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Comparison 
between a deep‑learning 
and a pixel‑based approach 
for the automated quantification 
of HIV target cells in foreskin tissue
Zhongtian Shao 1, Lane B. Buchanan 1, David Zuanazzi 1, Yazan N. Khan 1, Ali R. Khan 2 & 
Jessica L. Prodger 1,3*

The availability of target cells expressing the HIV receptors CD4 and CCR5 in genital tissue is a critical 
determinant of HIV susceptibility during sexual transmission. Quantification of immune cells in 
genital tissue is therefore an important outcome for studies on HIV susceptibility and prevention. 
Immunofluorescence microscopy allows for precise visualization of immune cells in mucosal tissues; 
however, this technique is limited in clinical studies by the lack of an accurate, unbiased, high-
throughput image analysis method. Current pixel-based thresholding methods for cell counting 
struggle in tissue regions with high cell density and autofluorescence, both of which are common 
features in genital tissue. We describe a deep-learning approach using the publicly available StarDist 
method to count cells in immunofluorescence microscopy images of foreskin stained for nuclei, CD3, 
CD4, and CCR5. The accuracy of the model was comparable to manual counting (gold standard) and 
surpassed the capability of a previously described pixel-based cell counting method. We show that 
the performance of our deep-learning model is robust in tissue regions with high cell density and 
high autofluorescence. Moreover, we show that this deep-learning analysis method is both easy to 
implement and to adapt for the identification of other cell types in genital mucosal tissue.

Sexual transmission of HIV, which occurs at the anogenital mucosa, accounts for the majority of new HIV infec-
tions worldwide1. The availability of target cells bearing the HIV co-receptors CD4 and CCR5 in genital tissue is 
a critical determinant of productive infection2–5. The inner foreskin of the penis is enriched in HIV-susceptible 
T cell populations and other cell types in the foreskin such as macrophages, dendritic cells, and Langerhans 
cells, which can contribute to the spread of HIV by direct infection or by disseminating viral particles to sus-
ceptible T cells6,7. The genital mucosa is exposed to sexually transmitted pathogens, commensal bacteria, and 
exogenous materials (hygiene products, genital secretions, etc.) that can induce local inflammation and increase 
HIV susceptibility8–13. Thus, it is essential to directly quantify immune cells in genital mucosal tissue when testing 
new prevention modalities or determining best practices to prevent HIV transmission.

High-parameter flow cytometry can provide detailed information on the phenotype and activation state of 
immune cell subsets, but is ill-suited for measuring immune cell density in tissue14. Disruption of tissue into sin-
gle cell suspensions for flow cytometry reduces the viability of sprawling cells, such as dendritic cells and Langer-
hans cells, and results in the loss of information on the spatial distribution of cells within tissue. Furthermore, 
tissue disruption may alter the expression of cell surface markers relevant to viral entry. Immunofluorescent (IF) 
imaging overcomes the limitations imposed by tissue disruption but introduces new challenges in quantification. 
Structural proteins and collagen fibers in genital mucosal tissue exhibit high levels of autofluorescence that can 
obscure positive staining and make cell quantification challenging15. Manual counting remains the gold standard 
but is laborious and variability and bias may be introduced by the operators. To overcome these issues, significant 
effort has recently been made to automate cell identification (cell segmentation) and quantification16–20.
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Traditional automated cell segmentation workflows typically use a “bottom-up” pixel-based strategy where a 
threshold is applied so that every pixel is classified as positive staining or background. While this approach can 
be implemented in cases where cells are clearly separated, it struggles in areas that have densely packed cells or 
high autofluorescence21. Advances in deep learning have enabled “top-down” object-based approaches for cell 
segmentation where a prediction is made to identify individual cells with rough shape representations. Early 
attempts at using machine learning for cell segmentation utilized “bounding boxes” to create cell selections22–24. 
However, these approaches can be inaccurate in densely packed cell areas due to overlapping bounding boxes 
that impede cell detection. Recent studies have utilized better shape representations to replace bounding boxes 
for predictions. For instance, the deep learning segmentation method StarDist uses star-convex polygons to 
identify cells25. Star-convex polygons are highly suitable for approximating the shape of important HIV target 
cells since they can match the blob-like shape of CD4 + T cells while also maintaining enough flexibility to outline 
sprawling cells like dendritic cells.

Here, we describe the training and validation of a StarDist model to identify HIV target cells in foreskin tissue 
stained for CD3, CD4, CCR5, and nuclei. Specifically, we introduce a reusable workflow that can be used to train 
custom StarDist models. This workflow uses multi-channel IF microscopy images as input and is not limited 
by the tissue type or markers used for staining. The accuracy of this StarDist model was compared to manual 
counting and automated counting using a previously established pixel-based algorithm. The training workflow, 
training dataset and StarDist model are available in the public domain (https://​github.​com/​prodg​erlab/​stard​ist).

