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A within‑lake occupancy model 
for starry stonewort, Nitellopsis 
obtusa, to support early detection 
and monitoring
Alex W. Bajcz 1,2*, Wesley J. Glisson 1,2, Jeffrey W. Doser 3,4, Daniel J. Larkin 1,2 & 
John R. Fieberg 1,2

To efficiently detect aquatic invasive species early in an invasion when control may still be possible, 
predictions about which locations are likeliest to be occupied are needed at fine scales but are rarely 
available. Occupancy modeling could provide such predictions given data of sufficient quality and 
quantity. We assembled a data set for the macroalga starry stonewort (Nitellopsis obtusa) across 
Minnesota and Wisconsin, USA, where it is a new and high‑priority invader. We used these data to 
construct a multi‑season, single‑species spatial occupancy model that included biotic, abiotic, and 
movement‑related predictors. Distance to the nearest access was an important occurrence predictor, 
highlighting the likely role boats play in spreading starry stonewort. Fetch and water depth also 
predicted occupancy. We estimated an average detection probability of 63% at sites with mean 
non‑N. obtusa plant cover, declining to ~ 38% at sites with abundant plant cover, especially that of 
other Characeae. We recommend that surveyors preferentially search for starry stonewort in areas 
of shallow depth and high fetch close to boat accesses. We also recommend searching during late 
summer/early fall when detection is likelier. This study illustrates the utility of fine‑scale occupancy 
modeling for predicting the locations of nascent populations of difficult‑to‑detect species.

Detecting invasive species early, when management is most  tractable1, is crucial. However, early detection of 
small, dispersed populations is  difficult2—surveyors may not know where to look or even be aware of each 
new potential  threat3. Early detection is particularly difficult for aquatic invasive plants because they may not 
be visible from the surface, may look superficially similar to native species, and can elude capture by common 
sampling  approaches4,5. Detection efforts for such species could always benefit from actionable, fine-scale (i.e., 
within-lake) predictions about where invasives are likeliest to occur, especially early in an  invasion6. Occupancy 
models, which relate detection/non-detection data to environmental covariates while accounting for imperfect 
 detection7, could yield such  predictions8. While powerful and well-established for certain taxonomic groups 
and  contexts9, occupancy modeling has been applied less often to aquatic invasive  species10, perhaps because 
occupancy statuses can change rapidly during an invasion and repeated sampling during a period of closure (an 
assumption of such models) is uncommon in the context of invasive species monitoring.

Here, we leverage the largest data set of within-lake detection/non-detection data compiled to date for starry 
stonewort (Nitellopsis obtusa (Desv. in Loisel.) J. Groves; Characeae), a Eurasian macroalga invasive in North 
 America11. Found in nine U.S. states and two Canadian provinces so far, N. obtusa has been identified as a sig-
nificant and growing invasive threat in the  Midwest11 and thus a high-priority species for early detection and 
monitoring programs. This species can grow prolifically, potentially displacing native macrophytes, altering 
habitat for fauna, changing water chemistry, and impairing  recreation2,11–13 (Fig. 1).

Depth and water turbulence are thought to be key predictors of within-lake occupancy for N. obtusa, but how 
N. obtusa occurrence covaries with these two variables is unresolved. For example, prior research has indicated 
N. obtusa may be more common in shallower  waters2,12,14. However, it remains unclear whether this pattern 
reflects a true habitat preference, ease of sampling/detection in shallower  waters12, preferential early colonization 
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of shallower  waters15, or some combination thereof. Nitellopsis obtusa occupancy has also been previously shown 
to associate with reduced turbulence, i.e., lower  fetch13,16, but only in a few specific contexts, and the potential 
for an interaction between depth and fetch (because water mixing is a function of both available wind energy 
and water depth) has not been explored.

Because N. obtusa is not in equilibrium in our study region, where it has only been known since 2014, and 
because propagule transport on boats and other equipment is thought to be its primary means of  spread17, predic-
tors related to boater movements also hold promise. Proximity to boat accesses, where boaters could introduce 
propagules, may be key to explaining patterns of N. obtusa occupancy, especially early in an invasion. Access type 
may also matter. Many waterbodies have “public” (i.e., local-, state-, and/or federally managed) and/or “private” 
(i.e., operated by businesses) accesses that may function as N. obtusa introduction points. While public agencies 
implement spread-mitigation tactics, such as watercraft inspections, at some public  accesses18, such prevention 
practices at private accesses are unlikely to be routine, uniform, common, or well-documented. So, while many 
private accesses may receive less traffic than public ones do, their relative risk could still be elevated.

Imperfect detection of N. obtusa using standard sampling  methods19 (see Methods), even at known-infested 
points and especially at low abundances, is a known  problem16. If left unaccounted for, imperfect detection can 
impair accurate coefficient estimation. Causes of non-detections for N. obtusa are likely diverse, among them 
the taxon’s biology and phenology, its novelty in our region, and its superficially similar appearance to related 
native macroalgae. These issues suggest several predictors, including time since initial infestation, sampling date, 
and the densities of other macrophytes (especially of close relatives), could account for variation in N. obtusa 
abundance or detection.

