function categories and mechanisms of the common DEGs, we employed 
R’s "clusterprofiler"19 to evaluate the Kyoto Encyclopedia of Genes and Genomes (KEGG)20–22 analysis and Gene 
Ontology (GO)23 analysis, which encompass biological processes, cellular components, and molecular functions.

Protein–protein interaction network analysis
PPIs are fundamental to several biological processes, providing insights into the physical and functional connec-
tions between proteins. We utilized STRING (version 12.0) (https:// cn. string- db. org/) to generate a PPI network 
with a confidence threshold of 0.4 based on the DEGs that were  uploaded24. The above results were imported into 
Cytoscape (version 3.9)25 software for visualization, where the color and size of nodes represent scores obtained 
from degree topology analysis. We employed CytoHubba, a plugin for Cytoscape (https:// apps. cytos cape. org/ 
apps/ cytoh ubba), to detect hub genes within the PPI  networks26. CytoHubba offers eleven distinct methods for 
detecting core components by analyzing various network characteristics. We utilized four different approaches, 
including Maximal Clique Centrality (MCC), Degree, Maximumc Neighborhood Component (MCN), and 
Closeness, to identify the top ten genes using each strategy. Finally, we utilized the overlapping portion of these 
four gene sets to acquire the most beneficial hub genes.

Construction of TF‑gene and miRNA‑gene regulatory networks
To unravel the intricate transcriptional landscape and pivotal regulators governing common DEGs, we con-
ducted a comprehensive investigation by integrating DEG-miRNA and DEG-TF interactions. Statistical analyses, 
visualizations, and meta-analyses of web-based gene expression data were facilitated using the widely embraced 
online platform, NetworkAnalyst (https:// www. netwo rkana lyst. ca/)27. The analysis was centered on Networ-
kAnalyst, which enabled the identification of structurally reliable TFs from the JASPAR database, which is 
renowned for its comprehensive multi-species TF binding  profiles28. MiRTarBase and TarBase offer data on 
miRNA-target interactions that have undergone experimental  validation29,30. We accessed the aforementioned 
databases through the NetworkAnalyst platform and respectively constructed the networks between the DEGs 
and miRNAs. Subsequently, we determined the areas where the two networks intersected in order to underline 
their structural importance and especially highlight the miRNAs associated with the shared DEGs. The above 
results were visualized using Cytoscape (version 3.9) software.

Gene‑disease association analysis
DisGeNET is an extensive database that consolidates gene information linked to diseases from several literature 
 sources31. Use the NetworkAnalyst platform to access the DisGeNET database and establish the relationship 
between genes and diseases. Gaining a comprehensive grasp of the molecular intricacies of the associated diseases 
can aid in identifying comorbidities and advancing our comprehension of these diseases.

Evaluation of applicant drugs
The Drug Signatures Database (DSigDB) was utilized to identify small compounds that can downregulate hub 
genes, which has a comprehensive collection of 22,527 gene  sets32. The Enrichr platform (https:// amp. pharm. 
mssm. edu/ Enric hr/) provided smooth access to the DSigDB  repository33. We discovered drug entities inside the 
DSigDB database using the Enrichr framework, based on the detected DEGs. Through a methodical approach, 
prospective pharmacological molecules were identified that had the ability to influence the expression of key 
genes. This discovery might possibly provide focused therapeutic interventions.

Immune cell infiltration and its correlation with hub genes
We systematically collected immune checkpoint genes (ICGs) from existing literature  sources34. Single sample 
gene set enrichment analysis (ssGSEA) was performed on 28 different immune cell types using the R package 
"GSVA"35, and obtained the immunological enrichment scores for various immune cells. We employed the 
"ggboxplot" software package to graphically depict the complex correlation between the expression of immune 
checkpoints and the enrichment scores of these 28 immune cells in COVID-19 and IC. In addition, we employed 
the "ggcorrplot" package to calculate the correlation between the expression of the seven Hub genes and the 
infiltration of immune cells and subsequently visualized this link using the "ggplot2" package.

ROC curve and correlation analysis of hub genes
Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the predictive efficacy of indi-
vidual hub genes. Utilizing the R-based pROC  package36, we calculated the area under the ROC curve (AUC) 
and graphically represented these curves. Hub genes are deemed to have a general diagnostic predictive value 
when AUC > 0.5 and a superior diagnostic predictive value when AUC > 0.7. We also harnessed the "Corrplot" 
software package for correlation matrix visualization to discern interrelationships, enabling comprehensive 
scrutiny of hub gene correlations.

