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A novel iterative detection method 
based on a lattice reduction‑aided 
algorithm for MIMO OFDM systems
Haitao Liu 1,2, Xuchao Cheng 1*, Wenqing Li 3, Fan Feng 1, Liguo Wang 1, Ying Xiao 1 & Shiqi Fu 1

The lattice reduction‑aided algorithm has received broad attention from researchers since it operates 
as a maximum likelihood receiver with better system performance for multiple‑input multiple‑output 
orthogonal frequency division multiplexing systems and contains a full diversity. A novel iterative 
detection algorithm canceling parallel iterations that employ the lattice reduction‑aided approach 
is proposed. Soft information is exchanged through the detector itself. Its iteration occurs inside 
the detector, which reduces much of the exchange cost between the multiple‑input multiple‑output 
orthogonal frequency division multiplexing detector and the turbo decoder. Since the parallel 
interference cancellation algorithm is constrained by the accuracy of the initial value of the detection, 
it is easy to form error propagation after several iterations. Due to the lattice reduction‑aided 
algorithm, its performance is approximated with the maximum likelihood algorithm. Therefore, the 
lattice reduction‑aided algorithm is introduced into the parallel interference cancellation algorithm 
to make its detection algorithm more accurate and overcome the effect of error propagation in the 
manuscript. Simulation results indicate that the proposed algorithm leads to an improvement of 
0.8–2 dB when the bit error rate is set to  10–4 when compared to other algorithms.

Communication systems employing Multiple Input Multiple Output Orthogonal Frequency Division Multiplex-
ing (MIMO-OFDM) play a crucial role in current and future implementations and have garnered w idespread 
attention from  researchers1–3. Compared to single-antenna systems, MIMO systems offer diversity gains, ena-
bling higher transmission rates, reliability, and a more consistent channel. One of the primary advantages of 
MIMO is transmitting distinct information streams from different transmitting antennas, also known as spatial 
multiplexing. However, reliable detection of these information streams at the receiving end is essential to ensure 
data accuracy.

In order to achieve the optimal bit error rate, the maximum likelihood (ML) algorithm has the best perfor-
mance, considering all propagation vectors. However, as the number of transmitting antennas increases, the 
algorithm’s complexity grows exponentially, generally not considered alone. Detection algorithms mainly consist 
of straightforward methodologies, where Sphere Decoding (SD) is a well-known detector, but it is practically 
limited to 32 dimensions. Therefore, linear detection algorithms represented by Zero Forcing (ZF)4 and Mini-
mum Mean Square Error (MMSE)5 are proposed. The ZF detector ignores the noise interference of the channel, 
leading to poor performance as it amplifies noise while eliminating interference. The MMSE algorithm strikes 
a balance between interference elimination and noise amplification, generally outperforming the ZF detection 
algorithm. Although both ZF and MMSE algorithms can achieve low-cost signal detection, their detection 
performance is not  high6.

To enhance the performance of the algorithm, researchers have proposed non-linear detection  algorithms7. 
Successive Interference Cancellation (SIC) is a representative non-linear detection algorithm, composed of layer-
by-layer techniques to enhance the signal, depending on the initial score of the first  detection8. However, it is 
more susceptible to Error Propagation (EP). Linear Receivers Aid (LRA) serves as a highly effective preprocess-
ing method, typically combined with other  techniques9. An MIMO-OFDM receiver supporting LRA begins 
by recognizing a set of small matrices that are nearly orthogonal to the specified channel matrix. In algorithms 
employing  LRA10,11, if a lattice is given, it can generate an almost orthogonal matrix. A QR decomposition-based 
LLL algorithm is proposed in  literature12. The  literature13 proposes an SIC detection algorithm assisted by an LLL 
algorithm, and although the use of the LLL-assisted algorithm improves the performance of the SIC detection 
algorithm, error propagation may still occur.Preprocessing the channel matrix optimizes its dimensions and 
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reduces inter-vector correlation. In  literature14,15, these methods achieve outstanding performance by lowering 
complexity. Although its performance advantage over iterative detection algorithms is considerably smaller, its 
simplicity is more straightforward compared to iterative methods. Therefore, using simple iterative algorithms at 
a certain complexity is highly suitable. However, the detection algorithm based on QR decomposition essentially 
constitutes a form of SIC detection, involving error propagation. Therefore,  literature16 proposes a Sorted QR 
Decomposition (SQRD) detection algorithm. The algorithm uses a modified Gram-Schmidt orthogonalization 
algorithm to sort the channel matrix, prioritizing the detection of better-performing layer signals, thus suppress-
ing error propagation. However, this algorithm does not effectively address the problem of low diversity in the 
initially detected layers. In  reference17, a Modified MMSE-SQRD detection algorithm is proposed. By moving 
this symbol component into the signal term, the modified MMSE SQRD based detection can provide more effi-
cient LLRs for soft decoder.  Literature18 proposes an Iterative QR Decomposition (IQRD) detection algorithm. 
The algorithm utilizes iterative cycles, retaining only the signals from the last detection layer in each iteration 
process. This approach addresses the issue of low diversity in the initially detected layers.