Materials and methods
Ethics approval statement
This study utilizes foreskin samples from a randomized controlled trial exploring the effect of antimicrobial 
agents on the penile microbiota, immunology and HIV susceptibility of Ugandan men26. The randomized con-
trolled trial protocol was reviewed and approved by the Ugandan Virus Research Institute’s Research and Ethics 
Committee (UVRI SEC), the Ugandan National Council for Science and Technology (UNCST), and the Uni-
versity of Toronto HIV Research Ethics Board. Written informed consent was obtained prior to participation 
in the study. Data and biological samples collected from study participants were labelled with a unique study 
identification number. All clinical events that were directly related to the study were referred to and managed by 
the UVRI-IAVI clinical team according to the Ugandan Ministry of Health guidelines. Participants in the study 
were not directly involved in the design of this study and did not directly assess the effect of the interventions. 
Participants did play a role in contributing to peer referral of potential participants. The Community Advisory 
Board for UVRI-IAVI meets quarterly and provides advice to the study team on study design and recruitment. 
The protocol for analysis of frozen tissue sections by IF (and correlation with data generated by collaborators) 
was approved by the Research Ethics Board at The University of Western Ontario.

Immunofluorescence microscopy
Foreskin tissues used in this study (n = 40) were collected from adult males undergoing elective penile circumci-
sion as part of a larger study on HIV prevention in Uganda26. Frozen tissue blocks were prepared in the Uganda 
Virus Research Institute-International AIDS Vaccine Initiative laboratory in Uganda immediately after circum-
cision and then shipped to the University of Western Ontario in Canada for immunofluorescent microscopy 
analysis. Frozen tissue blocks were sectioned at a thickness of 8 µm using a CM1850 cryostat (Leica, Wetzlar, 
Germany) and two sections from each tissue block were adhered to a glass slide for staining. Slides were stored 
in an air-tight box at − 80 °C for up to 1 month prior to staining. Slides were thawed and air-dried for 30 min, 
and tissue sections fixed by applying 100 µl of 3.7% formaldehyde in PIPES buffer (100 mM PIPES, 2 mM MgCl2, 
1 mM EGTA in PBS, pH 6.8) for 5 min at room temperature. Slides were washed 3 times in 1 × PBS between 
all subsequent blocking and staining steps and all staining was performed in the dark at room temperature, 
unless otherwise stated. Each tissue section was blocked by applying 100 µl of a solution consisting of 10% 
normal donkey serum, 0.1% Triton X-100, and 0.01% sodium azide diluted in 1 × PBS (henceforth referred to 
as blocking solution) for 30 min. Each section was incubated with 100 µl of undiluted anti-human primary CD3 
antibody (Clone: SP7) (Abcam, Cambridge, United Kingdom) for 1 h at 37 °C, followed by 30 min incubation 
with 100 µl of donkey anti-rabbit Alexa Fluor 488-conjugated secondary antibody (Polyclonal, diluted to 0.25% 
in blocking solution) (Abcam). Next, sections were each incubated with 100 µl of mouse anti-human CCR5 
primary antibody (diluted to 5% in blocking buffer) (Monoclonal, a gift from Dr. Matthias Mack, University of 
Regensburg, Germany) for 1 h at 37 °C, followed by 30 min incubation with 100 µl of donkey anti-mouse Alexa 
Fluor 647-conjugated secondary antibody (Polyclonal, diluted to 0.25% in blocking solution) (Abcam). Finally, 
sections were each incubated with 100 µl goat anti-human CD4 primary antibody (Polyclonal, diluted to 5% in 
blocking buffer) (Abcam) overnight followed by 30 min incubation with 100 µl of donkey anti-goat Alexa Fluor 
568-conjugated secondary antibody (Polyclonal, diluted to 0.25% in blocking buffer) (Abcam). Coverslips were 
mounted onto stained slides by applying 100 µl Fluoromount G mounting media with DAPI (Thermo Fisher 
Scientific, MA, USA) per slide. Slides were stored at 4 °C for up to one week prior to imaging. Tiled images for 
whole tissue sections were scanned with a DM5500B fluorescence microscope (Leica, Wetzlar, Germany) using 
the 20 × objective lens for CCR5 (Y5 filter set, referred to as far-red channel), CD4 (DSR filter set, referred to 
as red channel), CD3 (GFP filter set, referred to as green channel), and cell nuclei (CFP filter set, referred to as 
blue channel). Representative staining is depicted in Supplementary Fig. 1. Excitation and emission filters are 
listed in Table 1.

https://github.com/prodgerlab/stardist
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Manual counting of HIV target cells
All possible cell type combinations positive for CD3, CD4, CCR5, and nuclei were counted individually (i.e., 
all DAPI +, CD3 + /DAPI +, CD4 + /DAPI +, CCR5 + /DAPI +, CD3 + CD4 + /DAPI + CD3 + CCR5 + /DAPI +, 
CD4 + CCR5 + /DAPI +, and CD3 + CD4 + CCR5 + /DAPI +). Total cell count was determined by counting all 
positive stained nuclei (DAPI). Manual counting of each cell type was completed using composite images of 
nuclei staining and the marker(s) of interest only (e.g., manual counting of CD3 + cells was performed on a 
composite image created by merging the CD3 and DAPI channels). Counting was completed by a single trained 
lab member using the Cell Counter plugin for Fiji. A cell was considered positive for a marker when positive 
marker staining overlapped, surrounded, or was directly adjacent a positive nucleus (Supplementary Fig. 2).