Statistical analysis
Conduct statistical analysis with R (version 4.3.1). Continuous variables are employed for comparison across 
different groups, and t-tests are utilized for comparing variables that adhere to a normal distribution. Investigate 
the relationship between infiltrating immune cells and gene biomarkers using Spearman correlation analysis. A 
P-value < 0.05 indicates statistical significance.

https://cn.string-db.org/
https://apps.cytoscape.org/apps/cytohubba
https://apps.cytoscape.org/apps/cytohubba
https://www.networkanalyst.ca/
https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
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Results
Identification of the common DEGs of COVID‑19 and IC
The gene expression level of the selected datasets with adjusted batch effect is standardized, and the results before 
and after standardization are shown in Supplementary Fig. S1. Based on the criteria (Padj < 0.05 and |log2Fold-
Change (FC)| > 1), GSE147507 identified a total of 2016 DEGs (1431 upregulated and 585 downregulated genes), 
and GSE11783 identified 1926 DEGs (1045 upregulated and 881 downregulated genes). The DEGs between 
COVID-19 patients and healthy samples were shown using a heatmap and a volcano plot (Fig. 2A,B). The dis-
tribution of DEGs between patients with IC and controls was presented in Fig. 2C,D. A Venn diagram rendered 
the intersection of DEGs, yielding 198 common DEGs (Fig. 2E). The results of the differential expression study 
indicated potential shared mechanisms or interactions between COVID-19 and IC.

Figure 2.  Differentially expressed genes (DEGs) of (A) COVID-19 and (B) IC are shown on volcano plots. 
With |log2(FC)| > 1 and a P-value < 0.05, red dots denoted up-regulated genes, blue dots denoted down-
regulated genes, and grey dots denoted non-DEGs. The results of clustering analysis based on DEGs for (C) 
COVID-19 and (D) IC are displayed in heatmaps. A venn diagram then displayed the areas of GSE147507 and 
GSE11783 that overlapped.
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Pathway enrichment and gene ontology analysis
GO analysis and KEGG analysis provide insights into the biological traits and enrichment pathways of the shared 
DEGs. The bubble chart displays the top ten elements of GO terminology for each category. The DEGs showed 
considerable enrichment in immune response-regulating signaling pathways and cytokine-mediated signaling 
pathways within the biological processes (BP) subgroup. Within the cell composition (CC) subgroup, these DEGs 
were implicated in the secretory granule membrane and cytoplasmic vesicle lumen. In addition, in the molecular 
function (MF) subgroup, the DEGs were shown to be linked to immune receptor activity and cytokine activity, 
underscoring their pivotal roles in the immune system (Fig. 3A). The KEGG entichment analysis revealed that 
the common DEGs showed significant associations with the chemokine signaling pathway, cytokine–cytokine 
receptor interaction, neutrophil extracellular trap formation, NF-kappa B signaling pathway, viral protein interac-
tion with cytokine, and cytokine receptor (Fig. 3B). The findings indicate that IC and COVID-19 patients exhibit 
an enrichment of inflammation and immune-related pathways.

Construction of PPI and acquisition of hub genes
A PPI network has potential for identifying diseases genes, predicting gene function, and providing therapeutic 
insights. We employed the online analysis tool STRING to create a PPI network based on the shared DEGs to 
elucidate the connections between COVID-19 and IC, and the visualization was achieved through Cytoscape (v. 
3.9). Figure 4A illustrates the PPI network, which consists of 153 nodes and 1024 edges. Circles’ size and colour 
indicate the degree of protein interaction, with larger size and more intense colour representing higher centrality 
and greater relevance. Key genes were sieved via the CytoHubba package within Cytoscape. MCC method has 
superior precision in identifying critical proteins from the PPI  network26. It identifies the ten most influential 
genes (Fig. 4B). In addition, we also utilized Degree, MCN, and Closeness algorithms to identify the top 10 
hub genes, respectively (Table 1). Seven common key genes were found in these four hub gene sets, including 
FCER1G, ITGAM, LCP2, LILRB2, MNDA, SPI1, and TYROBP, which were considered core targets of IC and 
COVID-19 (Fig. 5). Further information on the obtained PPI network can be found in Supplementary Table S1.