For joint decoding communication systems, the Maximum A Posteriori (MAP) criterion stands as one of 
the representative optimal detection methods. However, due to the high complexity of the MAP algorithm, its 
implementation is limited in many practical applications. In  literature19, low-complexity SIC and MMSE-based 
multi-user detectors are proposed for multipath CDMA channels. Subsequently, similar SIC-MMSE detectors are 
applied in iterative reception  algorithms20. However, the complexity of such SIC methods remains relatively high. 
Therefore, researchers have proposed a novel, low-complexity nonlinear receiver algorithm that parallelly decodes 
data streams through zeroing and elimination. Parallel Interference Cancellation (PIC) is a well-known method. 
The PIC algorithm can effectively reduce the algorithm’s complexity and improve its performance through itera-
tion. These iterative  algorithms16,21–23 represent the best detection methods in suboptimal algorithms, exclud-
ing the optimal MAP algorithm. However, all these algorithms exchange information through mutual MIMO 
detectors and decoders. Although it brings performance improvement, it also consumes a significant amount 
of time and is relatively complex.

The exchange of information between detectors and decoders to achieve signal detection introduces a sig-
nificant amount of additional computation. This paper proposes an Iterative Parallel Interference Cancellation 
algorithm based on lattice reduction-aided (IPIC-LRA), where detectors themselves provide mutual feedback 
and iteration. Since the Precision of Initial Detection Values is crucial for the PIC algorithm, if the first detec-
tion process fails, the initial value’s detection is not ideal. Consequently, it leads to error propagation, severely 
impacting the algorithm’s performance.

The proposed IPIC-LRA algorithm in this paper combines the non-joint detection and decoding of the PIC 
and lattice reduction algorithms. It separates the detection in the first iteration from subsequent iterations, 
enhancing detection accuracy. Additionally, it employs a lattice reduction auxiliary algorithm for assistance. 
Simulation results demonstrate that, compared to the original algorithm at the same bit error rate, the IPIC-LRA 
algorithm with the lattice reduction exhibits a significant improvement in signal-to-noise ratio. Moreover, due 
to separate computations, the algorithm’s complexity remains almost unchanged.

The rest of the article is outlined as follows: The system model is described in Section “The model of the sys-
tem”. Section “Iterative parallel interference cancellation algorithm based on lattice reduction-aided (IPIC-LRA) 
approach” describes an iterative parallel interference cancellation algorithm based on a lattice reduction-aided 
approach (IPIC-LRA) in detail. The complexity of the proposed method is discussed in Section “Complexity”. 
Section “The results of the simulation” presents simulation steps and results. The paper is concluded in Section 
“Conclusion”.

The model of the system
To achieve soft detection, the joint decoding of the MIMO-OFDM wireless systems with NT transmits and NR 
receiving antennas should be taken into consideration. This approach could lead to increased efficiency and 
robustness in wireless communications. The combination of the two techniques, MIMO and OFDM, could 
provide significant improvements in terms of data transmission accuracy and channel capacity. When data going 
through the encoder output is denoted c(n) , it can then be obtained by random interleaving. Finally, the modu-
lated signal is obtained after running modulation. The 4QAM modulation schemes are utilized throughout the 
paper. Then, the final transmitted signal xNt (k) is obtained. The transmission signal vector Xc ∈ C

NT×1

,X=
(
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as follows.

where the complex noise vector N ∈ NR × 1 can be represented by N=
(
nN1 ,nN2 , · · · ,nNR

