
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2092  | https://doi.org/10.1038/s41598-024-52619-x

www.nature.com/scientificreports

Optimized two‑stage 
time‑truncated control chart 
for Weibull distribution
Shafaqat Ali 1,2, Jose Jorge 3, Muhammad Aslam 4* & Muhammad Kashif 5

In this article, an attribute control chart is proposed when the lifetime of a product follows a Weibull 
distribution in two‑stage sampling, which is based on the number of failures from a truncated life test. 
The coefficients of the proposed double sampling attribute control chart and the test duration are 
determined so that the average run length when the process is in control is close to the target value. 
An overview is reported on how double sampling np control charts work. Tables reporting the out‑of‑
control average run lengths are given for various shift parameters. A case study is given to illustrate 
the proposed control chart for industrial use. A comparison of two‑stage and single‑stage sampling of 
failure of products is discussed.

In manufacturing industries, control charts can be used to monitor the quality of high-quality product produc-
tion. These tools assist in ensuring that items are manufactured within specified limits by monitoring quality 
in advance. Many control charts have been developed to monitor processes and address real-life production 
issues in the industrial sector. Usually, a normal distribution is used for quality characteristics. However, in 
some instances, non-normal distributions are employed when quality characteristics do not follow a normal 
distribution. Therefore, control charts constructed under the assumption that the quality characteristic follows 
a normal distribution may mislead the experimenter if the quality does not follow a normal distribution. In 
our research, we incorporated the concept of double-stage sampling, which refers to a technique within control 
charts involving two distinct stages. The first stage involves extracting a sample from the population, with the 
sample size determined at this point. In the second stage, the sample is subdivided into subgroups, and a control 
chart is created based on the data from these subgroups. This method is used to reduce the variability of the 
data and to improve the accuracy of the control chart. Moreover, DS-np control charts are an important tool 
for monitoring process performance and detecting changes in process performance. These charts are used to 
identify and analyze process variation and to detect special causes of variation. DS-np control charts can help 
identify process problems, identify process improvement opportunities, and provide feedback to process owners 
and operators. They can also be used to monitor process performance over time and to detect changes in process 
performance. The Weibull distribution can be used both in the medical and engineering fields. Firstly, Weibull 
distribution is commonly used in biostatistics to model survival data. It is used to analyze the time to failure of 
a system or the time to an event, such as death or recovery from a disease. It is also used to model the time to 
onset of a disease, the time to recovery from a disease, and the time to progression of a disease. Additionally, for 
biostatistics, Weibull distribution is used to model the time to respond to treatment. Secondly application in an 
engineering field, Weibull distribution is widely used in industrial engineering and quality control for a variety 
of purposes. It can be used to model the time to failure of a product, the time to complete a task, or the time to 
complete a process. It can also be used to model the probability of a product failure within a fixed time frame. 
It can be used to model the probability of a process or task taking longer than expected. Finally, it can be used 
to model the probability of a product. Below, there are various studies on control charts where the process does 
not satisfy the normality assumptions. Weibull distribution is widely used for reliability and quality engineering. 
A control chart for positively skewed distribution like Weibull, gamma, and log-normal has been discussed by 
Refs.1–3 developed a nonnormal distribution as a Gamma distribution which is considered a failure model for 
the economic statistical design X  control charts. The parametric bootstrap method for the detection of lower 
and upper control limits was established by Ref.4 and used to monitor the process shift of the percentile of the 
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Weibull population. Another economic-statistical design of X  control charts for non-normal quality measure-
ments with the assumption of the average sample following the Johnson distribution and sensitivity of mean 
shift and in control time measured using Weibull distribution by Ref.5. A two-plan sampling system proposed by 
Ref.6 for failure-censored life testing when lifetime follows Weibull distribution.  They7 suggested a control chart 
based on failure-censored reliability tests with the assumption that the sample follows to Weibull distribution. 
A non-normal approach was developed by Ref.8 for the observation of control chart features where data follow a 
non-normal distribution as a generalized exponential distribution. A real-life application of lifetime data based 
on conditional mean and median based on cumulative sum control charts developed by Ref.9. Two lifetime dis-
tributions are discussed named Transmuted Power function distribution and survival weighted Power function 
distribution discussed by Ref.10 for performance measure of attribute control charts. The coefficients of control 
limits for various sample sizes and truncation coefficients depend on the target ARL value and shift coefficient 
explored and computed using simulation and real-life examples from Refs.10,11 explored Shewhart control charts 
which are used to monitor the Weibull mean based on the gamma distribution. Another control chart was pro-
posed under the assumption of Weibull distribution by Ref.12. In this article, we will extend a single sampling 
extension as double sampling for the attribute control chart using a truncated life test completely discussed in 
“Design of the control charts” section. This paper considered discussing the double sampling attribute chart for 
the Weibull distribution. An optimization model for average run length in control (IC) and out-of-control (OOC) 
was discussed. A comparison of single sampling and double sampling is also reported for attribute inspection for 
the np control chart. The use of Weibull distribution under the truncated life test for DS can be used to handle 
the lifetime of attribute control charts. The Weibull distribution can be used to calculate the probability of the 
control chart failing within a certain period, which can be used to determine the lifetime of the control chart, 
the importance of this distribution discussed by Ref.2.