While many approaches have been proposed to address imperfect detection in distribution  models20,21, most 
approaches rely on repeated observations from at least a subset of sites, some of which yield both detections and 
non-detections7. Typically, the repeated observations are obtained via multiple visits to sites over some time 
period when the population is assumed to be closed to immigration/emigration, although alternative approaches 
 exist22–24. Only then can an occupancy model potentially distinguish “non-detections” from “true absences” using 
covariates (but see 21 and 25). Most of our data were collected by the Minnesota and Wisconsin Departments 
of Natural Resources as part of systematic macrophyte monitoring; many lakes were sampled in multiple years 
over a seven-year period starting when N. obtusa was first observed in our region (2014–2021), giving us the 
opportunity to model variance in occupancy and detection probabilities explicitly (Table 1).

We formulated a multi-season, single-species occupancy model to inform early monitoring and detection of 
N. obtusa in our region and to bolster our understanding of its habitat preferences and mechanisms of spread 
for the benefit of future control and prevention efforts. We hypothesized that within-lake N. obtusa occurrence 
would positively correlate with (1) greater proximity to the closest access (perhaps especially when this access 
is private), (2) higher local density of accesses (perhaps especially private ones), (3) shallower depths, and (4) 
lower fetches, in keeping with past study of this species. We also expected N. obtusa detection probability to be 
greater (5) later in the growing season and when (6) other macrophytes, (7) particularly other Characeae, were 
less abundant.

Figure 1.  Locations of 23 starry stonewort (Nitellopsis obtusa) invaded lakes (gray dots) in Minnesota (left) and 
Wisconsin (right), USA analyzed in this study.
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Results
As predicted, time since first infestation was positively associated with N. obtusa occupancy ( ̂β  = 1.69; 95% CI 
1.44–1.96; Table 2), indicating a systematic increase in occupancy probability over time as N. obtusa spreads 
within a lake. There was substantial variation in occupancy probability across lakes (random lake-level intercept 
variance = 15.0; 95% CI 5.69 to 35.4), indicating important lake-level processes could be missing from our model 
and/or that infestations were first discovered at different time points in the invasion process. Variance of the 
local spatial random effects was also large (mean σ2 = 9.14; 95% CI 7.57 to 9.97), indicating spatial variation in 
occupancy within lakes that could not be explained by covariates in our model. Together, these results suggest 
that understanding of both large-scale (lake-level) and fine-scale (within a few hundred meters) spatial processes 
must be improved to fully predict N. obtusa occupancy using predictors alone.

The interaction between fetch and depth was significant ( ̂β  = − 0.573; 95% CI − 0.864 to − 0.290; Table 2; 
Fig. 2a), indicating a complex relationship between these predictors and N. obtusa occupancy. Briefly, the interac-
tion term plus the main effects for depth ( ̂β  = − 1.60; 95% CI − 1.88 to − 1.33; Table 2) and fetch ( ̂β  = 0.243; 95% 
CI − 0.266 to 0.766; Table 2; Fig. 2a) suggest that N. obtusa occupancy would be expected to (1) decrease with 
increasing depth but most so when fetch is relatively high and to (2) increase with increasing fetch at shallower 
depths but decrease with increasing fetch at deeper depths.

Nitellopsis obtusa was significantly more likely to occupy locations closer to accesses ( ̂β  = − 1.12; 95% CI 
− 1.66 to − 0.601 for distance to the nearest access; Table 2; Fig. 2b). However, we did not find sufficient evidence 
to conclude that the numbers of public accesses within 1 km ( ̂β  = − 0.208; 95% CI − 0.680 to 0.253; Table 2) or of 
private accesses within 1 km ( ̂β  = − 0.0333; 95% CI − 0.356 to 0.291; Table 2) were consistently associated with 
occupancy. Nearest access type was nearly significantly positive ( ̂β  = 0.871; 95% CI − 0.0892 to 1.82; Table 2), 
with higher log-odds of occupancy associated with a private nearest access.

In Deviation 1, in which five lakes with no N. obtusa detections in our data set (Table 1) were removed from 
the base model, no coefficients changed by much except for the overall intercept within β, which increased 
to − 4.81 (95% CI − 6.37 to − 2.98; Table 2). This corresponds logically to a higher predicted occupancy when 
lakes with very low apparent occupancy are removed and also suggests these lakes did not exert leverage over 
the base model’s coefficients. In Deviation 2, the coefficient for nearest access type decreased to 0.425 (95% CI 
− 0.537 to 1.39; Table 2), indicating that this predictor’s near-significance in our base model was perhaps largely 

Table 1.  Summary data for the lakes used to construct a within-lake occupancy model for starry stonewort 
(Nitellopsis obtusa). Note that several surveys were conducted in the same year at Koronis, Medicine, and 
Wind lakes. a Repeated surveys typically included the same point locations; however, this was not always the 
case. Hence, the number of points shown here may exceed the number sampled during any one survey event. 
Additionally, GPS measurement error sometimes occurred across surveys on the same lake–to account for 
this error, we treated observations taken ≤ 10 m of each other (≪ the grid spacing on any lake) as being from 
the same point. Counts of infested points were derived by summing the numbers of points with ≥ 1 detections 
across all surveys.