)T , and 
Rnn = E

[
nnH

]
= σ 2I,σ 2 represents the variance of the complex noise vector. When the ideal channel estima-

tion condition is assumed, the channel matrix H ∈ NR × NT in Eq. (1) can be given by the H matrix.
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NR∑
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where hj,i ∈ ℜ2×2 can be expressed by

where hj,i represents the channel impulse response between the jth receiving antenna and the ith transmitting 
antenna. At the receiver, the signals yNr (k) are demodulated by the OFDM symbol, the soft detection input 
value then can be obtained. The goal of the algorithm is to generate the LLR information corresponding to the 
emission vector x(k) with the h(k) and y(k) of each coded bit. The maximum a posteriori probability (MAP) 
algorithm has a higher complexity when the likelihood ratio information is computed. To calculate the estimated 
signal value x̂i(k) , it is appropriate to employ linear detection to calculate the LLR. Then, the likelihood ratio 
information of each symbol is computed according to the mean and the variance of each symbol’s estimated 
score to decrease the complexity.

Iterative parallel interference cancellation algorithm based on lattice 
reduction‑aided (IPIC‑LRA) approach
The channel matrix reconstruction based on the LLL and equivalent change of the received 
signal
According to Eq. (1), the MIMO-OFDM system could be regarded as a lattice structure on a complex field. The 
basis vector with column vectors as a lattice is formed by

The necessary condition for H = HT generating the same lattice H is that T must be a unimodular  matrix24. 
Lattice reduction technology is implemented to optimize the channel matrix so that the optimized base vector 
converted into a shorter vector with better orthogonality could be a better decision domain. While the LLL algo-
rithm holds the title of the most frequently employed lattice reduction technique, the complex LLL algorithm 
garners increasing interest as it offers lower computational complexity than the LLL.

The main reason for the bad performance of the linear detection algorithm is that the high orthogonality 
of the channel matrix is destroyed. The MIMO-OFDM detection method used on almost orthogonal matrices 
could improve performance. Therefore, the LLL algorithm deserves more attention. Thus, the channel matrix 
is expanded to:

where H ∈ R
2(NT+NR)×2NT and INT ∈ R

2NT×2NR represent the extended channel matrix and the identity matrix. 
In Eq. (4), H and H are of the size 2NT × 2NR and 2(NT + NR)× 2NT , respectively.

If the channel is extended, the received signal needs to be processed accordingly with zero padding, and the 
extended signal Y ∈ ℜ2(NT+NR)×1 is determined by

where 02NT denote the 2NT dimensional null vector. The first part to the right-hand side of Eq. (5) is the signal 
vector, and the second part is a composite form of both the noise and transmission signal vectors. If the second 
part is treated as noise, the detection performance will be affected.

The variance σn and unit matrix I2NT are utilized to fill the H . Then QR decomposition is denoted as follows:

After conducting both the channel matrix expansion and QR decomposition, Q and R is introduced into the 
LLL algorithm to reconstruct the channel matrix Hequ . Thus, Eq. (5) can be rewritten as

The matrix P is the sequence order of the detected symbols after the decomposition of the channel H by 
SQRD, which represents a column arrangement. To further clarify the expression, the matrix M = HequT

−1P−1 
is written.
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The analysis of the algorithm
Figure 1 depicts the block diagram of the IPIC-LRA. The received signal on the antenna at the receiver side 
is obtained after conducting de-CP, IFFT transform, and de-carrier mapping. So, the input signal Y(k) of the 
algorithm is obtained. The matrix A(m) represents the forward matrix, the m denotes the number of different 
iterations. The form of the forward matrix changes based on different m values. The matrix B(m) represents the 
feedback matrix, which is used to reconstruct the antenna interference. The matrix W(m) denotes the normalized 
matrix, which is used to normalize the received signal power. According to Fig. 1, the estimated value of the 
transmitted signal could be attained after running the m-th iteration and is denoted by

The first detection method of the IPIC algorithm based on a lattice reduction-aided approach is different from 
the subsequent detection. The principle will be explained in detail in the next section.

a.  The first iteration ( m = 1)