Pixel‑based counting using Fiji and CellProfiler
Pixel-based cell counting was performed using an algorithm based on the open-source image analysis programs 
Fiji and CellProfiler27–29. Image processing functions in Fiji were used to pre-process images. Both Fiji and Cell-
Profiler were used for thresholding and cell segmentation after pre-processing27,28. The epidermis and dermis 
underwent pre-processing, thresholding and segmentation using independent parameters, as the epidermis and 
dermis are very different in terms of cell density and level of autofluorescence.

Prior to pre-processing, full tissue section scans were split into the dermis and epidermis via manual tracing 
in Fiji and saved as separate files. The epidermis and dermis images were then split into individual channel images 
(CD3, CD4, CCR5, nuclei) by applying the “Stack to Images” function in Fiji. All individual channel images were 
pre-processed by applying the “Subtract Background”, “Brightness/Contrast”, and “Minimum Filter” functions 
successively. The “Subtract Background” and “Minimum Filer” functions were applied using parameters listed 
in Table 2; the “Auto” setting was used for used for all “Brightness/Contrast” adjustments.

Fiji was then used to apply threshold levels to pre-processed images and to select for positive staining. Pre-
processed images were converted to 8-bit format and the “Adaptive Thresholding” plugin for ImageJ was used 
to threshold images27. The “Fill Holes”, “Despeckle”, “Erode”, and “Watershed” functions were then applied suc-
cessively. Positive marker staining selection was completed by applying the “Analyze Particles” function with 
the options for “Display Results”, “Clear Results” and “Add to Manager” checked, and the “Circularity” setting 
set from 0.00 to 1.00 to detect all objects. The regions-of-interest (ROIs) generated after applying the “Analyze 
Particles” function were saved and overlayed with a black 8-bit image with the same dimensions as the image 
being analyzed to create a binary image representing positive marker signal. The number of ROIs for nuclei 
staining represents the total cell count of the image. Parameter values for each function are listed in Table 3.

CellProfiler was then used to quantify cells of interest by determining the number of instances where each 
combination of positive marker staining overlapped with positive staining of nuclei. The binary black and white 
images of positive marker staining were imported into CellProfiler using the “ConvertImageToObjects” func-
tion. The “RelateObjects” function was then applied to determine positive marker staining for CD3 and/or CD4 

Table 1.   List of microscope filters and their designations. LP (long pass filter), λ (wavelength in nanometers). 
*peak wavelength of light that passes through the filter and filter bandwidth.

Fluorophore Leica filter designation Absorbance λ Excitation filter* Emission λ Emission filter* Emission colour

DAPI CFP 358 436/20 461 480/40 Blue

Alexa fluor 488 GFP 494 425/60 517 480/LP Green

Alexa fluor 546 DSR 556 545/30 573 620/60 Red

Alexa fluor 647 Y5 650 620/60 665 700/75 Far-Red

Table 2.   Input parameters for pre-processing workflow in Fiji for pixel-based cell counting.

Function Input parameter

Epidermis Dermis

Nuclei CD3 CD4 CCR5 Nuclei CD3 CD4 CCR5

Subtract background Rolling ball radius 10 14 12 10 25 15 15 15

Minimum filter Radius 0 2 1 0.5 2 2.5 1.5 1.5

Table 3.   Input parameters for thresholding and segmentation in CellProfiler for pixel-based cell counting.

Function Input parameter

Epidermis Dermis

Nuclei CD3 CD4 Nuclei CD3 CD4 CCR5

Adaptive thresholding Block size 100 100 100 100 100 100 100

Adaptive thresholding Subtraction value  − 5  − 45  − 10  − 30  − 40  − 35  − 20

Analyze particles Particle size  > 5  > 7  > 10  > 5  > 10  > 5  > 10
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and/or CCR5 that overlaps with positive nuclei staining27,28. Scripts for high-throughput pre-processing and 
automated counting of images are available in the public domain (https://​github.​com/​prodg​erlab/​pixel-​based-​
quant​ifica​tion).