Construction of the regulatory network
The interaction array of TFs and common DEGs is depicted in Fig. 6A. Node degrees, indicating interconnec-
tions, designate influential network hubs. Blue diamonds depict TFs, red circles signify DEGs, and node size 
mirrors the degree. According to their degrees, FOXC1, GATA2, YY1, FOXL1, PPARG, and SRF exhibited the 
most heightened involvement in the TF network, accentuating their prominence (Supplementary Table S2).

Figure 6B reveals miRNA regulatory interactions with shared DEGs, featuring blue squares (miRNAs) and 
red circles (DEGs). Notably, hsa-mir-26b-5p, hsa-mir-335-5p, hsa-mir-124-3p, hsa-mir-1-3p, hsa-mir-192-5p, 
and hsa-mir-9-5p had the most degrees, which emerged as the pivotal miRNAs. Details of the common miRNA 
regulatory networks obtained can be found in Supplementary Table S3.

Identification of disease associations
Various diseases can exhibit interrelationships by establishing connections through shared  genes37. Gene-dis-
ease associations conducted on the Networkanalyst platform revealed intriguing links, and the Networkanalyst 

Figure 3.  Functional analysis of IC and COVID-19. (A) The histogram of the GO enrichment analysis; the 
letters BP, CC, and MF stand for biological process, cellular component, and molecular function, respectively. 
(B) KEGG pathway analysis bar plot.
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platform provided visualization of the results. We noticed that liver cirrhosis experimental, autosomal reces-
sive predisposition, pneumonia, hypersensitivity, schizophrenia, fever, dermatitis allergic contact, rheumatoid 
arthritis, pulmonary fibrosis, and myocardial ischemia emerged as entwined with our common genes (Fig. 7). 
Notably, most of these diseases are closely related to inflammation or immune responses in the body.

Exploration of potential drugs
Employing the DSigDB module within the EnrichR database, candidate drugs were discerned via common DEGs. 
The most pertinent drugs emerged through the evaluation of p-values that bestow promise for potential thera-
peutic avenues targeting COVID-19 and IC and invite further exploration. The ten most pertinent drugs were 
denoted as Vorinostat, Mebendazole, Trichostatin, Nickel Sulfate, Tretinoin, Demecolcine, Emetine, Isotretinoin, 
Methotrexate, and Phorbol 12-myristate 13-acetate (Table 2).

Immunocyte infiltration analysis and its correlation with hub genes
Based on the foregoing functional enrichment analysis, it was indicated that immune response and inflammation 
were crucial factors in the development of IC and COVID-19. SsGSEA was utilized to unveil distinct immuno-
logical environments in the two disorders, comprising 28 subcategories of immune cells. The COVID-19 dataset 
showed a correlation between immune cells subtypes, including activated CD4 T cells, type 1 T helper cells, type 

Figure 4.  Common genes in COVID-19 and IC are analysed using the PPI network and clustering methods. 
Based on the STRING web database, (A) a network visualisation of 198 common genes using Cytoscape. (B) 
The Cytoscape MCC algorithm located the crucial cluster.

Table 1.  The leading ten hub genes identified by cytoHubba.

Closeness Degree MCC MNC

FCER1G PLEK ITGAM PLEK

FCGR3B HCK TYROBP HCK

ITGAM LCP2 LCP2 LCP2

LCP2 FCER1G SPI1 FCER1G

LILRB2 TYROBP MNDA TYROBP

MNDA SPI1 LILRB2 SPI1

PLEK ITGAM FCER1G ITGAM

SELL LILRB2 HCK LILRB2

SPI1 MNDA CYBB MNDA

TYROBP FCGR3B CD53 FCGR3B
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17 T helper cells, type 2 T helper cells, natural killer cells, and natural killer T cells (Fig. 8A). The progression of 
IC involved various types of immune cells, such as activated CD8 T cells, effector memeory CD8 T cells, acti-
vated CD4 T cells, central memory CD4 T cells, effector memeory CD4 T cells, T follicular helper cells, gamma 
delta T cells, type 1 T helper cells, type 2 T helper cells, regulatory T cells, activated B cells, immature B cells, 
memory B cells, natural killer cells, myeloid derived suppressor cells, natural killer T cells, activated dendritic 
cells, plasmacytoid dendritic cells, macrophage, eosinophil, mast cells, and neutrophil (Fig. 8B). Furthermore, 
we examined the relationship between the infiltration levels of 28 immune cells and the hub genes in individuals 
with IC and COVID-19. The strong relationship between these 7 genes and the infiltration levels of numerous 
immune cells in both datasets is verified by Fig. 8C and D, indicating their significant function in immune 
regulation. These findings demonstrate alterations in the typical immune response of individuals with IC and 
COVID-19, and suggest that seven specific genes may play a role in regulating the immunological milieu in 
these complicated circumstances.