State Lake Size (ha) First known year infested Sample points (# known infested)a Times (Years) surveyed

MN Koronis 1200 2015 531 (340) 9 (’15-’17, ’18-’19 × 2, ’20–’21)

MN Moose 243 2016 181 (30) 2 (’17–’18)

MN West Sylvia 366 2016 169 (0) 2 (’17, ’21)

MN Grand 263 2017 230 (0) 2 (’18, ’21)

MN Medicine 374 2018 187 (18) 8 (’18–’21 × 2)

MN Pleasant 242 2018 139 (0) 1 (’19)

MN Carnelian 72.8 2020 122 (0) 1 (’20)

WI Little Muskego 190 2014 553 (89) 3 (’14–’15, ’17)

WI Big Muskego 870 2015 597 (152) 1 (‘15)

WI Long 42.5 2015 230 (73) 6 (’15, ’17–’21)

WI Pike 187 2015 379 (215) 6 (’16–’21)

WI Silver 49.4 2015 327 (42) 7 (’15–’21)

WI Green 28.3 2016 235 (43) 6 (‘16–’21)

WI Wind 372 2017 584 (183) 6 (’17, ’18 × 3, ’19–’20)

WI Geneva 2190 2018 806 (1) 2 (’19, ’20)

WI Little Cedar 105 2018 447 (23) 4 (’18–’21)

WI Emery 12.9 2019 134 (110) 2 (’20, ’21)

WI Lower Nemahbin 96.7 2019 358 (0) 2 (’19–’20)

WI Okauchee 490 2019 651 (1) 1 (’19)

WI Pewaukee 986 2019 695 (24) 1 (’20)

WI Kilby 17.8 2020 125 (2) 1 (’21)

WI Camp 178 2021 477 (9) 1 (’21)

WI Pine 87.8 2021 262 (4) 1 (’21)
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Table 2.  Model results for single-species, multi-season occupancy models (a base model and three deviations; 
see Methods) for starry stonewort (Nitellopsis obtusa) using data from 23 invaded lakes in Minnesota and 
Wisconsin, USA. Predictor data were mean-centered and scaled prior to analysis. Significant predictors (i.e., 
those for which 0 did not fall within the 95% Credible Interval) in the base model are shown in bold. Deviation 
1 excluded data from five lakes with no N. obtusa detections across any surveys. Deviation 2 excluded data 
from Wind Lake (Wisconsin, USA), where the areas around a private and a public access were heavily infested 
and uninfested, respectively. Deviation 3 added an interaction term between distance to the nearest access and 
time since infestation to the occupancy level of the model (see Eq. (2) in the text).

Level Variable

Posterior mean (95% CIs)

Base model Deviation 1 Deviation 2 Deviation 3

Occupancy

Intercept − − 5.85 (− 7.40, − 4.12) − 4.81 (− 6.37, − 2.98) − 5.58 (− 7.27, − 3.60) − 5.98 (− 7.50, − 4.20)

Depth − 1.60 (− 1.88, − 1.33) − 1.64 (− 1.94, − 1.37) − 1.77 (− 2.06, − 1.48) − 1.60 (− 1.87, − 1.33)

Time since first infestation 
(years) 1.69 (1.44, 1.96) 1.74 (− 1.48, 2.01) 1.77 (1.49, 2.07) 1.70 (1.44, 1.96)

Distance to nearest access − 1.12 (− 1.66, − 0.601) − 1.06 (− 1.60, − 0.540) − 1.17 (− 1.73, − 0.622) − 1.50 (− 2.17, − 0.843)

Nearest access type (private = 1) 0.871 (− 0.0892, 1.82) 0.776 (− 0.158, 1.71) 0.425 (− 0.537, 1.39) 0.891 (− 0.0232, 1.83)

Access number-Public − 0.208 (− 0.680, 0.253) − 0.211 (− 0.681, 0.261) − 0.0857 (− 0.559, 0.384) − 0.214 (− 0.687, 0.251)

Access number-Private − 0.0333 (− 0.356, 0.291) − 0.0291 (− 0.362, 0.304) − 0.154 (− 0.505, 0.193) − 0.0384 (− 0.360, 
0.284)

Fetch 0.243 (− 0.266, 0.766) 0.214 (− 0.317, 0.724) 0.103 (− 0.428, 0.631) 0.253 (− 0.259, 0.750)

Depth*fetch − 0.573 (− 0.864, − 0.290) − 0.594 (− 0.903, − 0.297) − 0.648 (− 0.954, − 0.347) − 0.572 (− 0.869, 
− 0.287)

Distance*time NA NA NA 0.681 (0.0723, 1.30)

Detection

Intercept 0.534 (0.419, 0.651) 0.527 (0.413, 0.648) 0.570 (0.438, 0.710) 0.536 (0.421, 0.657)

Overall plant density − 0.348 (− 0.444, − 0.253) − 0.347 (− 0.443, − 0.253) − 0.215 (− 0.323, − 0.107) − 0.350 (− 0.445, 
− 0.260)

Characeae density − 0.165 (− 0.239, − 0.0910) − 0.168 (− 0.243, − 0.0927) − 0.249 (− 0.329, − 0.168) − 0.164 (− 0.238, 
− 0.0888)