Annotation of images for StarDist model training in Labkit
A total of 40 fields-of-view (FOVs) were randomly generated from both inner and outer whole tissue section 
scans (600 × 600 µm, 1500 × 1500 pixels) for manual annotation for StarDist model training. Prior to annota-
tion, all FOVs were visually assessed for exclusion of areas with tissue folding (due to improper adherence of 
tissue sections to glass slides during cryosectioning). Each FOV contained the full thickness of the epidermis 
(both the apical and basal edges of the epidermis clearly identifiable) and at least half of the full thickness of the 
dermis. All possible marker combinations (described above, in manual counting) were annotated individually 
in each FOV using the Labkit plugin (version 0.3.7) for Fiji27,30. All cells were then manually traced and assigned 
an individual label with the override option selected to prevent overlapping cells (Supplementary Fig. 2C,F). 
Completed annotation images were saved as separate tiff files. Each annotated set used for training included 1 
raw 4-channel FOV image and 8 annotated images (considered as ground truth for training).

StarDist model training
Training of the custom StarDist model was completed using a CUDA enabled Windows 10 workstation computer 
running a Window Subsystem for Linux with the Ubuntu (version 22.04) distribution of Linux installed. This 
workstation computer was equipped with an NVIDIA GeForce RTX 3090 graphics card to accelerate model 
training. The training environment was set up using the Mambaforge (version 0.24.0) distribution of Python 
(version 3.10.5) for Linux and TensorFlow (version 2.10.0) through a custom workflow created using Snakemake 
(version 7.12.0)31. The Snakemake workflow used to set up the training environment was adapted from instruc-
tions in the StarDist GitHub repository (https://​github.​com/​stard​ist/​stard​ist) that originally described set-up 
of a Python training environment using the Anaconda distribution of Python. Our full Snakemake workflow, 
which includes all scripts used for model training and export, is available in the public domain (https://​github.​
com/​prodg​erlab/​stard​ist).

The scripts used for model training and export were adapted from example Jupyter notebooks in the StarDist 
repository, which provided instruction for 2D (U-Net-based) StarDist model training. Adjustments were made 
so that IF microscopy images with 4 channels can be used as input. Image augmentation functions were adapted 
to include random flipping and intensity modification of training images, to improve the accuracy of the StarDist 
model without the need for additional training images and annotation. Training was completed with the n_rays 
parameter for Config2D set to 32 and all other parameters were left to their default value in accordance with the 
Jupyter notebook example. The full dataset used for training is available in the public domain (https://​zenodo.​
org/​record/​80919​14). Model training was performed for 400 epochs with 100 steps per epoch. Probability and 
overlap parameters for non-maximum suppression (NMS) post-processing were optimized and applied when 
using the model in the StarDist plugin (version 0.6.0) for Fiji25,27.

When using the model for prediction, images fed into the model were first normalized (percentile range 1.7 
to 99.8). The model was then run with the probability/score threshold set to 0.50, overlap threshold set to 0.70, 
number of tiles set to 16, and boundary exclusion set to 2. Our trained StarDist model with optimized parameter 
pre-loaded is available in the public domain (https://​zenodo.​org/​record/​80918​89).

StarDist model validation
We compared the performance of our StarDist model against manual counting and pixel-based automated cell 
counting using 10 randomly selected FOV images (different from training FOVs), containing images from both 
inner and outer foreskin tissues. Validation FOVs were 600 × 600 µm (1500 × 1500 pixels) in size, excluded areas 
with tissue folding, and included the full thickness of the epidermis and at least half of the thickness of the dermis. 
Manual counting of the validation images was completed by a single trained lab member.

StarDist model performance in areas of high autofluorescence or high cell density
Four image crops containing high autofluorescence (70 × 70 µm, 175 × 175 pixels) and four image crops contain-
ing high cell density (70 × 70 µm, 175 × 175 pixels) were created from each of the 10 validation FOVs (total n = 40 
high autofluorescence and n = 40 high cell density image crops). Cells were quantified in image crops by manual 
counting, the StarDist model, and the pixel-based model.

Statistical analyses
For StarDist model validation, the difference in FOV cell counts between manual counting and (i) the pixel-based 
model, and (ii) the StarDist model, was determined and statistical significance (p < 0.05) was assessed using a 
paired t test. Using manual counting as the gold standard, the total number of true positive, true negative, false 
positive, and false negative counts were determined for the pixel-based and StarDist models, and used to calculate 
each models sensitivity, precision, false negative rate, and false discovery rate.

Performance of the StarDist and pixel-based models in areas of high autofluorescence was assessed by quan-
tifying the number of high autofluorescence image crops with at least one instance of autofluorescence inac-
curately counted as a cell, compared to manual counting25,27,29. Performance in areas of high cell density was 
assessed by counting the number of high cell density image crops with at least one instance of a cell being either 
falsely merged or falsely split, compared to manual counting. Differences in Cell Merging, Cell Splitting, and 
Autofluorescence Misidentification between the Pixel-Based method and StarDist method was assess using 
Fisher’s exact tests.

https://github.com/prodgerlab/pixel-based-quantification
https://github.com/prodgerlab/pixel-based-quantification
https://github.com/stardist/stardist
https://github.com/prodgerlab/stardist
https://github.com/prodgerlab/stardist
https://zenodo.org/record/8091914
https://zenodo.org/record/8091914
https://zenodo.org/record/8091889
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All results are presented as mean ± SDs. Graphics were generated and statistical analyses performed using 
Prism 9 (GraphPad software, La Jolla, CA, USA).