Diagnostic performance and correlation analysis of hub genes
We then gauged the diagnostic efficiency of the hub genes using ROC curves and expression data. In the COVID-
19-related dataset GSE147507, TYROBP, SPI1, MNDA, LILRB2, LCP2, ITGAM, and FCER1G exhibited AUCs 
of 0.561, 0.591, 0.538, 0.598, 0.56, 0.645, and 0.689, respectively (Fig. 9A). Moreover, in the IC-related dataset 
GSE11783, these seven pivotal genes all exceeded 0.7 in AUC value (Fig. 9B). Besides, strong positive correlations 

Figure 5.  The Venn diagram displayed 7 hub genes that were tested by 4 different methods.

Figure 6.  The network of DEG-TF and DEG-miRNA regulatory interactions. (A) TFs are represented here as 
diamond nodes, while gene symbols operate as circle nodes to interact with TFs. (B) The square node in this 
case denotes the circle-shaped interaction between gene symbols and miRNAs.
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emerged among their expression levels, such as SPI1/TYROBP (r = 0.98), LCP2/LILRB2 (r = 0.97), and TYROBP/
TYROBP (r = 0.92) in GSE147507 (Fig. 9C), and FCER1G/TYROBP (r = 0.89), FCER1G/LCP2 (r = 0.88), and 
FCER1G/LILRB2 (r = 0.87) in GSE11783 (Fig. 9D). Overall, these findings indicate that the seven hub genes 
have a strong capacity to identify IC, which suggests a viable approach for managing those patients with CAC.

In addition, we utilized the RMS package to construct Nomogram models for COVID-19 and IC based on the 
seven signature genes (Fig. 10A,B). We assessed the predictive performance of these models using calibration and 

Figure 7.  The gene-disease association network is a representation of the diseases associated with common 
DEGs. The circle node and its subsequent gene symbols are linked to the square node, which specifies the top 10 
related diseases.
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Table 2.  Gene–drug interaction enrichment analysis identifies the leading ten drug candidates.

Term P-value Chemical Formula Structure

Vorinostat 1.48E−15 C14H20N2O3

Mebendazole 7.59E−14 CHN3O3

Trichostatin 1.34E−13 C17H22N2O3

Nickel sulfate 2.05E−11 NiSO4

Tretinoin 3.42E−11 C20H28O2

Demecolcine 3.46E−11 C21H25NO5

Emetine 7.06E−11 C29H40N2O4

Isotretinoin 8.08E−11 C20H28O2

Methotrexate 1.04E−10 C20H22N8O5

Phorbol 12-myristate 13-acetate 5.23E−10 C36H56O8
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ROC curves. The calibration curves in the training sets demonstrate minimal disparities between the actual and 
projected illness risks for both diseases, suggesting a high level of accuracy in both column line graph models. 
The ROC curve analysis demonstrates that the diagnostic model for COVID-19 has an AUC value of 0.749 in the 
training set, whereas the diagnostic model for IC has a perfect AUC value of 1 in the training set (Fig. 10C,D). 
These results indicated the strong predictive capabilities of both diagnostic models. Furthermore, the predictive 
value of these models surpasses that of each of the seven hub genes. The validation conducted on the validation 
sets GSE171110 and GSE57560 further substantiated the above findings (Fig. 10E,F).