Upon delving into the existing body of literature, substantial research has been conducted on crafting control 
charts for instances where counts originate from truncated tests. Despite an extensive review of the literature, 
it has come to our attention that no prior work has been undertaken to devise an optimized two-stage control 
chart utilizing the Weibull distribution. This paper aims to fill this gap by introducing the design of an optimized 
two-stage control chart specifically tailored for situations where counts are recorded from truncated life tests. 
We will elucidate the methodology for determining control chart parameters within predefined optimization 
constraints. Additionally, a simulation study will be presented, along with the application of the proposed control 
chart using a real-world example. Our analysis will include a comparative evaluation, demonstrating the efficiency 
of the proposed control chart over an existing counterpart introduced by Ref.13. We anticipate that our proposed 
control chart will outperform the existing one in terms of average run length.

Design of the control charts
Suppose that the failure time of a product follows a Weibull distribution whose cumulative distribution function 
(cdf) is given by

In Eq. (1), θ is the known shape parameter and β is the unknown scale parameter. The shape parameter is 
known on the engineering experience discussed by Refs.6,14. The application of mean time failure for single-stage 
sampling for attribute charts was discussed by Ref.15. The expected value of the product’s mean life is expressed 
using a probability distribution, as represented in Eq. (2).

where Ŵ is the gamma function. Here we will compute the mean of an attribute two-stage sampling control chart 
for monitoring the sample observation n = n1 + n2 for the mean shift by deducting the number of failed items 
of some specified t0 (Truncated time). Let µ0 be the target mean life when the process IC and µ1 will be used, 
which indicates the shifted process is OOC. The probability that an item fails by time t0 is given as

If we specify the truncated time t0 in terms of multiple IC, process means through t0 = cµ0 for a constant c 
is known as a truncated time constant. An unknown parameter θ in terms of the mean from Eq. (1) and then 
Eq. (3) can be written as

If the process is IC (that is, µ = µ0 ), then the probability in Eq. (4), reduces to
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A new double-sampling control chart for measuring the failure lifetime of a product using Weibull distribu-
tion is the extension of the single sampling control chart proposed by Aslam and  Jun13. The scheme of double 
sampling np control chart for failure lifetime can be assessed through the failure of product combined on sec-
ond stage sample which comprises the five parameters as: n1, n2,WL,UCL1 and UCL2 proposed by Ref.16. Steps 
involved in measurement scheme for the failure of products under second stage sampling which follows the 
Weibull distribution.

Step 1
Begin with attribute inspection on inspection level 1st and the sample number represented by n1 (count the 
number of failure items of the specification time t0 = cµ0 where µ0 is the target mean when the process is IC 
and c is any constant).

Step 2
The process will be considered OOC on 1st stage sampling if d1 < WL or d1 > UCL1 and IC if LCL ≤ d1 ≤ UCL1 
according to Ref.14.