Results
Accuracy of the custom StarDist model rapidly improves with additional training images
The accuracy of the StarDist model in cell segmentation (compared to manual counting) was quantified for 
nuclei (all cells), CD3 + cells, CD4 + CCR5 + cells and CD3 + CD4 + CCR5 + cells after training with 10, 20, 30, 
and 40 images (Fig. 1). Pooled cell counts were generated from the 10 validation FOVs and percent difference 
from manual counts was used as a measure of accuracy. The accuracy of the StarDist model increased with each 
addition of 10 annotated images for training (Fig. 1). The percent difference of automated StarDist counts from 
manual counts decreased exponentially, with only small gains in accuracy made between 30 and 40 training 
FOVs (0.34% decrease for all cells (nuclei), 1.8% decrease for CD3 + cells, 5.2% decrease for CD4 + CCR5 + cells, 
and 4.6% decrease for CD3 + CD4 + CCR5 + cells).

Automated HIV target cell segmentation using our StarDist model is comparable to manual 
counting and more accurate than pixel‑based cell segmentation
To compare performance of our custom StarDist model to manual counting and a previously published pixel-
based workflow, cells of interested were quantified in 10 FOVs (600 × 600 µm each) of foreskin tissue stained 
for CD3, CD4, CCR5, and nuclei (Fig. 2). Pairwise comparison of manual counts with counts generated by our 
StarDist model showed that total cell count and counts for all cell types of interest (CD3 + cells, CD4 + cells, 
CCR5 + cells, CD3 + CD4 + cells, CD3 + CCR5 + cells, CD4 + CCR5 + cells, CD3 + CD4 + CCR5 + cells) were not 
significantly different between the two methods (p > 0.05) (Fig. 3). Automated counts generated with the pixel-
based model were not significantly different (p > 0.05) from manual counts for total cell count, CD3 + cells, and 
CD4 + cells, but differed significantly for all other cell types. Specifically, pixel-based model counts were signifi-
cantly lower for CCR5 + cells (− 18.8%, p = 0.004), CD3 + CD4 + cells (− 16.5%, p = 0.006), CD3 + CCR5 + cells 
(− 12.8%, p = 0.0004), and CD3 + CD4 + CCR5 + cells (− 24.9%, p = 0.0005), and significantly higher for 
CD4 + CCR5 + cells (+ 14.2%, p = 0.025) (Fig. 3 and Supplementary Table 1).

Automated cell segmentation of HIV target cells in foreskin tissue using our custom StarDist model had 
higher sensitivity and precision than the pixel-based approach for all cell types. Sensitivity of the StarDist model 
was > 94.0% for all cell types analyzed and > 97.5% for CD3 + CCR5 + cell counts, CD4 + CCR5 + cell counts, and 
CD3 + CD4 + CCR5 + cell counts. Meanwhile the sensitivity of the pixel-based workflow was < 85.0% for all cell 
types except for counts for total cell count (93.6%) and CD3 + cells (91.1%). In particular, the sensitivity of the 
pixel-based model for CD3 + CD4 + CCR5 + cells was only 60.7%. Both the StarDist and the pixel-based models 

Figure 1.   Training images rapidly improve the accuracy of a custom StarDist model used for the quantification 
of HIV target cells in foreskin tissue. Percent difference of automated counts generated by StarDist from manual 
counts for nuclei (all cells), CD3 + cells, CD4 + CCR5 + cells, and CD3 + CD4 + CCR5 + cells after training with 10 
images, 20 images, 30 images, and 40 images. Automated counting was completed on 10 validation field-of-view 
images (600 × 600 µm) randomly generated from a set of 232 full foreskin tissue section scans stain for CD3, 
CD4, CCR5, and nuclei to identify HIV susceptible cells in the tissue.
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Figure 2.   Automated segmentation of HIV target cells in foreskin tissue using pixel-based and StarDist 
models. (A,E) Representative image of (A) nuclei staining and (E) composite image of staining for CD3, CD4, 
CCR5, and nuclei were generated from a cropped image of a full tissue section scan of foreskin tissue imaged 
at 200 × total magnification. Visual representation of (B–D) counting of all positively stained nuclei and (F–H) 
CD3 + CD4 + CCR5 + cells in the representative image. Methods of cell segmentation presented include: 
(B,F) manual counting of cells, (C,G) automated counting using a pixel-based model, and (D,H) automated 
segmentation using a custom StarDist deep-learning model.
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had > 90.0% precision for all cell types except for CD4 + CCR5 + cells and CD3 + CD4 + CCR5 + cells (StarDist: 
87.9% and 85.2%, respectively; pixel-based: 69.8% and 78.0%, respectively) (Supplementary Table 1).