The same detection algorithm is applied to all the subcarriers for the MIMO-OFDM systems, so the analysis 
of the algorithm in the manuscript starts by considering the case of the k carriers. Since there is no feedback 
a priori information during the first iteration the detection of the received signal at this time is assumed to be 
linear. According to the conventional PIC detection algorithm in the first iteration, the linear MMSE detection 
algorithm is chosen, and the forward matrix A(1)(k) is defined by

When the case of multiple different subcarriers is considered, the forward matrix A(1) is a block diagonal 
matrix composed of different subcarrier forward matricesfankui denoted by

where N denotes the number of data carriers. Since there is no feedback signal during the first detection, there 
is no need to reconstruct the interference signal, then the feedback matrix B(1)(k) at this time is defined by

There is no interference-canceling process in the operation, so, no power normalization is required, and the 
matrix W(1)(k) is defined by

Both the feedback and the normalization matrices, B(1) and W(1) , satisfy the block diagonal matrix consisting 
of B(1)(k) and W(1)(k) . The signal estimates for the first iteration are obtained by employing Eqs. (10) through 
(13) and lead to

(9)x̂(m)(k) = W(m)
[
A(m)Y(k)− B(m)x̂(m−1)(k)

]

(10)A(1)(k) =
(
HH

equ(k)Hequ(k)
)−1

HH
equ(k)

(11)A(1) =





A(1)(1) 0 · · · 0
0 A(1)(2) · · · 0
...

...
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0 0 · · · A(1)(N)
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(12)B(1)(k) = 0
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Figure 1.  A block diagram of the IPIC-LRA.
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where � ∈ C
2NTN×2NRN represents the block diagonal matrix composed of different subcarriers �(1) , �(2) , · · · , 

�(N) , which is related to the forward matrix A(1) and H , �(k) = A(1)(k) ∗H(k) . Separating the desired signal 
from the interfering signal in Eq. (14) could further lead to

where Diag(·) denotes the diagonal matrix with diagonal elements. Diag(·) denotes the matrix with the remain-
ing elements on the removed diagonal. The right side of Eq. (15) is composed of three parts. The first part is 
expected to obtain the signal, the second part can be assessed as the interference of the original signal, which 
can be defined as inter-antenna interference, and the third part is the noise interference of the original signal, 
which is mainly Gaussian noise interference. The second and third parts are considered as the interference of the 
original signal. The two parts are independent of the original signal. The i-th judgment variable is expressed as:

where 
{
Diag(�)d

}
i
 denotes the i-th element of the orientation quantity Diag(�)d , the Gaussian interference 

noise term can be interpreted in the same way. At this point, the expected signal complex coefficient is denoted 
by εi =

{
Diag(�)

}
i,i

 . The normalized expected signal can be further expressed by

The use of soft detection allows for improved detection accuracy. When the likelihood value of the desired 
signal is computed, it is necessary to calculate the power of the second part of the interference term as well as 
the third part of the noise term employing Eq. (17). If the power of the interference part as well as the noise part 
need to be calculated, a priority must be given to calculating the power of the complex coefficients εi , and the 
average power εi can be expressed by

When the second part of the interference term is calculated, the power of each element of d is 1. The emitted 
signal is normalized by the power. Therefore, only the power of the Diag(�) numerator term is required for the 
calculation. Diag(�) denotes the i-th row of � with the elements on the diagonal removed from the remaining 
matrix. So, when the power of the second term mi

I is calculated, Eq. (19) is employed as follows:

According to the average power of εi , the power of the second part can be further written as

According to the same principle, the average power mn of the Gaussian interference noise in the third part 
is defined by

After calculating the average power of εi , the total estimated signal power md can be obtained as

So, the estimated signal obeys a complex Gaussian random variable with zero mean and variance of md . The 
soft information likelihood score of the output of the first iteration is calculated based on the mean and variance 
to provide interference reconstruction a priori information for the second iteration. When the MAP detector 
output posterior LLR is computed to obtain a posteriori LLR function, we must opt for j corresponding code bit 
of i transmitted symbol, denoted as dji.