Day of the year 0.0340 (− 0.0368, 0.107) 0.0336 (− 0.0384, 0.106) − 0.190 (− 0.267, − 0.113) 0.0345 (− 0.0355, 0.107)

Figure 2.  Predicted median occupancy probabilities for starry stonewort (Nitellopsis obtusa) in 2021 for 
(a) Long Lake (Wisconsin, USA) and (b) Silver Lake (Wisconsin, USA) from a multi-season, single-species 
occupancy model. Point size reflects variation in significant covariates: (a) fetch by depth interaction (i.e., 
greater values indicate deeper and/or more wind-mixed waters) and (b) distance from the nearest access. Dark 
red squares indicate sites at which starry stonewort has been detected at least once within our data set. Yellow 
diamonds indicate public boat accesses.
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a consequence of Wind Lake’s inclusion (i.e., the lake with the most infested area near a private access in our 
data set). In Deviation 3, in which an interaction term between distance to the nearest access and time since 
first infestation was added to the base model, this new term was significant ( ̂β  = 0.681; 95% CI 0.0723 to 1.30; 
Table 2), indicating a weakening of the negative relationship between distance to the nearest access and N. obtusa 
occupancy over time. The main effect for distance to the nearest access also shifted lower, decreasing to − 1.50 
(95% CI -2.17 to − 0.843; Table 2), indicating that the negative relationship between occupancy and this predictor 
may be steeper immediately after an infestation begins than our base model indicates, though it then may erode 
with time. These results suggest that the main effect coefficient in our base model for this predictor reflects an 
average effect across the sampled time points post-invasion.

The probability of N. obtusa detection was negatively associated with overall plant density ( ̂α = − 0.348; 95% 
CI − 0.444 to − 0.253; Table 2) and Characeae density ( ̂α = − 0.165; 95% CI − 0.239 to − 0.0910; Table 2). Also as 
expected, the coefficient for day of the year was positive ( ̂α = 0.0340; 95% CI − 0.0368 to 0.107; Table 2) but was 
not statistically significant. The posterior mean for the overall intercept term within α was 0.534 (95% CI 0.419 
to 0.651; Fig. 3). With day of year, plant density, and Characeae density set to scaled means of 0, this value would 
correspond to an average detection probability of ~63%, which would then decrease as either density-related 
predictor increased above its mean. Curiously, all three main-effect coefficients within α shifted in Deviation 2 
(Table 2), indicating that the observation process may have been somehow unusual at Wind Lake compared to at 
all other lakes and that N. obtusa detection might actually be expected to decline later in the year at most lakes.

From our model results, we grouped lakes into one of four qualitative classes based on two characteristics: 
their predicted 2021 occupancy probability averaged across all points, and the width of the 95% CI around 
that predicted average occupancy probability (upper bound minus lower bound). These four classes were: (1) 
Three lakes with moderate-to-high predicted mean occupancy probabilities (i.e., mean � s > 0.349) but relatively 
large uncertainty around those predictions (e.g., Little Muskego Lake [mean � : 0.368, 95% CI 0.304 to 0.436; 
Fig. 4a)]); (2) Six lakes with moderate-to-high predicted mean occupancy probabilities (mean � s between 0.160 
and 0.907) but moderate uncertainty (e.g., Pike Lake [mean � : 0.587, 95% CI 0.540 to 0.643; Fig. 4b)]); (3) Nine 
lakes with low-to-moderate mean predicted occupancy probabilities (mean � s between 0.006 and 0.115) and 
modest uncertainty (e.g., Camp Lake [mean � : 0.028, 95% CI 0.015 to 0.046; Fig. 4c)]); and (4) Five lakes with 
both low predicted mean occupancy probabilities (i.e., mean � s < 0.010) and low uncertainty (e.g., Grand Lake 
[mean � : 0.003, 95% CI 0.001 to 0.012; Fig. 4d)]).

Discussion
Our within-lake occupancy model for N. obtusa yielded several notable results: (1) N. obtusa detectability was 
moderate and a function of the density of other macrophyte taxa present, especially other Characeae; (2) dispersal 
processes (especially proximity to boat accesses) were associated with N. obtusa occupancy; and (3) depth and 

Figure 3.  Starry stonewort (Nitellopsis obtusa) detection/non-detection data from point-intercept aquatic plant 
surveys from Medicine Lake in Minnesota, USA, between 2018 and 2021, relative to 2021 data. Orange boxes 
indicate where starry stonewort was not detected in 2021 but was detected in one or more previous survey 
event(s) at the same locations. Yellow diamonds indicate public boat accesses.
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fetch related to occupancy, although fetch’s relationship with occupancy was complex rather than negative as 
had been observed in previous studies.

Consistent with previous  research12,13,16,26, we found a positive association between N. obtusa occupancy and 
proximity to boat accesses. These results align with N. obtusa not being in equilibrium in our region and boat-
mediated dispersal dictating its occupancy pattern to a large  extent6. Distance from a boat launch was also one 
of several variables differentiating N. obtusa-occupied sites from unoccupied sites among 60 lakes in Ontario, 
 Canada26. Also, both distance to the nearest marina and dock density predicted N. obtusa occurrence within 
a coastal wetland of Lake  Ontario16. As such, our results are consistent with past observations and support the 
notion that early detection and monitoring should preferentially occur close to accesses. More generally, our 
results highlight the importance of including dispersal processes in occupancy models for invasive  species10.