Step 3
An additional sample is required in case of WL < d1 < UCL1 according to De Araujo Rodrigues et al.16. In the 
second stage of sampling defective items counted as D = d1 + d2 . The newly proposed IC and OOC scenario 
will be as a DS-np chart: if D < UCL2 and OOC for D > UCL2 . So the random variable D follows the binomial 
distribution with parameter n and p0 when the process is IC where p0 is the probability an item fails on first 
or second-stage sampling. In the present study, our main focus is to measure the lifetime of a product when a 
second sample has occurred. So during an inspection in the second stage of sampling our main focus with total 
defective items D occurred on the inspection level second.

Scheme and algorithm of control chart for the failure of products
We have defined the following control limits: WL,UCL1 and UCL2 . For a better representation of the schemes, 
we can add or subtract a decimal from the floor or ceiling of these real values:

For the Double-sampling attribute control chart, a flow chart Fig. 1 is given below which is a sketch used to 
monitor and control a process. It is used to detect and identify any special causes of variation in the process. Here 
based on the prospered control chart scheme, the double sampling attribute flow chart consists of two samples 
as n = n1 + n2 . In Fig. 1 the complete sequence of taking sub-sample and declaring whether an item is defective 
or not and process is OOC or IC is discussed.

In this study we will consider process IC for both stage sampling and the probability of IC can be used as:

Pn1 = probability of declaring the process as IC at inspection level 1. Pn2 = probability of declaring the process 
as IC at inspection level 2.

It should be noted that if in sampling stage one d1 = 0 If LCL1 = 0 and on sampling stage two LCL2 can not 
be zero. P is considered IC and OOC with p = p0 and p = p1 respectively. This study focuses on two-stage sam-
pling approach to assess the IC status of a manufacturing process. In the first stage, the probability Pn1 evaluates 
the probability of declaring the process IC, considering potential defects d1 . The second stage introduces Pn2 , 
representing the probability of declaring IC while accounting for both defective units (d1 + d2) . The combined 
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probability P0 integrates outcomes from both stages, assuming a specific probability (p0) . Special considerations 
include instances with zero defects in the first stage and ensuring LCL2 is non-zero in the second stage. Dif-
ferentiating between IC and OOC states relies on distinct probabilities (p0 and p1) , offering a comprehensive 
evaluation of the process’s IC behavior.

Suppose now that the process mean is shifted µ0 to µ1

If the process mean shifted as µ1 = gµ0 for a constant g , then Eq. (8) becomes as

Now the probability of the process being declared in control when the process is out of control is as follows:

The permanence measure of two-stage attribute np control charts using Weibull distribution under trun-
cated life test will be calculated using average run length. For IC and OOC average run length is represented 
respectively by ARL0 and ARL1

For IC

For OOC
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Figure 1.  Time failure of products during attribute inspection at the second stage.
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The control constant g and truncated time constant c will be first determined according to the specified n by 
Ref.14. In the present study the optimized values of n1 and n2 are used from the study of Ref.15, for the comparison 
of single-stage sampling and two-stage sampling lifetime of products.

On the other hand, the ASN value is calculated as follows:

Pa represents the probability associated with the control chart’s decision regarding the first sample, n1.

Optimization model
In Section Four, our main goal is to create a strong and effective statistical quality control chart. We do this by 
fine-tuning various aspects using an optimization model. The chart is designed to do a better job at catching prob-
lems in the manufacturing process, making it more reliable. Our specific focus is on reducing the time it takes 
to detect issues ARL1 and keeping the number of samples in check (ASN) to make the whole process smoother 
which is prposped by Ref.16. We will employ a bi-objective optimization model to minimize both the ARL1 and 
ASN values. Consequently, the objective function and decision variables will be as follows:

The proposed control chart is subjected to the following restrictions based on DS-np 15:

where UCL is the upper control limit from a single sample Weibull chart, n is the sample size, and r0 is the ARL0 
value of this chart also. ⌊·⌋ denotes the “floor” of its argument, i.e. the largest integer less than or equal to the 
argument. ⌈·⌉ denotes the “ceiling” of its argument, i.e. the smallest integer larger than or equal to its argument.