The StarDist model also had a lower false negative rate and lower false discovery rate than the pixel-
based model all cell types. The false negative rate using the StarDist model was < 5.2% for all cell types, 
while the false negative rate for the pixel-based model ranged from 6.4% (total cell count) to 39.3% 
(CD3 + CD4 + CCR5 + cells). The false discovery rate for the pixel-based model was 1.7-fold (CD3 + cells) to 
16.4-fold (CD3 + CD4 + CCR5 + cells) higher than the StarDist model. The false discover rate of both methods 
was < 10.0% for all cell types, except for CD4 + CCR5 + cells and CD3 + CD4 + CCR5 + cells (StarDist: 12.1% and 
14.8%, respectively; for, pixel-based: 30.2% and 22.0%, respectively) (Supplementary Table 1).

StarDist does not systematically over‑ or under‑count in different tissue regions
The epidermis and dermis regions of the foreskin are very different in terms of cell density and autofluorescence 
(Supplementary Fig. 1). To overcome this challenge, many pixel-based workflows (including the one presented 
here) process the epidermis and dermis/lamina propria regions separately, using different image analysis parame-
ters, which increases processing time and labour. To determine if our StarDist model is also affected by systematic 
counting errors in different tissue regions, the 10 validation FOVs were manually split into epidermis and dermis 
regions and cell counts were obtained by the three methods (manual, pixel-based, StarDist) for each (Fig. 4).

In the epidermis (Fig. 4A), both automated methods (generally) overestimated the number of each cell 
type. This was much more dramatic for the pixel-based method; in particular, the percent difference from 
manual counts was > 25.0% for CD4 + cells, CCR5 + cells, CD3 + CD4 + cells, CD4 + CCR5 + cells, and 
CD3 + CD4 + CCR5 + cells. Percent differences between manual counting and the StarDist model were com-
paratively less, with undercounting of CD3 + cells (− 3.2%), and overcounting of all other cell types by < 10.0%. 
In the dermis (Fig. 4B), the pixel-based method displayed systematic undercounting. In particular, CD4 + cells, 
CCR5 + cells, CD3 + CCR5 + cells, and CD3 + CD4 + CCR5 + cells were all undercounted by > 20.0%. The StarD-
ist model underestimated total cell count, CD4 + cells, CCR5 + cells, CD3 + CD4 + cells and CD3 + CCR5 + cells, 

Figure 3.   Comparison of manual cell counts with automated cell counts generated using a pixel-based model 
and the StarDist model. Cell counting was completed on 10 validation field-of-view images (600 × 600 µm) 
randomly generated from a set of 232 full section scans (imaged at 200 × total magnification) of foreskin tissue 
stained for CD3, CD4, CCR5, and nuclei. Manual counts are presented in the center (black dots), automated 
counts from the pixel-based model on the left (pink dots), and automated counts from the StarDist model on the 
right (cyan dots). Gray lines connect counts acquired by each method from the same validation FOV. The black 
center line and box represent the mean and SD. Differences between manual counts and the two automated 
counting methods was assess using two-tailed paired T-tests. Significant differences are indicated by asterisks 
(*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).
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Figure 4.   Automated cell segmentation using a pixel-based model systematically overcounts cells in the 
epidermis, and undercounts cells in the dermis. Cell counting was completed on 10 validation field-of-view 
images (600 × 600 µm) randomly selected from a set of 232 full section scans of foreskin tissues (inner and 
outer) stained for CD3, CD4, CCR5, and nuclei. Cell counting was completed on the full field-of-view images, 
and separately on the epidermis and dermis. The difference between automated counts and manual counts 
in (A) epidermis, (B) dermis, and (C) full tissue is displayed the percent difference from manual counts. Red 
dashed lines mark ± 10.0% difference from manual counts.
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all by < 10.0%, and overcounted CD3 + cells (2.4%), CD4 + CCR5 + cells (12.2%), and CD3 + CD4 + CCR5 + cells 
(11.6%). Systematic overcounting in the epidermis and undercounting in the dermis by the pixel-based method 
resulted in misleadingly low overall percent differences from manual counts with both regions considered in 
full tissues (Fig. 4C).

Automated cell segmentation with StarDist is robust in areas with high cell density or high 
autofluorescence
Automated cell quantification methods often perform poorly in areas with high cell density (cell splitting) or 
high autofluorescence (false positives), both of which are found in foreskin and other mucosal/epithelial tissues. 
To assess performance specifically in areas of high cell density and autofluorescence, image crops (70 × 70 µm) 
were selected from each FOV (Fig. 5A) based on having high autofluorescence (4 crops per FOV, n = 40, denoted 
by “aF”) or high cell density (4 crops per FOV, n = 40, denoted by “hD”). The performance of manual counts 
(Fig. 5B), pixel-based methods (Fig. 5C), and StarDist model (Fig. 5D) was assessed for each crop within the 
same tissue region. For high autofluorescence image crops, the number of images where autofluorescent collagen 
fibers were misidentified as cells (compared to manual counting, Fig. 5B,aF) was counted for the pixel-based 
(Fig. 5C,aF) and StarDist models (Fig. 5D,aF). For high cell density image crops, the number of images where 
cell merging or splitting occurred during cell segmentation (compared to manual counting, Fig. 5B,hD) were 
counted for the pixel-based (Fig. 5C,hD) and StarDist models (Fig. 5D,hD).