Figure 4.  Predicted median occupancy probabilities for starry stonewort (Nitellopsis obtusa) for (a) Little 
Muskego Lake (Wisconsin, USA), (b) Pike Lake (Wisconsin, USA), (c) Camp Lake (Wisconsin, USA), and (d) 
Grand Lake (Minnesota, USA) from a multi-season, single-species occupancy model. These lakes typify the 
four qualitative classes of lakes noted in our analyses: moderate to high average occupancy probability but high 
uncertainty; moderate to high occupancy probability but moderate uncertainty; low to moderate occupancy 
probability and modest uncertainty; and low occupancy probability and low uncertainty, respectively. Point 
size is a function of the uncertainty around the median predicted occupancy probability at that location, as 
measured by the width of the 95% Credible Interval. As such, large points reflect greater uncertainty. Dark red 
squares indicate sites at which starry stonewort has been detected at least once. Yellow diamonds indicate boat 
accesses (B = Public; V = Private).
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Two questions remain with respect to the association between N. obtusa occupancy and accesses, however. 
First, does this association indicate only that N. obtusa depends on boat dispersal to colonize new lakes and new 
areas within lakes (a “crime of opportunity”)? Or are sites near accesses additionally (or instead) preferentially 
habitable for N. obtusa (a “crime of passion”)? It is plausible that areas around accesses might be preferentially 
habitable for N. obtusa. Accesses are often located within embayments where wind-swept N. obtusa fragments 
could aggregate and establish. Macrophytes are also regularly fragmented or disrupted by boat motors near 
access points, which would promote ruderal species like N. obtusa with high disturbance tolerance. Due to 
human actions, substrates may also be altered around accesses (e.g., for swimming), which could somehow 
favor N. obtusa13,16.

Conversely, if areas around accesses are not particularly hospitable for N. obtusa, we would expect a signifi-
cant interaction between time since first infestation and distance to the nearest access. When we added such an 
interaction term to our model (Deviation 3), the term was significantly positive ( ̂β  = 0.681; 95% CI 0.0723 to 
1.30; Table 2), indicating a weakening over time of the negative association between occupancy and distance to 
the nearest access. This suggests that N. obtusa spreads beyond accesses into presumably more habitable zones 
over time, which is more consistent with the “crime of opportunity” hypothesis. That said, determining whether 
habitats around accesses are key for successful N. obtusa introduction, successful establishment, or both has 
monitoring and management implications and should be prioritized in future work.

Second, why does occupancy vary so greatly near different accesses? Clearly, accesses are not equally “risky,” 
and access type (“public” versus “private”) as defined here is a crude (though perhaps not unuseful) differentia-
tor of accesses in terms of riskiness. A multitude of factors—e.g., proximity by car to other infested lakes, boater 
usage rates and behaviors, spread prevention programs, etc.—could lead to differential risk amongst accesses. 
While some of these factors might vary systematically between public and private accesses, we lack data to sup-
port this notion. One particular private access type (marinas) has been previously shown to positively associate 
with N. obtusa  occupancy16, but we did not discriminate between types of private accesses because of insufficient 
replication. Relating occupancy with specific access characteristics, perhaps for a more common aquatic invader, 
could help elucidate variation in risk among accesses. Still, our results suggest that there may be opportunities 
to reduce introduction risk by extending spread prevention efforts commonly employed at public accesses to 
private ones—which appear to be at least as risky as public accesses are.

Our model indicated N. obtusa occupancy was lower at greater water depths, corroborating results from past 
 studies1,2,13,14,16. However, our results indicated a more complex relationship between occupancy and fetch, one 
dependent on depth and positive at low depths, which contradicts some past observations. For example, while 
mean depths were comparable between N. obtusa-occupied and unoccupied sites in a large coastal wetland, 
mean fetches were distinct, with occupied sites having lower  fetches16. Shallow waters correspond to higher light 
availability and low fetches correspond to lower-energy, less wind-mixed  waters16. Most Characeae are thought 
to favor both characteristics, so it is curious we did not observe a negative association between occupancy and 
fetch (except at higher depths). Given our limited number of lakes and that N. obtusa is not at equilibrium in 
our  region6, we remain uncertain regarding the true relationships between N. obtusa occupancy, depth, and 
fetch. In particular, we do not know whether these associations reflect true habitat preferences, colonization 
dynamics, or both.

With respect to biotic and movement-related processes, we recommend that efforts to detect N. obtusa pref-
erentially target areas of shallow depth, of high fetch, and that are near accesses as these areas seem likeliest to 
yield  detections1. Near-shore/near-access areas are already targeted for aquatic invasive species  monitoring27, and 
our study provides support for this practice. We also note that our model’s occupancy predictions could be used 
to usefully classify lakes, like we have done here (Fig. 4), for different management and monitoring objectives. 
For example, lakes with high predicted occupancy and low uncertainty may not require as much monitoring 
but could be targeted for control and spread prevention, whereas lakes with low predicted occupancy but high 
uncertainty could be targeted for more intensive monitoring.

