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Accurate and fast histological staining is crucial in histopathology, impacting diagnostic precision 
and reliability. Traditional staining methods are time-consuming and subjective, causing delays in 
diagnosis. Digital pathology plays a vital role in advancing and optimizing histology processes to 
improve efficiency and reduce turnaround times. This study introduces a novel deep learning-based 
framework for virtual histological staining using photon absorption remote sensing (PARS) images. By 
extracting features from PARS time-resolved signals using a variant of the K-means method, valuable 
multi-modal information is captured. The proposed multi-channel cycleGAN model expands on the 
traditional cycleGAN framework, allowing the inclusion of additional features. Experimental results 
reveal that specific combinations of features outperform the conventional channels by improving 
the labeling of tissue structures prior to model training. Applied to human skin and mouse brain 
tissue, the results underscore the significance of choosing the optimal combination of features, as it 
reveals a substantial visual and quantitative concurrence between the virtually stained and the gold 
standard chemically stained hematoxylin and eosin images, surpassing the performance of other 
feature combinations. Accurate virtual staining is valuable for reliable diagnostic information, aiding 
pathologists in disease classification, grading, and treatment planning. This study aims to advance 
label-free histological imaging and opens doors for intraoperative microscopy applications.

Histopathology is a branch of pathology that utilizes microscopic examination of chemically stained thin tissue 
sections to investigate and diagnose diseases by analyzing cellular and structural abnormalities. Traditional histol-
ogy has several limitations including time-consuming procedures, tissue alteration, limited staining options, and 
variability1,2. Consequently, there is a growing need for imaging techniques that can directly visualize cells and 
tissues in their native states without the need for chemical labeling. As such, label-free microscopy techniques 
have gained significant attention in histopathology as they offer non-invasive methods to visualize cells and 
tissues3–7 through leveraging the intrinsic properties of biological samples.

Label-free techniques acquire informative contrast from unstained samples while preserving their integrity 
for subsequent analysis. These label-free contrasts can be extracted and transformed into familiar formats, 
such as conventional histopathology stains, through the process of virtual staining. Label-free contrasts from 
various optical microscopes have been coupled with deep learning algorithms to intelligently present the rich 
information in meaningful ways. Examples of such microscopes include quantitative phase imaging8, reflectance 
confocal microscopy3, photoacoustic microscopy9,10, and autofluorescence microscopy7. The specificity level to 
biomolecules varies for each microscope, and as the microscope becomes more specific towards biomolecules 
of interest, the dependence on the deep learning model for inference decreases. For instance, autofluorescence 
shows promise in capturing extranuclear elements, however, important structures like cell nuclei do not exhibit 
measurable autofluorescence11. The lack of direct measurement of nuclear contrast may cause deep learning to 
estimate the coloring of nuclear structures.

Autofluorescence is a form of radiative relaxation and re-emittance of lower energy photons following the 
absorption of light. However, a portion of the absorbed energy can also undergo relaxation via temperature and 
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pressure. These are termed non-radiative relaxation pathways and they provide additional contrast and hold 
significant value in capturing critical structures, including cell nuclei (DNA)12. One modality, Photon Absorption 
Remote Sensing (PARS) microscopy, previously known as Total-Absorption Photoacoustic Remote Sensing12,13, 
can simultaneously measure the radiative (e.g. autofluorescence) and non-radiative (temperature and pressure) 
relaxation of biomolecules. By leveraging the unique absorption spectra of biomolecules like hemoglobin, DNA, 
and lipids, PARS enables direct selective imaging without the need for extensive systematic modifications14–16. 
PARS has emerged as a powerful method that utilizes a non-contact, all-optical architecture to visualize the 
intrinsic absorption contrast of biological tissue structures.

In PARS, a pulse of light is used to excite the sample and induce both radiative and non- radiative relaxa-
tions processes which are then measured13. The optical emissions generated from the radiative relaxation can be 
directly measured while the non- radiative relaxation results in nanosecond-scale variations in the specimen’s 
optical properties. These non-radiative modulations can be measured as forward or backscattered intensity 
fluctuations using a secondary co-focused detection laser13. Furthermore, optical scattering contrast is also 
measured using the pre-excitation scattering intensity of the detection laser. All three contrasts are simultane-
ously measured from a single excitation event and are therefore intrinsically co-registered.