Result and discussion
In this section, we explore the practical implementation of our research findings, particularly focusing on the 
utilization of R software with the MCO package developed by Ref.17 to solve this bi-objective optimization model. 
Recently, Refs.18,19 used the same package to find optimal control limits and sample sizes of similar proposed 
control charts.

Below are Tables 1, 2, 3 and 4 which show the performance of the proposed control chart concerning the 
SS-Weibull chart through the values of the ARL1 . All the tables are presented for β = 1.

The DS-Weibull chart presents better performance concerning ARL1 metric for small and moderate change 
in the mean of the process (for values between 0.4 and 0.9 of f  approximately) compared with the SS-Weibull 
control chart.

In Table 5, the DS-Weibull chart demonstrates superior performance with respect to the ARL_1 metric for 
small and moderate changes in the mean of the process (for values between approximately 0.4 and 0.9 of f). 
This is in comparison to the SS-Weibull control chart, where the parameter scheme involves setting the shape 
parameter to 9.54 and the scale parameter to 2.055.

In Table 6 Setting the Weibull distribution parameters to shape 14.54 and scale 2.69, Table 6, generated 
through simulation, reports improved DS-Weibull chart performance for ARL1 with small to moderate mean 
changes (f values approximately between 0.4 and 0.9) compared to SS-Weibull control chart.
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Experiment with simulated data
In this section, the performance of the proposed control chart will be tested through simulated data using 
information from Refs.14,18 in the “Case study” section. Here, are taken 20 real samples with sample size n = 20 . 
Then they generated 20 simulated samples with n = 20 also, where these last 20 samples belong to the process 
out-of-control. Here, p0 = 0.5810 (proportion of defects in control) and p1 = 0.8244 (proportion of defects out-
of-control). In our case, we cannot use the first original samples because these belong to a constant sample size 
n = 20 . According to the below, we will use the p0 and p1 values to simulate the samples but using the two sample 
sizes corresponding to our control chart. From Ref.14 it is assumed that r0 = 200 , β = 1 and f = 0.5 . With these 

Table 1.  ARL1 values for SS and DS-Weibull charts when n = 20 and r0 = 200.

Shift f

SS Weibull DS Weibull

%GainARL1 WL UCL1 UCL2 n1 n2 ASN ARL0 ARL1

1.00 200.08 8.50 18.50 24.50 11.00 20.00 12.91 200.12 200.12  − 0.02

0.9 147.40 8.50 21.50 33.50 12.00 32.00 18.55 206.58 52.68 64.26

0.8 60.97 8.50 21.50 31.50 12.00 29.00 17.43 203.12 16.62 72.74

0.7 22.43 11.50 25.50 33.50 16.00 28.00 19.67 201.40 5.11 77.22

0.6 8.40 11.50 24.50 33.50 16.00 28.00 19.67 201.40 2.16 74.34

0.5 3.42 11.50 27.50 33.50 16.00 28.00 19.67 201.40 1.27 63.01

0.4 1.66 11.50 27.50 33.50 16.00 28.00 19.67 201.40 1.03 37.67

0.3 1.10 9.50 25.50 30.50 14.00 25.00 19.82 254.60 1.00 9.01

0.2 1.00 8.50 22.50 28.50 13.00 23.00 19.95 263.13 1.00 0.00

0.1 1.00 6.50 21.50 23.50 11.00 18.00 19.65 221.53 1.00 0.00

Table 2.  ARL1 values for SS and DS-Weibull charts when n = 20 and r0 = 370.

Shift f

SS Weibull DS Weibull

%GainARL1 WL UCL1 UCL2 n1 n2 ASN ARL0 ARL1

1.00 370.36 9.50 17.50 20.50 11.00 19.00 11.14 370.01 370.01 0.09

0.9 197.60 10.50 25.50 33.50 15.00 33.00 17.32 384.71 94.50 52.17

0.8 75.46 8.50 22.50 34.50 13.00 36.00 18.47 429.00 24.82 67.10

0.7 27.09 8.50 22.50 34.50 13.00 36.00 18.47 429.00 7.15 73.62

0.6 9.84 8.50 21.50 34.50 13.00 36.00 18.47 429.00 2.62 73.32

0.5 3.83 8.50 21.50 34.50 13.00 36.00 18.47 429.00 1.38 63.95

0.4 1.76 7.50 20.50 33.50 12.00 35.00 19.57 475.15 1.05 40.21

0.3 1.11 8.50 23.50 28.50 14.00 25.00 19.94 405.75 1.00 9.78

0.2 1.00 7.50 22.50 25.50 13.00 21.00 19.71 457.86 1.00 0.00

0.1 1.00 6.50 20.50 23.50 12.00 19.00 19.94 408.50 1.00 0.00

Table 3.  ARL1 values for SS and DS-Weibull charts when n = 30 and r0 = 200.