Discussion
Since the emergence of the COVID-19 pandemic in 2019, global confirmed cases have exceeded 700 million, 
leading to intricate complications that strain patient diagnosis and  treatment38. The typical clinical symptoms 
of this disease include fever, dry cough, and fatigue, along with chills, headaches, sore throats, shortness of 
breath, and difficulty  breathing39. Remarkably, some patients manifest additional symptoms, including urgency, 
frequency, nocturia, and hematuria, contributing to elevated mortality rates of up to 25%40. Researches have dem-
onstrated that SARS-CoV-2 infection increases the production of several pro-inflammatory cytokines, and severe 
cases of COVID-19 often exhibit disruptions in the immune  system41,42. Moreover, the clustering of immune 
cells has a significant impact on the development of  cystitis43. In addition, the increased ACE2 expression in 
the bladder makes it more susceptible to SARS-CoV-2 infection, emphasizing the organ’s susceptibility during 
COVID-1912,44. The present study focuses on investigating the relationship between cystitis and COVID-19 by 
utilizing bioinformatics and machine learning methods to identify probable molecular processes.

Firstly, we delineated the DEGs associated with IC and COVID-19. A total of 198 common genes were found 
to be associated with the development of both diseases. Further functional enrichment analysis highlighted their 

Figure 8.  Immune infiltrations were related to the hub genes. (A, B) Immune cell infiltration analysis of 
datasets GSE147507 and GSE11783. (C, D) Correlation analysis of immune-related hub genes and immune cell 
infiltration. *p < 0.05, **p < 0.01, and ***p < 0.001.
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pronounced correlation with immunological and inflammatory pathways. A recent study has discovered that 
the coordinated activation of immune cells and the modulation of inflammatory responses are crucial in the 
development of COVID-1945. SARS-CoV-2 has the ability to directly stimulate immune cells, such as mast cells, 
which leads to the release of inflammatory substances. This process contributes to the occurrence of cytokine 
storms, which are associated with increased mortality, multi-organ failure, acute respiratory distress syndrome, 
and intravascular coagulation in severe cases of COVID-1946,47. Moreover, once mast cells become activated, they 
can exert their effects on the nearby smooth muscle and vascular epithelium in the bladder by releasing hista-
mine, interleukin-6, and tumor necrosis factor-α. Furthermore, the elevation of cytokines and chemokines might 
worsen the stimulation and enlistment of mast cells, intensifying the advancement of localized inflammation and 
impeding the effectiveness of  therapy48,49. These findings suggest that the regulation of the immune response and 
the secretion of cytokines may serve as the connection or association between cystitis and COVID-19.

We constructed PPI networks based on common DEGs, revealing important functional proteins and potential 
biomarkers between COVID-19 and cyclitis. Furthermore, utilizing the four methods of the CytoHubba plugin, 
we identified a total of seven hub genes. LILRB2, in combination with ANGPTL8, can enhance the migration and 
inflammatory activation of monocyte-derived  macrophages50. After being cleaved by caspases, MNDA builds 
up in the cytoplasm, aiding in the breakdown of the antiapoptotic protein Mcl-1 and encouraging neutrophil 
 apoptosis51. SPI1 serves as a transient regulator of early T cell precursors, altering the activity of pre-T cell genes 
during their  development52. TYROBP activates the PI3K/AKT pathway, leading to the upregulation of inflam-
matory  markers53. Induced by stst1, Lcp2 can further activate the transcription factors NFAT and NF-κB54,55. 

Figure 9.  The validation of the diagnostic efficacy of seven immune-related hub genes, as well as their 
expression correlation. (A, B) ROC curves of seven immune-related hub genes in the datasets GSE147507 and 
GSE11783. (C, D) Correlations between the seven hub genes that are reciprocal.
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FCER1G codes for the Fc receptor γ chain, which is present in various types of immune cells, aiding in the 
removal of pathogens and antigens and also promoting abnormal immune responses such as IgE-dependent aller-
gies by interacting with crystalline particles of  immunoglobulins56–58. ITGAM enhances leukocyte identification 
of endothelial ICAM, allowing for attachment and subsequent migration of leukocytes from endothelial cells to 
the subendothelial  area59. Studies have demonstrated that ITGAM is essential for the development of inflam-
mation during pulmonary infection and is associated with enduring pulmonary complications in individuals 
with COVID-1960,61. Furthermore, in IC, the expression of CD11b, which is encoded by ITGAM, is reduced. 
It can be mitigated by TAK-242, a specific antagonist of  TLR462. These findings provide additional support for 
our identified hub genes, indicating their involvement in the development of IC and COVID-19, as well as their 
potential as targets for therapy.