Previously, the PARS microscope has demonstrated its efficacy in generating virtual H&E stains using a 
pix2pix image-to-image translation model10. However, pix2pix demands accurate alignment of PARS and true 
H&E images at the pixel level. Pixel-level registration is not always achievable due to alterations in the tissue 
during the staining process. Poorly aligned pairs weaken the colorization performance and lead to distorted or 
blurred translations17. To avoid such problem, here we choose to employ a more flexible image-to-image transla-
tion model known as cycleGAN, short for Cycle-Consistent Generative Adversarial Network18. While cycleGAN 
can be trained with unpaired data, in this study, registered pairs are used as they help enhance the colorization 
results achieved by cycleGAN17, primarily through mitigating hallucination artifacts.

Previous PARS virtual staining efforts used both the non-radiative and radiative channels from a single 
266 nm UV excitation wavelength10,17,19. While these combined contrasts are highly analogous to the nuclear 
and connective tissue contrasts highlighted with H&E, some structures like red blood cells are not strongly cap-
tured with UV excitation alone. An additional excitation wavelength can be used to target hemoglobin or red 
blood cells to provide better separation between them and comparably sized features, such as nuclei. Providing 
additional information to the model may help it understand the separability between different structures and 
enhance its ability to learn the statistical relationship between PARS and H&E domains.

Accordingly, an additional 532 nm excitation laser is employed in this study to help acquire red blood cell 
contrast, resulting in the non-radiative time-domain (TD) signals exhibiting two excitation peaks. The first peak, 
at a wavelength of 266 nm, is used to specifically target DNA/RNA, while the second peak, at 532 nm, primarily 
targets hemoglobin (red blood cells). Moreover, recently Pellegrino et al.20,21 showed that multiple features may 
be extracted from a single peak time-resolved non-radiative relaxation signal. These features are extracted based 
on signal shape and may relate to more specific tissue structures20,21. Hence, we choose to expand the number of 
input channels to the cycleGAN model through intelligently extracting features from the non-radiative TD signals 
to improve the distinction between different structures. To extract such features, we utilize a modified K-means 
method (K*-means) presented in20. These features are subsequently employed to reconstruct feature images, 
which together with the conventional non-radiative and radiative images form an array of image components. 
Such components can serve as inputs for the virtual staining cycleGAN model in different arrangements. The 
novelty of this work resides in the use of such features to train a cycleGAN model.

CycleGAN conventionally allows single- or three-channel input data. To effectively utilize the extracted 
features in virtual staining, this study introduces multi-channel cycleGAN (MC-GAN) that extends the existing 
cycleGAN model used in previous work17 to support more than three channels. This approach allows for the 
extraction of multiple features, providing a better understanding of the potential of the TD signals in improving 
virtual staining. The key contribution of this work is to enhance the performance of the colorization model by 
incorporating multiple features for labeling structures. Another contribution of this work is the introduction 
of a comprehensive pipeline that enables the extraction and selection of the most effective features to enhance 
the process of colorization.