Shift f

SS Weibull DS Weibull

%GainARL1 WL UCL1 UCL2 n1 n2 ASN ARL0 ARL1

1.00 203.40 14.50 25.50 31.50 17.00 34.02 17.20 200.75 200.75 1.30

0.9 144.28 11.50 27.50 37.50 17.00 35.02 22.99 204.94 49.42 65.75

0.8 47.34 15.50 31.50 35.50 22.00 36.02 24.36 204.86 14.23 69.95

0.7 14.59 11.50 26.50 37.50 17.00 37.02 22.99 204.94 4.29 70.58

0.6 4.96 11.50 26.50 37.50 17.00 38.02 22.99 204.94 1.85 62.66

0.5 2.06 11.50 27.50 36.50 18.00 39.02 26.20 236.14 1.16 43.69

0.4 1.19 9.50 25.50 36.50 16.00 40.02 29.56 228.41 1.01 15.13

0.3 1.00 11.50 27.50 35.50 19.00 41.02 29.18 303.31 1.00 0.00

0.2 1.00 10.50 25.50 32.50 18.00 42.02 29.00 216.10 1.00 0.00

0.1 1.00 11.50 27.50 30.50 20.00 43.02 29.32 214.47 1.00 0.00
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conditions, from Table 1 we have the following variables: WL = 11.50 , UCL1 = 27.50 , UCL2 = 33.50 , n1 = 16 
and n2 = 28 . For the first 20 subgroups (the process in control) the following defects D1 are generated using a 
binomial distribution with p = 0.5810 and n = 16 parameters: 11, 6, 9, 8, 8, 8, 8, 9, 10, 11, 9, 9, 9, 11, 12, 10, 5, 
8, 8, 11. Then, the last 20 subgroups are generated when the process is out-of-control, p = 0.8244 : 12, 14, 16, 10, 
12, 11, 13, 14, 13, 13, 13, 13, 13, 10, 15, 12, 16, 14, 13. Figure 2 shows the DS-Weibull scheme for this first stage.

From the previous scheme, it can be seen that subgroup number fifteen and subgroup seventeen are the two 
first subgroups where it is necessary to take a second sample. Thus, we must generate defects with binomial 
distribution and p = 0.8244 and n = 28.

Table 4.  ARL1 values for SS and DS-Weibull charts when n = 30 and r0 = 370.

Shift f

SS Weibull DS Weibull

%GainARL1 WL UCL1 UCL2 n1 n2 ASN ARL0 ARL1

1.00 370.05 17.50 30.50 30.50 21.00 34.02 21.09 370.16 370.16  − 0.03

0.9 244.67 14.50 29.50 36.50 20.00 35.02 21.61 375.34 86.65 64.59

0.8 74.29 13.50 28.50 37.50 20.00 36.02 23.92 387.54 20.42 72.51

0.7 21.20 10.50 25.50 37.50 16.00 37.02 22.77 383.15 5.78 72.73

0.6 6.58 12.50 28.50 37.50 19.00 38.02 24.39 372.24 2.14 67.52

0.5 2.46 10.50 26.50 37.50 16.00 39.02 22.77 383.15 1.23 50.00

0.4 1.28 9.50 25.50 36.50 16.00 40.02 27.89 449.81 1.02 20.67

0.3 1.01 12.50 28.50 36.50 20.00 41.02 27.15 450.89 1.00 0.99

0.2 1.00 12.50 28.50 34.50 21.00 42.02 29.37 420.48 1.00 0.00

0.1 1.00 11.50 27.50 32.50 20.00 43.02 29.38 403.99 1.00 0.00

Table 5.  ARL1 values for SS and DS-Weibull charts when n = 25 and r0 = 370.