In high cell density image crops, the pixel-based model merged cells significantly more frequently than the 
StarDist model in all cell types except CD3 + CD4 + cells, CD4 + CCR5 + cells, and CD3 + CD4 + CCR5 + cells, 
for which minimal merging was observed in both models (Supplementary Table 2). The pixel-based model 
also split cells more frequently, splitting nuclei, CD3 + cells, CD4 + cells, and CCR5 + cells significantly more 
frequently than the StarDist model. In general, the number of image crops where cell merging occurred was 
twofold (CD4 + CCR5 + cells) to sevenfold (CD4 + cells) higher when using the pixel-based model compared to 
the StarDist model. Image crops with cell merging or splitting were most common for the segmentation of nuclei, 
likely due to the high number of nuclei per crop.

Misidentification of autofluorescence as cells occurred significantly more frequently when using the 
pixel-based method, with misidentification observed for all cell types except CD4 + CCR5 + cells and 
CD3 + CD4 + CCR5 + cells (Supplementary Table 2). For both the pixel-based approach and StarDist, misiden-
tification of autofluorescence as cells was most prevalent for CD3 + cell segmentation (35/40 image crops for 
pixel-based, 5/40 image crops for StarDist) (Supplementary Table 2).

Discussion
In this report, we described the development and validation of a deep-learning approach to quantify HIV target 
cells in foreskin tissues. Using the Snakemake workflow management system and the StarDist plugin for Fiji, we 
trained a custom StarDist deep-learning model that can be used to identify HIV target cells in multi-channel 
immunofluorescent microscopy images of foreskin tissue25,27,31. The accuracy of this deep-learning model was 
compared to manual counting and a conventional automated cell segmentation algorithm which utilizes a pixel-
based approach29. The reliability of the deep-learning model was also further tested in tissue regions with high 
cell density or high autofluorescence.

Immunofluorescent microscopy is an excellent tool for understanding the spatial distribution of immune 
cells in genital mucosal tissues, however, quantification of cells in IF microscopy images can be difficult. The 
subjective and labour-intensive nature of manual counting makes this method impractical for clinical studies. 
Automated approaches for cell segmentation often use a pixel-based workflow, however, the reliability of this 
method is poor in regions with high cell density and high autofluorescence17,32.

Our deep-learning approach to quantify HIV target cells in the foreskin can replace conventional pixel-
based methods for immune cell quantification in genital tissues and can be easily adapted to detect of a wide 
variety of immune cell subsets in different types of genital mucosal tissue. Our approach utilizes multi-channel 
IF microscopy images as input and enables the detection of multiple cell types (based on combinations of mark-
ers) simultaneously. We used StarDist and its plugin for Fiji as the backbone for the development because of its 
accessibility. StarDist is open source and can easily be incorporated into existing image analysis workflows25,27. 
Plugins that allow StarDist models to be run without any programming knowledge are available for popular 
open-source software such as ImageJ/Fiji, Napari, QuPath, Icy, and KNIME27,33–35. Results from StarDist models 
are also highly reproducible since trained StarDist models and training datasets can be easily shared.

Our custom StarDist model exceeded conventional pixel-based cell segmentation in performance metrics 
including percent difference from manual counts, sensitivity, precision, false negative rate, and false discovery 
rate. Most notably, our custom StarDist model achieved over 94.0% sensitivity and over 85.0% precision for all 
cell types examined. There were no significant differences between StarDist counts and manual counts for all 
cell types examined. The percent difference of StarDist counts from manual counts was also less than 5.0% for 
all cell types except for CD4 + CCR5 + cells (11.3%) and CD3 + CD4 + CCR5 + cells (13.6%). These cell types were 
the rarest among all cell types we examined, thus fewer instances were available for training compared to other 
cell types. Detection of these cell types is also more complex, as image information from 3 channels are used to 
detect CD4 + CCR5 + cells and image information from 4 channels are used to detect CD3 + CD4 + CCR5 + cells. 
While the count accuracy for these cell types is likely to increase with more training, CD4 + CCR5 + cells are less 
likely to be T cells and more likely to be dendritic or Langerhans cells. A limitation of our StarDist model is that 
the star-convex polygons shape approximation strategy used may struggle to approximate the irregular shape 
of sprawling cells36. Recent work by Mandal et al. used planar parametric spline curves for cell segmentation 
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Figure 5.   Comparison of StarDist and pixel-based model nucleus segmentation in tissue regions with high 
cell density or high autofluorescence. (A) Representative validation field-of-view of immunofluorescence 
microscopy image of foreskin tissue stained with DAPI (nuclei), showing examples of image crops (70 × 70 µm) 
with either (aF) high autofluorescence or (hD) high cell density (imaged at 200 × total magnification). 
Subsequent panels show the same FOV/image crops with nuclei segmentation by (B) manual tracing 
(gold standard), (C) the pixel-based model, and (D) the StarDist model. Yellow arrows point to areas with 
autofluorescent collagen fibers and cyan arrows point to areas with tightly packed cells.
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in a method called SplineDist37. This method was shown to be capable of being incorporated into the StarDist 
architecture to accurately capture non-star-convex objects.