Methods
Sample preparation and data acquisition
The study utilized a dataset obtained from thin sections of formalin fixed paraffin embedded (FFPE) human skin 
tissues and mouse brain tissues. The human tissue samples are provided by the Alberta Precision Laboratories 
in Calgary, Alberta, Canada. The collection of these samples adhered to approved protocols established with the 
Research Ethics Board of Alberta (Protocol ID: HREBA.CC-18-0277) and the University of Waterloo Health 
Research Ethics Committee (Protocol ID: 40,275). The requirement for patient consent was waived by the ethics 
committee, as samples are anonymized to remove all patient information, and tissues are archival samples not 
required for patient diagnostics. All experiments involving human tissues are conducted in compliance with 
the relevant guidelines and regulations of the government of Canada, such as "Ethical Conduct for Research 
Involving Humans (TCPS 2)". These samples adhered to approved protocols under the University of Waterloo 
Health Research Ethics Committee (Protocol ID: 44,595). The mouse brain samples were provided by Dr. Deepak 
Dinakaran and Dr. Kevin Camphausen from the radiation oncology branch at the National Cancer Institute, part 
of the National Institute of Health in Bethesda, Maryland, United States. Experiments involving tissue of mice 
were conducted following appropriate guidelines and regulations. When applicable, adherence to the ARRIVE 
reporting guidelines was maintained.
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The preparation of unstained tissue sections involves several steps. Initially, tissue is resected and immedi-
ately fixed in a 10% neutral buffered fixative for up to 48 h. Next, the sample is submerged in a series of alcohol 
exchanges to dehydrate the tissue. Dehydration is followed by a series of rinses in xylene, a tissue clearing agent 
which removes any fat residues. The dehydrated and cleared tissue is then soaked in molten paraffin to allow 
for the complete infiltration of paraffin into the tissue. Finally, tissues are embedded in paraffin and allowed to 
solidify at room temperature, forming a FFPE tissue block. Tissue sections are prepared by using a microtome 
to slice thin sections of about 3–5 µm from the FFPE block. Thin sections are then transferred to a glass micro-
scope slide by means of a water bath and allowed to dry. Slides are heated to 60 °C for 60 min in a laboratory to 
evaporate excess paraffin. After this process, the thin sections are ready for imaging using the PARS system, as 
outlined in Section II.B. Once the PARS dataset is acquired, the thin tissue slides are stained using H&E. The 
stained slides are completed with a mounting medium and a coverslip. The stained sections are imaged using a 
transmission mode brightfield microscope, thereby generating the corresponding H&E ground truth dataset. In 
Fig. 1, a comparison between the conventional histochemical staining process and our proposed virtual staining 
process is presented. For training the virtual staining model, samples first undergo the PARS imaging pathway, 
then the standard staining procedure. This is necessary for generating ground truth data. However, this step is 
not required once the model has been trained.

PARS imaging
While this paper does not focus on the PARS system design, it is important for understanding the data collection 
process. For a more detailed exploration of the system architecture and image formation process, refer to “Auto-
mated Whole Slide Imaging for Label-Free Histology using Photon Absorption Remote Sensing Microscopy” 
by Tweel et al.19. Briefly, the experimental setup is depicted in Fig. 2. This architecture features two excitation 
sources: a 266 nm UV laser (Wedge XF, RPMC) and a 532 nm visible laser (Wedge XF, RPMC). The detection 
source is a 405 nm OBIS-LS laser (OBIS LS 405, Coherent). The excitation and detection sources are combined 
using a dichroic mirror and focused onto the sample using a 0.42 NA UV objective lens (NPAL-50-UV-YSTF, 
OptoSigma). This configuration provides a maximum spatial resolution of approximately 400 nm. The detec-
tion light, containing the optical scattering and non-radiative relaxation is collected after transmission through 
the sample using a second objective lens (100X Mitutoyo Plan Apo, Mitutoyo). The same lens also collects the 
radiative emissions from the sample. To separate the non-radiative detection light from the radiative relaxation, 
a spectral filter (NF405-13, Thorlabs) is employed. Then, the radiative emission amplitudes are directly meas-
ured using a photodiode (APD130A2, Thorlabs). Concurrently, the non-radiative detection light is directed to 
another photodiode (APD130A2, Thorlabs) where the optical scattering and the absorption-induced intensity 
modulations are captured.

PARS images are generated through the following process. The sample is scanned over the stationary objective 
lens using mechanical stages. The 266 nm and 532 nm excitation sources are pulsed continuously at a rate of 
50 kHz, with energies of ~ 150–200 pJ, and ~ 2.5 nJ for the 266 nm and 532 nm source, respectively. Concurrently, 
the continuous wave detection laser operates at ~ 3–5 µ W during imaging. The 532 nm pulses are synchronized 
to occur ~ 500 ns after the 266 nm pulses. The stage motion is then tuned to ensure the 266 nm excitation event 
occurs every 250 nm. During each excitation event, the optical scattering, and radiative and non-radiative 
relaxation signals are collected from the corresponding photodiodes, for each excitation wavelength. Additionally, 
a position signal is recorded from the scanning stages. The radiative signals are condensed into a single feature by 
extracting the amplitude of the measured signal. The optical scattering is extracted by averaging the transmitted 

Figure 1.   Virtual Staining of PARS images via deep learning. The top pipeline shows the standard workflow 
to generate images of histochemical stains. The bottom pipeline shows the steps for virtual staining. The same 
tissue section is used in the two workflows for the deep model training and performance analysis.
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detection prior to excitation. The post-excitation time-resolved non-radiative relaxation modulations are stored 
in their entirety for further processing.