Shift f

SS Weibull DS Weibull

%GainARL1 WL UCL1 UCL2 n1 n2 ASN ARL0 ARL1

1.00 370.55 7.67 14.77 17.11 12.00 50.63 20.09 369.16 370.16 00.10

0.9 246.67 0.3172 16.37 23.71 12.00 43.72 20.61 355.47 86.65 64.87

0.8 72.29 0.1498 15.25 22.50 12.50 36.91 21.92 367.51 20.42 71.75266

0.7 23.20 0.2800 15.68 17.50 12.00 66.11 21.77 383.15 5.78 75.08621

0.6 16.58 11.42 16.63 20.38 12.76 50.33 21.39 371.14 2.14 87.09288

0.5 12.46 0.3124 14.80 16.42 12.51 27.44 22.77 383.15 1.23 90.12841

0.4 1.128 5.12 14.29 21.50 12.51 36.07 22.89 389.81 1.02 9.574468

0.3 1.11 2.51 12.88 22.72 12.53 49.20 22.15 401.22 1.00 9.90991

0.2 1.10 9.96 20.92 21.72 12.74 49.77 23.37 401.48 1.00 9.090909

0.1 1.00 0.8648 10.76 20.68 12.63 56.44 24.38 413.99 1.00 0

Table 6.  ARL1 values for SS and DS-Weibull charts when n = 35 and r0 = 370.

Shift f

SS Weibull DS Weibull

%GainARL1 WL UCL1 UCL2 n1 n2 ASN ARL0 ARL1

1.00 370.55 5.21 15.96 21.85 12.50 60.32 31.04 369.16 370.88 0.02965

0.9 246.67 8.57 15.20 24.79 12.61 62.48 32.11 375.34 11.85 95.89497

0.8 72.29 6.23 20.38 24.78 12.62 48.34 33.12 387.54 20.42 71.75266

0.7 23.20 7.88 17.18 24.00 12.82 49.72 30.77 383.15 8.85 61.85345

0.6 16.58 2.42 12.91 13.81 12.51 56.82 31.19 372.24 6.68 59.71049

0.5 12.46 8.43 12.99 16.38 12.80 24.63 32.50 383.15 2.52 79.77528

0.4 1.128 12.21 25.23 25.42 12.54 59.84 33.55 449.81 1.02 9.574468

0.3 1.11 6.89 12.71 20.06 12.96 56.86 31.25 450.89 1.0066 9.315315

0.2 1.10 6.52 15.93 16.38 12.57 25.17 34.17 420.48 1.002 8.909091

0.1 1.00 0.54 15.54 28.26 12.54 54.62 34.76 403.99 1 0
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Figure 3 shows the scheme, now with (D1 + D2) defects plotted.
Now in subgroup fifteen, (D1 + D2) = 26 , and the control chart continues, but in subgroup number twenty-

one, (D1 + D2) = 34 , detecting the out-of-control signal. The dotted line indicates that at this point the control 
chart has detected the control output and corrective actions must be taken in the process. From Ref.14 it is known 
that 21–40 subgroups belong to the out-of-control state, so our proposed control chart detected the shift in the 
process just in the following subgroup from where the such change occurred, but Ref.14 detected the shift after 
of 6 subgroups.

In Fig. 4, the x-axis represents shifts in the process, and the y-axis displays percentage gains. Various schemes, 
including PG1, PG2, PG3, and PG4, are presented in the figure. PG1 (n = 20, r0 = 200), PG2 (n = 20, r0 = 370), 
PG3 (n = 30, r0 = 200), and PG4 (n = 30, r0 = 370) are depicted in the four figures. The same data is used in the 
table for all four schemes, with a preferable shift range of 0.40 to 0.90 for effective process control.