Cell detection using our StarDist model was robust in challenging tissue areas with high cell density or high 
levels of autofluorescence. Performance of conventional automated cell segmentation can struggle in both the 
epidermis and dermis region of foreskin tissue for different reasons. In the epidermis, thresholding can be difficult 
due to high cell density. In the dermis, thresholding can be difficult due to the high abundance of autofluorescent 
collagen fibers. In contrast to conventional automated cell segmentation that relies on thresholding, the StarD-
ist model did not systematically overcount or undercount in the epidermis or dermis, and detected cells with 
high accuracy in areas of high cell density or high autofluorescence. Based on these results, we conclude that the 
performance of our StarDist model is comparable to manual counting and StarDist is superior to conventional 
pixel-based approaches for HIV target cell quantification.

A limitation of this study is that we did not validate performance of the StarDist model in other tissue types 
or on other microscopes. It is likely that additional training, using the Snakemake framework25,27,31, would be 
necessary to use this model, for example, on cervical tissues or at other sites. Furthermore, our StarDist model 
is trained using foreskin tissue stained for CD3, CD4, CCR5, and nuclei. While this marker set allows for quan-
tification of all cells bearing the HIV co-receptors (CD4 and CCR5), additional training would be required to 
analyze tissues stained for different markers. Shared repositories of training sets with various tissue types may be 
used in the future to increase the generalizability of our StarDist model, without the requirement of new tissue 
collection from varied mucosae and denovo staining. However, existing repositories mainly contain IF images 
of only nuclei or histology images. Improving the diversity of training images in these repositories would greatly 
improve the adoptability of deep-learning methods for cell segmentation38,39.

An additional limitation of discrete cell segmentation methods, including our StarDist model, is that positive 
staining is only quantified if it is associated with a nucleus. The appendages of sprawling HIV target cells such as 
Langerhans cells and dendritic cells can often span through multiple tissue sections, resulting in cell membrane 
area that is positively stained for CD4 and CCR5 but unassociated with nuclei. Cell segmentation methods do 
not account for these appendages, and thus ignores some membrane surface area that may bind HIV virions. 
While pixel-based methods for image analysis are problematic for discrete cell segmentation, they are good for 
measuring the total amount of tissue area that is positively stained for a particular marker. Thus, pairing StarDist 
HIV target cell counting results with results from pixel-based quantification of CD4 + CCR5 + tissue area could 
be beneficial in terms of gaining a more holistic understanding of HIV susceptibility in foreskin tissue.

To our knowledge, this study is the first to describe a deep learning method for the quantification of HIV 
target cells in microscopy images of mucosal tissue. This is a highly relevant outcome for clinical trials aiming to 
reduce HIV susceptibility, as the availability of susceptible cells in the mucosa is directly linked to the likelihood 
that sexual exposure will lead to infection40–42. This is an important outcome not only for trials aimed at reducing 
target cell availability, but all trials of mucosally applied products, to ensure there are no off-target inflammatory 
effects that would unintentionally increase HIV-susceptibility43,44. Previous studies have extensively described 
deep-learning methods for segmentation of CD3 + cells but these methods focus on histology images45,46. Existing 
methods for deep-learning cell segmentation in IF microscopy images are not designed to enable simultaneous 
quantification of multiple cell types, limiting their utility to study the distribution and composition of immune 
cells. Implementation of these models also require a higher-level understanding of convolutional neural networks 
and software packages related to neural network construction47,48.

In conclusion, this StarDist deep learning approach is an accurate and time saving approach that can be used 
in a high-throughput manner to quantify immune cells in full mucosal tissue section scans. This model is more 
robust than conventional pixel-based methods in regions of high cell density and autofluorescence, and accurately 
quantifies cells in both the epidermal and dermal regions of the foreskin. This model can be easily applied and 
incorporated into existing ImageJ workflows, making it an appropriate replacement for conventional pixel-based 
methods for automated HIV target cell quantification that have previously been used in other studies. The high 
accuracy of this model enables high-throughput processing of samples from large patient cohorts and provides 
feasibility for the use of immunofluorescence imaging as reliable method for measuring HIV susceptibility in 
clinical trials.

Data availability
The sample dataset acquired from training images can be accessed via the following public domain: (https://​
zenodo.​org/​record/​80919​14). Necessary scripts to perform the StarDist model training and validation are avail-
able in another public domain: (https://​github.​com/​prodg​erlab/​stard​ist).
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