To generate a baseline model for comparisons, the non-radiative signal reconstruction method used in 
previous embodiments is employed10. This method involves signal extraction by integrating the post excitation 
modulation energy of the non-radiative signals. The baseline is used to contrast the efficacy of intelligently 
extracting features (explained in Section II.D) from the non-radiative signals for enhancing the virtual staining 
process.

Image registration and preprocessing
In this study, we choose to use registered PARS and H&E pairs for training a cycleGAN for virtual staining, as 
discussed in Section I. However, the PARS and H&E images are not inherently co-registered. This is attributed 
to the H&E staining procedure, and the two different acquisition processes. Subsequently, additional steps, 
including field-of-view matching and registration, are required to align the PARS and H&E images properly for 
model training and performance analysis.

The preprocessing and registration process follows the workflow previously described by Boktor et al.10. 
This includes extracting small fields from the PARS and H&E images, then coarsely matching them for one-to-
one registration. The control point registration tool is used from the MATLAB Image Processing Toolbox for 
registration, with PARS as the reference images and H&E as the registered images. Control points are manually 
selected and refined to minimize distortions. A non-rigid geometric transformation22 is then fitted between 
the two images, and the transformation is applied to the H&E images, resulting in co-registered pairs of PARS 
and H&E images. Following registration, PARS images are preprocessed as follows. Each image is normalized, 
then the contrast is enhanced by saturating the highest and lowest 1% of pixel values. Finally, a color reversal is 
performed to match the PARS images with the grayscale ground truth images. The same preprocessing is applied 
to all datasets used in this study.

Time‑domain feature extraction
To extract material-specific information from non-radiative TD signals, a method is needed to identify 
constituent time-domain features that accurately represent the underlying tissue target. The K*-means method, 
proposed by Pellegrino et al.20, is utilized here which features K-means clustering with a modified approach to 
compute cluster centroids. To generate feature images from the non-radiative TD signals, two steps are involved 
feature learning and feature extraction.

The intelligent clustering aims to identify K  characteristic shapes in the signals, described as a set of K 
centroids, F =

{

fi(t)
}

, i = 1, . . . ,K . TD signals are treated as Cartesian vectors in space Rn , where n corresponds 

Figure 2.   Simplified PARS histology optical architecture. Component labels are defined as follows: mirror, M; 
dichroic mirror, DM; variable beam expander, VBE; collimator, Col.; condenser lens, Cond.; spectral filter, SF; 
beam sampler, BS; photodiode, PD; objective lens, OL; harmonic beam splitter, HBS; beam trap, BT.
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to the number of TD samples, and thus the shape of the signal is associated with the angle of the corresponding 
vector, and the distance between TD signals is quantified by the sine of the angle between them, resulting in a 
maximum distance for orthogonal signals and zero distance for scaled or inverted signals. Cluster centroids are 
computed as the principal component of the combined set of each cluster and its negative, ensuring that the 
learned centroids are resilient to noise.

Following the K*-means clustering, a set of feature vectors F =

{−→
f i

}

 is obtained, which can represent the 
signals as a weighted sum. These feature vectors are then arranged in the form of a matrix of features, 
F =

[−→
f 1

∣

∣

∣

−→
f 2

∣

∣

∣
. . .