Real life‑example
In this section, a real-life example of strength measures in GPA for single fibers data in Table 7, as used by Ref. 
7, is presented to illustrate the application of a two-stage sampling process with the Weibull distribution. The 
Weibull distribution is considered in the first stage, where 25 observations are used to establish the process as in 
control. The parameters are optimized and taken from Table 5, with the shape parameter set to 9.54 and the scale 
parameter set to 2.055. Subsequently, for the second stage sampling, Table 6 is utilized, and estimated parameters 
are obtained from 35 observations to further assess the process with optimized parameters, setting the shape as 
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Figure 2.  DS-Weibull scheme for the first stage simulated data.
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Figure 3.  DS-Weibull scheme for the second stage simulated data.
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14.54 and the scale as 2.69. The constraints outlined in the design of the control chart are to be followed from 
step 1 to step 3 accordingly.

Figure 5 illustrates a control chart for the first sampling stage, depicting a process effectively in control, indi-
cated by stable data points conforming to established constraints. The second graph extends the control chart to 
the second sampling stage, reaffirming process control established in stage one and reflecting continued stability 
with an additional forty observations. These control charts emphasize the reliability and stability of the process 
across both sampling stages, in line with the outlined constraints. Figure 6 shows increasing percentage gains 
with decreasing shift values (1 to 0.1), fitting a Weibull distribution (shape = 9.54, scale = 2.055). The optimized 
parameters provide insights into favorable outcomes and tail behavior for statistical analysis using a first-stage 

Figure 4.  Percentage gains for various shifts and sample sizes, such as twenty and thirty.

Table 7.  Data set of strength measure in GPA for single fibre (20-mm).

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958

1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179

2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382

2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554

2.566 2.570 2.586 2.626 2.633 2.642 2.648 2.684 2.697 2.726

2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
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sample of n = 25, as displayed in Table 5. Figure 7 demonstrates behavior with optimized parameters for n = 35, 
shape = 14.54, and scale = 2.69 across different sample sizes. Analyzing shifts and percentage gains from 1 to 0.1 
reveals crucial dynamics for SPC. The gains peak at a shift of 0.9 (95.89%), offering insights into system sensitivity 
and aiding in optimizing control parameters for process monitoring.

Figure 5.  Control charts for sampling stage one and two using two different sets of optimized parameters.

Figure 6.  Using optimized parameter scheme for n = 25 and shape parameter 9.54 and scale as 2.055.
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Conclusions
Non-normal control charts are important to measure because they provide a way to monitor processes that pro-
duce data that is not normally distributed. These charts can help identify process shifts and trends that may not 
be detected with traditional control charts. Non-normal control charts can also help identify special causes of 
variation that may be present in the process. By monitoring these charts, organizations can take corrective action 
to improve process performance and reduce the risk of producing defective products. In this research work a new 
control chart is constructed for the detection of the lifetime of attribute control charts using Weibull distribution 
under truncated life test for double-stage sampling. The New control chart is much better based on average run 
length and average time to signal. The DS-Weibull chart shows better performance concerning ARL1 metric for 
small and moderate change in the mean of the process when shift values are ranges (f = 0.4 to 0.9) compared 
with single sampling Weibull chart. The presented approach is assessed using both simulated and real-world 
datasets. A comparison with the conventional method reveals that the proposed control chart effectively operates 
with real-life data, demonstrating improved accuracy and efficiency in estimating the lifetime of the attribute 
control chart. This statistical method, involving two sampling stages, exhibits promise for future applications in 
biostatistics. It facilitates the continual monitoring and analysis of data over time, effectively identifying trends 
and patterns across various data types, such as patient outcomes, laboratory results, and quality control measures. 
The suggested control chart, coupled with cost analysis, can serve as a subject for future research. Additionally, 
exploring the application of the proposed control chart with repetitive sampling is a potential avenue for future 
investigation.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 8 August 2023; Accepted: 21 January 2024

References
 1. Chang, Y. S. & Bai, D. S. Control charts for positively-skewed populations with weighted standard deviations. Qual. Reliab. Eng. 

Int. 17, 397–406 (2001).
 2. Rinne, H. The Weibull Distribution: A Handbook (Chapman and Hall/CRC, 2008).
 3. Al-Oraini, H. A. & Rahim, M. Economic statistical design of X control charts for systems with Gamma (λ, 2) in-control times. 