Our model results support the view that N. obtusa can be difficult to detect, even for professionals sampling 
known-infested  lakes16, with an approximately 2 in 3 chance of detection with a single rake toss in an occupied 
location. Further, our model detected a negative association between detection probability and the density 
of other Characeae, suggesting N. obtusa is more difficult to detect when it co-occurs with other Characeae 
(although the mean effect size of -0.165 is relatively small on the logit scale, corresponding to a max change in 
probability of ~ 4.1% per standard-deviation change in Characeae density). This may be due to small amounts 
of N. obtusa being missed among larger clumps of superficially similar Characeae—especially when its highly 
diagnostic reproductive structures (star-shaped bulbils) are absent.

We also detected a negative association between detection probability and overall plant density (with a mean 
effect size of -0.348 on the logit scale corresponding to a max change in probability of ~ 8.7% per standard-devia-
tion change in plant density). The physiological needs of macrophytes are broadly similar; locations habitable for 
one taxon may frequently be habitable for  many13, and native and invasive abundances tend to positively  covary1. 
Given the likelihood of N. obtusa density being limited by resource competition and that space on rake heads 
for macrophyte biomass is limited, N. obtusa is likely difficult to capture when it is co-occurring with abundant 
interspecific  vegetation12, let alone then detect in such circumstances. Sample timing may also impact detection. 
Bulbils are only reliably produced by established  beds14, making nascent populations harder to discover. Addi-
tionally, N. obtusa increases in abundance from mid-summer through late  fall28, and our model predicted an 
increase in detection probability with increasing day of year from June through September, although this trend 
was not statistically significant.

Brainard and  Schulz12 raised two more explanations for imperfect detection of N. obtusa: (1) N. obtusa could 
actually prefer deeper waters, where it could then be harder to recover via rake sampling  methodologies29 and 
(2) because bulbils largely form in the sediment, a rake could fail to capture them if good substrate contact is not 
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achieved. In line with their first hypothesis, we found a negative association between occupancy and depth. With-
out including depth in the model in both the occupancy and detection levels (which would present significant 
convergence challenges), our model had limited power to discriminate between lower occupancy versus lower 
detection with increasing  depth29–32. Nitellopsis obtusa is capable of living in relatively deep waters in its native 
 range11 and has even been found to prefer greater depths in one North American  study26. Resolving N. obtusa’s 
occurrence and detectability patterns with respect to depth should be a priority in future work.

We acknowledge our model does not include all factors that may influence detection of N. obtusa. Selecting, 
quantifying, and modeling appropriate detection predictors can be  challenging29. For example, predictors such 
as abundance and substrate were used in previous  studies29,32 but were not included in our model because of a 
lack of suitable data or a modeling framework to incorporate them. Measures of water clarity (e.g., Secchi depth) 
would also likely be valuable but were unavailable at the within-lake level and likely too variable to be durable 
anyhow. Accounting for abundance’s near-certain impact on detection via proxy variables is likely necessary in 
the future but was not feasible using our data  set32. A study aimed exclusively at explaining variance in N. obtusa 
detection would be a valuable next step.

We offer the following recommendations to surveyors to increase N. obtusa detection probability, especially 
early in the invasion process. First, N. obtusa monitoring should be concentrated in late summer (in our region, 
August and September), when its biomass and bulbil abundance are  highest12,28 and other aquatic plants may 
be nearing senescence. Second, especially in deep waters, surveyors should ensure the rake fully contacts the 
substrate and is retrieved slowly through the water column to prevent release of bulbils or small fragments. 
Third, especially when other taxa are abundant, duplicate or even triplicate samples may be justified (despite the 
time and effort required) at locations of high concern or predicted occupancy, and retaining vouchers for more 
thorough analysis out of the field could be justifiable. Lastly, until the major factors affecting N. obtusa detection 
are elucidated, we should assume N. obtusa occupation is more expansive than currently known and that depth, 
substrate, and other factors could influence detection in ways not currently understood.

Critically, our model’s predictions generally mirrored patterns of known occurrences. The model’s predicted 
occupancy probabilities visually aligned with areas of known occupancy (Fig. 4), and when we correlated pre-
dicted occupancy probability with known occupancy rates in the same lakes based on our detection data, those 
metrics aligned extremely well (Spearman’s ρ = 0.848). Similar to Tucker et al.1, our aim was not to create the 
“most accurate possible” model per se but rather the most actionable  one2. Our model used only a few consistently 
available and accessible predictors, several of which could even be crudely assessed visually during a monitor-
ing survey but none of which would require measurement “on the spot” to be useful. Our suite of predictors 
also encompassed all three components of the BAM  framework33, including Biotic factors (e.g., plant density), 
Abiotic factors (e.g., fetch), and Movement factors (e.g., local access density). We accounted for (and partially 
explained) imperfect detection by including repeated samples and detection probability covariates and avoided 
errant conclusions by using systematically collected (rather than opportunistic)  data9. Hence, we are confident 
that use of our model could bolster detection of new N. obtusa infestations.

Materials and methods
Study system and data
Our data come from systematic, point-intercept (PI) littoral aquatic plant surveys conducted using consist-
ent rake sampling methodologies by the Minnesota and Wisconsin Departments of Natural Resources, parks 
districts, and private consultants from 2014 to 2021. For detailed protocols, see Mikulyuk et al.19 for Wisconsin 
and Perleberg et al.34 for Minnesota.