Next, we employed NetworkAnalyst to investigate the transcriptional regulation of common DEGs between 
COVID-19 and cystitis, which focused on examining the relationships between TF, miRNA, and genes. It is 

Figure 10.  Construction and validation of COVID-19 and IC diagnostic column line graph models. (A) 
Column line graphs are used to predict the occurrence of COVID-19. (B) Column line graphs are used to 
predict the occurrence of IC. (C) Calibration and ROC curves to assess the diagnostic value of the COVID-
19-related column line graph model in the GSE147507 dataset. (D) Calibration and ROC curves to assess the 
diagnostic value of the IC-related column line graph model in the GSE11783 dataset. (E) GSE171110 dataset to 
verify the calibration and ROC curves for COVID-19. (E) GSE57560 dataset to verify the calibration and ROC 
curves for IC.
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reported that Foxc1, YY1, gata2, and FoxL1 play an important role in COVID-1963,64. PPARG has potential anti-
inflammatory effects in a wide range of inflammation-related diseases. Jaclyn Estes et al.65 validated the capacity 
of PPARG to ameliorate bladder symptoms under the stimulation of pioglitazone in IC. Moreover, Gianandrea 
Pasquinelli et al.66 concluded the crucial function of PPARG in suppressing the cytokine storm by reducing the 
activity of pro-inflammatory cytokines in COVID-19. Recent researches conducted by Alireza et al.67 and Zofia 
et al.68 suggested that the robust hybridization of hsa-mir-26b-5p and hsa-mir-124-3p with ACE2 is involved 
in controlling the identification and assault of SARS-CoV-2. Hsa-mirna-335-5p upregulates autophagy-related 
factors to alleviate  inflammation69. Furthermore, the suppression of hsa-mir-1-3p’s activity towards phosphori-
bosylaminoimidazole succinocarboxamide synthetase (paics) hinders the mitotic process involving mechanical 
function in non-small cell lung cancer (NSCLC)70. Additionally, hsa-mir-192-5p and hsa-mir-9-5p regulate the 
proliferation of tumor cells and their transformation into fibrotic  tissue71,72. Our findings suggest that these miR-
NAs and TFs may play a role in the immune response and inflammatory processes associated with COVID-19 
and IC. However, further elucidation of their functions in the aforementioned processes is needed.

We also established a gene-disease relationship network to elucidate the correlation between the DEGs and 
different diseases. The findings suggested that these genes are mostly associated with inflammatory disorders and 
respiratory conditions, such as pneumonia, hypersensitivity, dermatitis, allergic contact, rheumatoid arthritis, 
and mycocardial ischemia. Pneumonia emerges as a quintessential complication of COVID-19, with severe cases 
often accompanied by varying degrees of  fibrosis73. Second, Sars-cov-2 exhibits a notable affinity for the liver 
and the biliary  system74, directly causing mitochondrial swelling and stem cell apoptosis, which leads to liver 
 impairment75. The mortality rate among COVID-19 patients with coexisting cirrhosis also exhibits a significant 
 escalation76. Moreover, during the ongoing COVID-19 pandemic, there have been indications of emerging 
mental disorders following exposure to the  virus77. Individuals suffering from severe mental disorders, such as 
schizophrenia, typically face increased susceptibility to infection and more serious  consequences78.

Previously, researchers discovered VV116 and paxlovid as possible treatment agents for COVID-19. These 
drugs have shown prolonged clinical recovery and significant decreases in mortality risk among patients with 
COVID-1979. Nevertheless, there is currently no empirical evidence supporting the efficacy of any medication 
in treating COVID-19 or preventing SARS-CoV-2 infection in patients with cystitis. Employing the EnrichR 
database, we sieved through a pool of 10 promising drugs. In a previous computational study, Debajit Dey et al.80 
discovered that retinoic acid has the ability to reduce the activity of the sars-cov-2 E virus channel protein, 
hence affecting viral assembly. Mahmoud  Ahmed81 discovered Mebendazole’s inhibitory ability against the main 
protease (MPRO) of sars-cov-2 using molecular modeling. According to a retrospective study, mebendazole-
treated patients exhibited markedly abbreviated hospital  stays82. Besides, Vorinostat, a potent histone deacetylase 
(HDAC) inhibitor, has shown efficacy in treating lymphoma and human papillomavirus (HPV)  infections83. 
HDAC inhibitors reduce neurotoxicity by suppressing pro-inflammatory cytokines, including IL-6 and TNF. 
According to a previous studies, it has the ability to defend against neural impairment in cases when infection 
with coronavirus type 2 results in the emergence of severe acute respiratory  syndrome84. Furthermore, Subhash 
et al.85 revealed the effectiveness of HDAC inhibitors in restoring DNA damage repair, reprogramming detrusor 
function, and preventing hemorrhagic cystitis. Consequently, considering the preventive use of HDAC inhibi-
tors, like Vorinostat, in severely affected COVID-19 patients patients is expected to halt the progression of CAC 
improve survival chances.