Comput. Ind. Eng. 43, 645–654 (2002).
 4. Nichols, M. D. & Padgett, W. A bootstrap control chart for Weibull percentiles. Qual. Reliab. Eng. Int. 22, 141–151 (2006).
 5. Chen, H. & Cheng, Y. Non-normality effects on the economic–statistical design of X charts with Weibull in-control time. Eur. J. 

Oper. Res. 176, 986–998 (2007).
 6. Aslam, M., Balamurali, S., Jun, C.-H. & Ahmad, M. A two-plan sampling system for life testing under Weibull distribution. Ind. 

Eng. Manag. Syst. 9, 54–59 (2010).
 7. Kashif, M., Aslam, M., Rao, G. S., Al-Marshadi, A. H. & Jun, C. H. Bootstrap confidence intervals of the modified process capability 

index for Weibull distribution. Arab. J. Sci. Eng. 42, 4565–4573 (2017).
 8. Adeoti, O. A. & Ogundipe, P. A control chart for the generalized exponential distribution under time truncated life test. Life Cycle 

Reliab. Saf. Eng. 10, 53–59 (2021).
 9. Raza, S. M. M., Ali, S., Shah, I. & Butt, M. M. Conditional mean- and median-based cumulative sum control charts for Weibull 

data. Qual. Reliab. Eng. Int. 37, 502–526 (2021).

Figure 7.  Using optimized parameter scheme for n = 35 and shape parameter 14.54 and scale as 2.69.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2092  | https://doi.org/10.1038/s41598-024-52619-x

www.nature.com/scientificreports/

 10. Zaka, A., Naveed, M. & Jabeen, R. Performance of attribute control charts for monitoring the shape parameter of modified power 
function distribution in the presence of measurement error. Qual. Reliab. Eng. Int. 38, 1060–1073 (2022).

 11. Vasconcelos, R. M., Quinino, R. C., Ho, L. L. & Cruz, F. R. About Shewhart control charts to monitor the Weibull mean based on 
a Gamma distribution. Qual. Reliab. Eng. Int. 38, 4210–4222 (2022).

 12. Talib, A., Ali, S., Shah, I. & Gul, F. Time and magnitude monitoring using Weibull based Max-EWMA chart. Commun. Stat. Simul. 
Comput. 1, 1–17 (2022).

 13. Aslam, M. & Jun, C. H. Attribute control charts for the Weibull distribution under truncated life tests. Qual. Eng. 27(3), 283–288 
(2015).

 14. Jun, C.-H., Balamurali, S. & Lee, S.-H. Variables sampling plans for Weibull distributed lifetimes under sudden death testing. IEEE 
Trans. Reliab. 55, 53–58 (2006).

 15. Wu, C. W., Aslam, M., Chen, J. C. & Jun, C. H. A repetitive group sampling plan by variables inspection for product acceptance 
determination. Eur. J. Ind. Eng. 9, 308–326 (2015).

 16. De Araújo Rodrigues, A. A., Epprecht, E. K. & De Magalhães, M. S. Double-sampling control charts for attributes. J. Appl. Stat. 
38, 87–112 (2011).

 17. Mersmann, O., Trautmann, H., Steuer, D., Bischl, B. & Deb, K. mco: Multiple Criteria Optimization Algorithms and Related Func-
tions. R Package Version, 1.0-15.11 (2014).

 18. Muñoz, J. J., Campuzano, M. J. & Mosquera, J. Optimized np attribute control chart using triple sampling. Mathematics 10, 3791 
(2022).

 19. Campuzano, M. J., Carrión, A. & Mosquera, J. Characterisation and optimal design of a new double sampling c chart. Eur. J. Ind. 
Eng. 13, 775–793 (2019).

Acknowledgements
The authors are deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality 
and the presentation of the paper.

Author contributions
S.A., J.J., M.A. and M.K. wrote the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optimized two-stage time-truncated control chart for Weibull distribution
	Design of the control charts
	Step 1
	Step 2
	Step 3

	Scheme and algorithm of control chart for the failure of products
	Optimization model
	Result and discussion
	Experiment with simulated data
	Real life-example
	Conclusions
	References
	Acknowledgements