(15)
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where 
[
d0i , d

1
i , d

2
i , · · · , dM−1

i

]
 denotes the coded bit sequence corresponding to di . Two subsets of χ j

0 =
{
d|dj = 0

}
 

and χ j
1 =

{
d|dj = 1

}
 represent the transmitted symbol subsets with the jth bit being 1 and 0, respectively. Using 

Eq. (24) P
(
di = d

∣∣∣d̂i
)
 can be calculated as

where C is a constant, and C−1 =
log2 |χ |−1∏

j=0
exp

(
L
(
d
j
i

)
/2
)
+ exp

(
−L

(
d
j
i

)
/2
)
 , |χ | indicates the size of the symbol 

set χ . The conditional variance in Eq. (21) is employed and a new expression to calculate the LLR is attained as 
follows:

So far, the LLRs can be obtained by calculating Eqs. (23) through (25). The LLRs are finally transferred to 
the soft decoder by Eq. (25).

b. After the first iteration ( m ≥ 2)

During the second and subsequent iterations, Feedback currently exists. Therefore, the feedback and 
the normalization matrices have different forms when compared to the first iteration. For simplicity of the 
explanation, the use of matrix M(k) is introduced before instead of employing Hequ(k)T(k)

−1P(k)−1 , i.e., 
M(k) = Hequ(k)T(k)

−1P(k)−1 . For a more convenient description of the algorithm, giving priority to the case 
of a single subcarrier, the forward matrix can then be a channel-matching matrix defined by

where k denotes the subcarrier sequence, which is the same as in Eq. (11). The second and subsequent for-
ward matrices have A(m) ∈ C

2NTN×2NRN for all subcarriers, which is a block diagonal matrix composed of 
A(m)(1),A(m)(2), · · · ,A(m)(N) . After the received data symbols are processed by the forward matrix defined by

Thus, the interference of the desired signal mainly comes from the elements on the HH
equ(k)H(k) non-diagonal 

in Eq. (27). If the HH
equ(k)H(k) non-diagonal elements can be eliminated after the power normalization process 

is run, the desired signal is obtained. Following this idea, through the last judgment feedback signal d̂(m−1)(k) 
using reconstruction interference, the feedback matrix B(m)(k) is defined by

Then, the normalization matrix W(m)(k) after interference cancellation is defined by

For all carriers, the feedback and normalization matrices,B(m) ∈ C
2NTN×2NRN and W(m) ∈ C

2NTN×2NRN , 
are block diagonal matrices consisting of B(m)(1),B(m)(2), · · · ,B(m)(N) and W(m)(1),W(m)(2), · · · ,W(m)(N) , 
respectively. The main difference between the second and subsequent iterative methods when compared to 
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(26)A(m)(k) = MH(k)
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the first iteration is the presence of feedback information during the second and subsequent iterations, which 
requires interference reconstruction employing the soft information from the feedback of the previous iteration. 
The soft information output from the previous iteration is defined as �(m−1) , and the interference cancellation is 
performed by reconstructing the signal vector µ = [µ(1),µ(2), · · · ,µ(N)]T by using Eq. (25). The reconstructed 
inter-antenna interference is obtained by multiplying the reconstructed interference signal with the feedback 
matrix B(m).

According to the forward, feedback, and normalization matrices in Eqs. (27) through (29) and the recon-
structed signal vector µ , the judgment vector of m ≥ 2 iterations can be obtained as

The right side of Eq. (30) is composed of three parts. The first part is the original signal, the second part can 
be considered as the error appearing in the reconstructed signal, which is also defined as the error interference 
and the third part is the noise interference of the original signal.

The second as well as the later iterations are based on soft information. The likelihood score of d̂(m) regard-
ing the second and later iterations of the detector output is obtained. The power of the second and third parts 
in Eq. (30) is required. Therefore, the error interference power is defined as me and the noise power as mn , 
respectively. For the error interference part, e = d − µ is defined, then the interference of the i-th element of 
the estimated signal is obtained as the product of the i-th row of the coefficient matrix W(m)B(m) and the error 
vector e . Then, the power of the real part of the i th element in the error vector is represented by

In25, the coefficient matrix is an upper triangular matrix composed of 0s on the diagonal, the power of the 
coefficient matrix in the calculation of the second part of Eq. (30) can be derived as follows:

The power of the error interference is defined by

According to the same principle of the first calculation of mn,mn are represented by

The power of the estimated total signal md is denoted by md = me +mn . Finally, the likelihood score of the 
current iteration is calculated. It is worth noting that the output likelihood score is the sum of the current likeli-
hood score and the output likelihood score of the previous iteration, i.e., �m = �+ �

m−1 due to the influence of 
the signal error term at this point. Finally, the desired signal could be obtained by adjudicating the likelihood 
score.