Briefly, sampling locations (hereafter, “points”) are established within each lake by overlaying the lake polygon 
with a grid. For Minnesota, sampling points are restricted to depths ≤ 15 ft. (4.57 m), and the number of points 
per lake is based solely on lake area, with ideally 65 m between points (i.e., 1 point/acre34). For Wisconsin, grids 
cover the entire lake, with spacing varying by lake size, littoral area, and shoreline  complexity19. Additionally, in 
Wisconsin, the extent of the littoral zone is determined dynamically during a survey by finding the maximum 
depth of observed plant growth, with points at greater depths then excluded. For both states, points too shallow 
for boat navigation during a survey are not sampled.

We compiled all available surveys from all known N. obtusa-infested lakes in our region, yielding 75 surveys 
of 23 waterbodies: 7 in Minnesota and 16 in Wisconsin, USA (Fig. 1; Table 1). Most lakes were surveyed across 
multiple years, and a few were surveyed multiple times within some years, enabling accounting for imperfect 
detection (Table 1). Briefly, during a survey, a two-sided metal rake head attached to a rope or pole was low-
ered at each point, dragged, and retrieved. Ordinal abundance values were recorded for every taxon recovered 
(0 = absent, 1 =  < 25% tine coverage, 2 = 25–75% coverage, and 3 =  > 75% coverage). We converted these data to 
their midpoints for analysis (proportions of 0, 0.125, 0.5, and 0.875, respectively). Water depth was also recorded 
at each point. We restricted our analysis to points < 9.14 m (< 30 ft.) deep because (1) N. obtusa has been consist-
ently recorded at relatively shallow depths in North America (≤ 7  m15,16,35), (2) there were no N. obtusa observa-
tions > 8.54 m in our dataset, and (3) the two states differ in whether they sample deeper waters. We retained 
22,795 point-level sampling events after this adjustment (98% of the original point-level data).

Predictors
We compiled locations for all public accesses for motorized boats on our study lakes or directly connected 
waterbodies using state databases maintained for Minnesota (https:// gisda ta. mn. gov/ datas et/ loc- water- access- 
sites; downloaded May 2021) and Wisconsin (https:// data- wi- dnr. opend ata. arcgis. com/ datas ets/ wi- dnr:: public- 
boat- access- sites-1/ about; downloaded January 2022). We then used Google Earth Pro (version 7.3.4; Google 
LLC, Mountain View, CA) to locate multi-user private accesses based on location icons and names (e.g., “resort”, 

https://gisdata.mn.gov/dataset/loc-water-access-sites
https://gisdata.mn.gov/dataset/loc-water-access-sites
https://data-wi-dnr.opendata.arcgis.com/datasets/wi-dnr::public-boat-access-sites-1/about
https://data-wi-dnr.opendata.arcgis.com/datasets/wi-dnr::public-boat-access-sites-1/about
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“boat club”, “yacht club”, etc.) and inspected aerial imagery to confirm all accesses were intended for motorized 
boats and present prior to N. obtusa being detected in the lake. We geotagged accesses to the nearest point on 
the (connected) lake’s polygon. Using the R packages tidyverse, sf, and terra36–39, we derived four access-related 
predictors for every point: (1) Distance (“as the boat travels,” i.e., along the shortest path not crossing land) to 
the nearest access (of either type); (2) Nearest access type (private = 1, public = 0); and (3) & (4) Numbers of public 
and private accesses within 1 km, also measured “as the boat travels” 16.

We also derived maximum fetch values for every sampled point. Lake-level fetch can be defined as the maxi-
mum distance, across all bearings, that wind could travel from shoreline to shoreline unimpeded by land, reflect-
ing maximum potential wave action. From this, we defined a fetch value for each point by forcing lines across 
36 equally spaced bearings (in 10° intervals) through each point and choosing the distance of the longest such 
line using the sf  package36.

Overall plant density and Characeae density were calculated for every observation by summing the rake 
coverage for all observed non-N. obtusa taxa and non-N. obtusa Characeae (Chara, Nitella, and Tolypella spp.), 
respectively. Other predictors included time (years) since first infestation of a lake (Table 1) and day of the year. 
All quantitative variables were mean-centered and scaled prior to analysis.

Data analysis
To test our hypotheses, we constructed a multi-season, single-species occupancy model in a Bayesian framework 
using the spOccupancy  package40 in R. To balance simplicity and realism, we made the following assumptions: 
(1) Due to sampling vagaries, variation in local N. obtusa density, varying experience of surveyors, etc., sampling 
events in occupied locations can yield non-detections; (2) Because the surveyors were professionals trained to 
distinguish N. obtusa from its relatives when either were found, the number of erroneous positive detections 
of N. obtusa in our data set is negligible; and (3) There may be residual spatial autocorrelation in occupancy 
unaccounted for by our predictors, so spatial dependency would need to be modeled explicitly at both fine (i.e., 
within-lake) and broad (i.e., across lakes) scales to account for this.