Given the observation that immune disorders may represent a prevalent pathological mechanism and molecu-
lar alteration in both IC and COVID-19, we employed the ssGSEA algorithm to accurately assess the correlations 
of the levels of infiltration of 28 immune cells with the two illnesses as well as with the seven crucial genes in 
the two diseases. Our findings demonstrate a notable increase in the infiltration of T cells, mast cells, and NK 
cells in both disorders, highlighting their pivotal function in modulating the immunological milieu. T cells, 
central to adaptive immunity, orchestrate cellular immune  responses86. The activated CD8 T cells orchestrate 
pro-inflammatory cytokine secretion and infected cell death through  perforin87, while CD4 T cells indirectly 
guide infection clearance by modulating CD8 T cells, neutrophils, and B cells  activity88. Furthermore, CD4, CD8, 
and γδ T cells infiltrating bladder tissues could potentially underpin bladder tissue injury. Alba Grifoni et al. 
discovered that CD8 T cells possess the capacity to identify the spike protein of SARS-CoV-289. The bladder tissue 
harbors the specific site of SARS-CoV-2 infiltration, ACE2, indicating the potential for T cells to mediate bladder 
injury in patients during COVID-19 infection. In addition, after being activated by TNFα via TNFR1, mast cells 
release a substantial amount of TNFα, which contributes to the persistent  inflammation90,91, that drives cytokine 
storms in COVID-1946, and worsens the local inflammation associated with  cystitis49. Moreover, NK cells, as 
lymphocyte subtypes, have the ability to initiate spontaneous cytotoxicity, annihilating virus-infected cells via 
CD16-mediated antibody-dependent cytotoxicity (ADCC)92. A study suggested that early acute SARS-CoV-2 
infection coincides with heightened chemokine levels (such as CCL3, CCL3L1, etc.), thereby attracting NK cells 
from the circulation to infected  areas93. Robert et al. confirmed the presence of increased NK cells in IC through 
 immunohistochemistry94, which is consistent with our findings. We hypothesized that the migration of immune 
cells may lead to or aggravate the occurrence and development of cystitis during the infection with COVID-19.

Previous research has explored the genetic factors associated with COVID-19 or cystitis. Nevertheless, the 
complex relationship between these two disorders has not been fully elucidated. To bridge this gap, we untangled 
their shared molecular underpinnings via bioinformatics. However, our study has certain limitations. All of the 
data we used sourced from public databases, for which we cannot evaluate input errors. Besides, our findings—
encompassing shared DEG identification, regulatory network delineation, and candidate drug identification—
emanate from bioinformatics analyses. As such, the precise roles and mechanistic nuances of hub genes within 
immune and inflammatory processes warrant further experimental or clinical validation.
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Conclusion
By employing bioinformatics analysis, we investigated the connectivity between COVID-19 and cystitis based 
on the shared DEGs. Functional evaluations identified immune responses and cytokines as common pathways. 
We established the regulatory network connecting the common DEGs with TFs and miRNAs. Drugs that have 
been identified through protein-drug interactions show promise as possible therapies for CAC. Genes produced 
from the PPI network offer new and innovative targets for therapy. Subsequently, by utilising CytoHubba, a total 
of 7 crucial genes were identified and two Nomogram models were constructed to forecast the probabilities of 
contracting COVID-19 and IC. The models had strong performances as their AUCs exceeded 0.7 in both the 
training and validation sets. In summary, our work provides theoretical principles and innovative perspectives 
on the CAC inquiry.

Data availability
The data analyzed in this study were obtained from publicly available databases. The GSE147507, GSE11783, 
GSE171110 and GSE57560 chips from the GEO database (https:// www. ncbi. nlm. nih. gov/ gds).
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