(30)
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+ B(m)

]
d + A(m)n − B(m)

µ

}

= d +W(m)B(m)(d − µ)+W(m)A(m)n

(31)
E
[
Re(ei)

2
∣∣∣d̂(m)

i

]
= E

[
Re(di − µi)

2
]

= 1− tanh2
(
�
I
i

)

(32)

Pm = var

[(
W(m)B(m)

)

p,q

]

= 1

(2NNT )
2

2NNT∑

p=1

2NNT∑

q=1

∣∣∣∣
[
W(m)B(m)

]

p,q

∣∣∣∣

2

(33)me = Pm
N∑

i=1

E
[
Re(ei)

2
∣∣∣d̂(m)

i

]

(34)

mn = 1

2NNT

2NNT∑

q=1

(
W(m)RnW

(m)H
)

q,q

= σ 2
n

2NNT

2NNT∑

q=1

(
W(m)W(m)H

)

q,q
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The pseudocode for the algorithm is presented below:

Algorithm 1.  Proposed IPIC LRA algorithm

To better present the research outcomes in the paper, we find it imperative to elaborate on the introduction 
of the IPIC-LRA method. Using the extraction of the kth carrier as an instance, the algorithm’s specific steps are 
summarized as follows:

S1 First initialize and also set the maximum number of iterations. After that, the LLL algorithm is utilized 
and the channel matrix Hequ and P and T matrices are reconstructed.
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Table 1.  Experimental simulation parameters.

Silmulation parameters Figures

Number of users 1

Channel Multipath Rayleigh fading channel

System bandwidth 10 MHz

Carrier spacing 15 kHz

Number if inverse Fourier transform point 512

The number of transmitted data symbols 300

Number of data symbols 14

Modulation 4QAM

Number of transmitting and receiving antennas 4 × 4; 6 × 6

Channel coding Turbo decoding mode

Channel decoding mode Log-map

Figure 2.  BER for demodulating the output of different methods using NT = NR = 4.

Figure 3.  The BER for demodulating the output of different methods using NT = NR = 6.
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S2 Using Eqs. (10) through (13), calculate the forward, the power normalization, and the feedback matrices 
as A(1) =

(
HH

equ(k)Hequ(k)
)−1

HH
equ(k),W(1) = I2NTN,B(1) = 0 , respectively. The estimated signal d̂1 will be 

obtained using Eq. 14. According to Eqs. (18) through (22), the total power md , the ms,mn , and mI can be calcu-
lated separately. The likelihood score of the estimated signal d̂1 is calculated. After that, the next iteration is 
executed.

S3 Recalculate the forward, feedback, and power normalization matrices as A(m) = MH  , 
B(m) = MHM− diag

(
MHM

)
 , W(m) =

{
diag

(
MHM

)}−1 , respectively.
S4 Using Eq. (30), the current estimated signal d̂(m) is obtained. According to Eqs. (32) through (34), the dif-

ferent powers will be calculated separately. Finally, the likelihood score of the estimated signal d̂(m) is calculated. 
After that, the next iteration is performed. Continue with S4 if it is not greater than the maximum number of 
iterations. It is worth noting that the output likelihood score is the sum of the current likelihood score and the 
output likelihood score of the previous iteration at this time. If the maximum number of iterations is exceeded, 
then proceed to S5.

S5 The estimated signal likelihood score is calculated and transferred to the turbo decoder.

Complexity
In26, the complexity of the conventional matrix operations is summarized as follows:

The complexity of multiplying Ab by a m×m dimensional matrix A and the vector b is m(2m− 1) . The com-
plexity of adding a m×m dimensional matrix A with B is m2 . The complexity of inverting a m×m dimensional 
matrix A is 2m3 − 2m2 +m.