Let  zijt be the true occupancy state of sampling point i in lake j during year t, i.e.,  zijt equals 1 if N. obtusa is 
present at point i in lake j during year t and 0 otherwise. We modeled each  zijt as a Bernoulli-distributed random 
variable:

where Ψijt is the probability point i is occupied during year t and is modeled as a logit-linear function of predictors:

where γj ∼ N(0, σ 2
lake), xjjt is a matrix containing the overall intercept as well as covariate values at point i and in 

lake j during year t for depth, distance to the nearest access, nearest access type, public and private accesses within 
1 km, fetch, a fetch by depth interaction (to allow for non-monotonic habitat suitability  relationships6), and years 
since first infestation; β is a matrix of fixed-effect coefficients (including an overall intercept), wij is the value of 
a spatial random effect at point i that accounts for fine-scale spatial autocorrelation, and γj is an unstructured 
random effect of lake to account for broad-scale spatial variability in occupancy across lakes. We constructed 
all occupancy covariates other than year by taking their median at each point across all time periods; although 
depth fluctuated between separate surveys at the same point, we attributed this variation largely to spatial meas-
urement error.

Given the large number of points in our data set (8,419; Table 1), we modeled the spatial random effect wij 
using a Nearest Neighbor Gaussian Process  (NNGP41), a computationally efficient approximation to a full spatial 
Gaussian Process using a reduced set of nearest neighbors. Here, we used 15 neighbors following Datta et al.41. 
Briefly, an NNGP yields a multivariate normal prior for spatial random effects with mean 0 and covariance matrix 
�, where covariance between the spatial random effects is determined by the distances between points, a spatial 
variance parameter σ 2 , and a spatial decay parameter φ , which controls the range of the spatial autocorrelation. 
See Datta et al.41 and Doser et al.40 for details.

Let yijkt equal 1 if N. obtusa was detected at point i in lake j in year t during sampling visit k, and let it equal 
0 otherwise. We assumed yijkt was distributed similarly to true occupancy according to:

where vijkt is a matrix containing the overall intercept and covariate values at point i in lake j in year t during visit 
k for day of year and Characeae and plant density and where α is a matrix of fixed-effect coefficients.  zijt is included 
in Eq. (3) to model the assumption that detection of N. obtusa is only possible at truly occupied locations.

For coefficients within β and α, we used Normal(mean = 0, variance = 2.72) priors, resulting in near-uniform 
distributions after inverse-logit transformations. For spatial decay ( φ ) of the spatial random effects, we used an 

informative uniform prior of 
(

3
X
2

, 1
W

)
 , where X equaled the maximum observed distance between any two points 

in the same lake (12,135 m) and W equaled the largest minimum distance between any two points in the same 
lake (112 m). This restricted the spatial random effects to account primarily for within-lake spatial autocorrela-
tion, whereas the lake random effect accounted for broad-scale variation in occupancy probability across lakes. 

(1)zijt ∼ Bernoulli
(
�ijt

)

(2)logit
(
�ijt

)
= xijtβ + wij + γj

(3)yijkt ∼ Bernoulli
(
pijkt × zijt

)
, with

(4)logit
(
pijkt

)
= vijktα,
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This approach was necessary to account for both resolutions of spatial autocorrelation, as a model with just the 
spatial random effect alone with vague priors could not distinguish between the two resolutions and as a result 
failed to converge. We used a weakly informative uniform distribution of (0.001, 10) for the spatial random effects 
variance term (σ2), which accounted for spatial autocorrelation while minimizing confounding with the occu-
pancy intercept term and preventing unreasonably large estimates on the logit  scale42. The unstructured, lake-
level random effect variance (σ 2

lake ) was not confounded with the intercept, and so we specified a vague inverse-
Gamma prior with shape and scale parameters equal to 0.1 for this term.

We fit the model using Markov chain Monte Carlo (MCMC) in the spOccupancy R  package40. We ran three 
chains each with 250,000 samples with a burn-in period of 25,000 samples. These were then thinned to retain 
only 1 out of every 50 samples, resulting in 13,500 posterior samples. We assessed convergence using visual 
assessment of MCMC chains and Gelman-Rubin scale reduction factors (Rhats), which we required to be ≤ 1.02 
for all nonspatial parameters and < 1.05 for all spatial random-effect parameters. We report posterior means as 
point estimates for parameters and used the (0.025, 0.975) quantiles of the posterior distribution to form 95% 
Credible Intervals (CIs) for these estimates. Parameters for which 0 falls outside the 95% CIs were considered 
statistically significant.

Post hoc, we ran three deviations from the model described above to assess our model’s sensitivity to the 
parameters and data included and to supplement interpretation. In the first (“Deviation 1”), we removed data 
from five lakes lacking any N. obtusa detections (Table 1) to assess whether they had undue influence on param-
eter estimates. In our second deviation, we removed data from Wind Lake in Wisconsin, USA (“Deviation 2”), a 
lake with a large N. obtusa infestation near a private access and much less occurance near a public access, to assess 
that lake’s influence on access-related parameters. Lastly, in “Deviation 3,” we added an interaction between time 
since first infestation and distance to the nearest access to the occupancy level of our model, as described in Eq. (2), 
to test whether the relationship between distance to the nearest access and occupancy weakened over time.

Data availability
The code and data described in this manuscript are available here: https:// hdl. handle. net/ 11299/ 250199.
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