The linear detector based on the MMSE is employed in the first detection. Considering that the channel 
matrix is diagonal, in the process of calculating the judgment variables, the complexity of the matrix, the multi-
plication and addition operations between the vectors are (NR + 3)N2 , while the operation of matrix inversion 
is 2N3 − 2N2 + N . The sum of the two operations has the complexity of linear detection before the soft judg-
ment is performed. The iterative detection is the first and later processes are different. The complexity of the 
first iteration is considered first. In the process of calculating the complex coefficients εi of the desired signal, as 
well as the interference and Gaussian noise power, it is necessary to use the matrix � of the form � = A(1)H . At 
this point, the increased complexity is the product of the matrices A(1) and H . The reduction is the complexity 
of the HHy part. Therefore, the complexity of calculating � is 2(NR − 2)N2 + N . The complexity of calculating 
the complex coefficients, as well as the complexity of the interference and Gaussian noise power, can be obtained 
from the matrix � . To obtain εi = (�)i,i , the complexity of εi is 4N2 log2 N . To calculate the disturbance power, 
the matrix product ��H introduces a large complexity when finding the first disturbance mI . So, the complexity 
of the total operation is 4N3 − 2N2 + 2N , and the complexity of ms is 2N + 2 . When calculating the Gaussian 
noise mn , which also involves the matrix product, the complexity introduced is 8N3 − 4N2 + 2N+2 , and the 
complexity of the final calculation of the likelihood score is 2N.

In the introduced LLL algorithm, the added complexity is the number of column exchanges of the base matrix 
N2 log2 B , where B is the longest base vector norm, so the total complexity of lattice reduction is N4 log2 B . In 
the actual detection, the complex matrix is transformed into an equivalent real matrix, but this will double the 
channel matrix and the complexity will become 2N4 log2 B . The total complexity of the first iteration detection 
is 2N4 log2 B+14N3 − (3NR + 9)N2 + 4N2 log2 N)+ 8N.

In the second and subsequent iterations, the complexity decreases significantly for the first iteration. M , 
B(m) = MHM− diag

(
MHM

)
 and W(m) =

{
diag

(
MHM

)}−1 is already calculated in the first iteration. The 
increase in complexity is only 4N . When calculating the residual interference power, the complexity is mainly 
introduced by two parts. The operation to calculate the me is 4N , and the other part is the Pm . The matrix W(m) 
is diagonal, and the operation to calculate Pm is 6N2 . The complexity of the interference reconstruction is 

Figure 4.  The BER for demodulating the output of different methods using δ=0.99.
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4N2 + 2N log2 N − 2N . The complexity of power normalization and interference cancellation is 4N . The total 
complexity of the second iteration is 10N2 + 2N log2 N + 10N.

Thus, the complexity of the IPIC-LRA increases significantly when MMSE is used in the first iteration. But, the 
complexity of the second detection iteration is O

(
N2

)
 , which is significantly lower than that of the first iteration 

and linear detection, and the complexity of the later iterations is lower than that of the second iteration because 
there is no need to calculate Pm again.

The results of the simulation
Several algorithms are compared with the proposed algorithm by using the Monte Carlo simulation technique. 
The channel model is assumed to be a Rayleigh fading channel with ideal channel estimation. The system con-
figuration is composed of a receiving user, system bandwidth with 10 MHz, the normal CP frame structure, the 
transmission time interval (TTI) per frame containing 14 OFDM symbols, and the bandwidth configured to 
512 subcarriers, where 300 of which are used for data symbol transmission. The other carriers are set to dummy 
subcarriers with a frequency spacing of 15 kHz, modulation types of 4QAM, receiving and transmitting antenna 
configurations of 4 × 4 or 6 × 6, turbo code using the generated polynomials (7,5) or (11,13), coding rate of 1/2, 
and log-map decoding mode. The specific parameters are shown in Table 1.

Figures 2 and 3 illustrate the bit error rate comparison curves of the proposed IPIC-LRA algorithm with other 
algorithms. During the comparison, we kept the critical parameter AA of the LLL algorithm fixed at δ=0.75 , 
selected 4QAM as the modulation scheme, with antennas labeled as 4 × 4 and 6 × 6, respectively. The figures indi-
cate that the algorithmic performance improvement of linear detection methods is relatively slow, irrespective of 
the antenna configuration. Nonlinear methods, including MMSE SQRD and Modified MMSE  SQRD16, show a 
more pronounced enhancement compared to linear methods. When configuring antenna 6 × 6, the performance 
improvement of both MMSE SQRD and Modified MMSE SQRD algorithms is approximately 3 to 5 dB at a bit 
error rate of  10–3. Applying the LLL principle to the SIC algorithm reveals that the algorithm’s performance can 
still be further improved. This is because the LLL principle can restore the orthogonality of the channel matrix, 
but compared to the PIC method, the performance improvement remains relatively slow. In Fig. 3, The PIC 
method is used based on the MMSE criterion, and its performance is slightly improved. In the first iteration, 
the IPIC-LRA algorithm introduces the LLL algorithm, which can effectively optimize the channel matrix and 
make it have more strict orthogonality, and the BER improvement is obvious. At BER of  10–2, the improvement 
of the IPIC-LRA is about 2.5 dB. As the number of iterations increases, the IPIC-LRA gradually converges and 
stabilizes. In the second iteration, the performance of the IPIC-LRA improves by about 0.8–1.5 dB when the 
BER is  10–3. After running five iterations, when the BER is  10–4, the performance of the IPIC-LRA is improved 
by about 0.8–2 dB when compared with the benchmark algorithm.

Figure 4 shows the BER of IPIC LRA and others under 4QAM modulation and the LLL ( δ=0.99 ) condition 
in an 4 × 4 arrangement. Compared to Fig. 3, both the IPIC LRA and LLL-SIC algorithms are affected by the 
introduction of δ . As δ increases, the performance of these two methods can improve rapidly. At a bit error rate 
of  10–4, the IPIC LRA algorithm achieves an Eb/No of approximately 11 dB with δ at 0.99, and 12 dB with δ at 
0.75.The findings reveal that the proposed IPIC-LRA method outperforms other approaches in terms of the 
BER, highlighting its potential for high-performance wireless communication systems. Besides, the performance 
improvement rate of the IPIC-LRA is still obvious when compared to other algorithms. In the first iteration, the 
performance of the proposed IPIC-LRA method is improved very rapidly when compared to the first iteration 
of the benchmark algorithm, where the BER is set to  10–2. So, the system performance improvement is already 
more than about 4 dB. As the number of iterations increases, when the BER is set to  10–4, the performance of 
the proposed IPIC-LRA is 1.8 to 2.2 dB, which is better than that of the parallel method when the number of 
iterations is set from the second iteration to five iterations.

Figure 5.  The BER of the demodulating output of different methods for the generated polynomial (11, 13).
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The BER of different methods under the LLL (0.75) and the generated polynomial (11, 13) condition in the 
4 × 4 arrangement are shown in Fig. 5.Considering the adoption of different polynomials with the aim of improv-
ing algorithm performance at the same error rate. Simultaneously, whether using linear or nonlinear detection 
methods, Fig. 5 exhibits a significant performance improvement compared to Fig. 3. The Turbo polynomial 
transitions from (7,5) to (11,13), enhancing performance by introducing additional coding redundancy, explain-
ing the marked change in the performance curve.The proposed IPIC-LRA algorithm is about 0.8 dB more than 
that of the parallel algorithm in the initial iteration. At the second iteration, when the BER is set to  10–3, similar 
outcomes are reached. The number of iterations reaches 5 and the performance improvement of the IPIC-LRA 
algorithm becomes better when compared to the parallel algorithm.

Conclusion
The present research introduces an iterative parallel interference cancellation receiver based on a lattice reduc-
tion-aided approach that utilizes the LRA to enhance the orthogonality between constellation points and the 
MMSE extension to mitigate the noise effects. The proposed method aims to improve the performance of wireless 
communication systems by increasing the accuracy of symbol detection while reducing the impact of interference.

The manuscript highlights the potential of the proposed algorithm to enhance the efficiency of communica-
tion systems by facilitating reliable information transmission. The proposed method is combined with the LLR 
clipping to decrease the list size necessary to achieve the highest achievable performance. The parallel detection 
algorithm depends heavily on the accuracy of the initial score of the detection. Therefore, the LRA idea is intro-
duced into the algorithm during the initial detection in the article.

The simulation results make the initial detection effectively very obvious and far better than other algorithms 
after the correction of the LRA idea. It implies that as the number of iterations increases, the performance of the 
proposed algorithm would grow significantly when compared with other algorithms.

Data availability
The code written and analyzed during the current study are not publicly available due to the confidentiality but 
are available from the corresponding author on reasonable request.
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