∣

∣

∣

−→
f K

]

 . The amplitudes of the learned TD features (centroids) contained within each time 
domain are extracted by transforming from the time-domain to the feature-domain. This is performed by 
multiplying each TD signal with the pseudo-inverse of F20,23. The result is an array of K  feature images, 
Mf =

[

mf1 ,mf2 , . . . ,mfK

]

.
The appropriate value of K  is determined according to the specific dataset as discussed in Section III. A 

minimum of 2 clusters is examined during the feature extraction process. However, it is important to impose an 
upper limit on K , set to 6 in this study, to prevent the generation of redundant clusters and avoid the introduction 
of visually indistinguishable or uninformative features. Following the determination of the optimal value for 
K  , a set of K  feature images is generated. These feature images alongside the conventional non-radiative and 
radiative image components form an array of images, which can serve as the inputs for the colorization model 
in different combinations.

Multi‑channel GAN (MC‑GAN)
This study applies cycleGAN to convert label-free PARS images into virtually stained images that resemble 
their corresponding H&E histochemical stained samples. CycleGAN learns feature relations between an input 
image domain, A and a target image domain B , and generates the generators G : A → B and F : B → A and 
the discriminators DA and DB . The generators aim to generate realistic images that resemble the target domain 
while preserving the essential characteristics of the input domain. The discriminator, on the other hand, tries to 
differentiate between real images from the target domain and fake images produced by the generator. It provides 
feedback to the generator by assessing the fidelity of the generated images, enabling the generator to improve its 
output quality over time through an adversarial training process.

In this work, we assume domain A is PARS imagery while domain B is H&E imagery. CycleGAN is able 
to operate in a scenario where paired examples are not available, nevertheless, the absence of paired samples 
poses challenges in mapping between the source and target domains as it is under-constrained. To tackle this, 
cycleGAN incorporates an inverse mapping and introduces a cycle consistency loss18. This loss enforces that 
the translated images can be reliably reversed to their original form. However, it is worth noting that although 
paired examples are not required for training, the utilization of paired samples in our cycleGAN training does 
lead to visible performance improvements17.

Typically, cycleGAN models are trained using single- (grayscale) or three-channel (RGB) images9,18,24. In 
previous works10,17,19, these RGB channels were directly replaced with the non-radiative and radiative channels, 
which posed no issues as the number of channels did not exceed three. However, the focus of this research is to 
improve the efficacy of the virtual staining process using intelligently extracted features from non-radiative PARS 
signals, resulting in a scenario where the colorization model has more than three input channels. It is important 
to note that the use of three channels in conventional cycleGAN models is solely due to the nature of working 
with RGB images, and there is no inherent reason to restrict the input channels to three in data-fusion methods. 
In fact, the optimal number of input channels is likely to differ from three. Hence, the proposed MC-GAN model 
enables the incorporation of additional features by expanding the number of input channels beyond three. The 
integration of extra channels in the MC-GAN model allows for a wider range of information to be utilized during 
training. This extension enhances the model’s ability to capture and leverage diverse information, which can 
potentially lead to improved colorization performance.

In cycleGANs, N-channel input generates N-channel output. However, our target H&E domain is an RGB 
image with three channels. Only a three-channel output is required, regardless of the number of channels in 
the source domain. To allow a three-channel output with an N-channel input, we duplicate the last channel (B) 
in the target domain to expand the target H&E domain dimensions to match the source PARS domain. When 
extracting the colorization results, we discard these duplicated channels. Except for the modifications of the 
multi-channel input and output, the architecture utilized in this study remains identical to the original cycleGAN 
implementation with a UNet generator, as shown in Fig. 3.

Training settings
Two datasets are employed in this work: human skin and mouse brain data. To generate the training sets 
for the two datasets, overlapping patches of 256 × 256 pixels are extracted from the PARS and H&E images. 
For the human skin dataset, approximately 500 overlapping patches are extracted, while for the mouse brain 
dataset, around 2000 overlapping patches are extracted. The pairs are split in a ratio of 70% for training, 10% for 
validation, and 20% for testing.

The training protocol involves a maximum of 200 epochs, with an early stopping criterion triggered when 
the generator loss plateaus. The decision on the number of epochs was made through empirical observations, 
following the recommended value from the original cycleGAN implementations. Additionally, a learning 
rate of 0.0002 was applied, undergoing linear decay every 10 epochs until the completion of training. This 
specific learning rate, determined as the most effective through experimentation, aligns with the authors’ 
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recommendation. All other parameters, including the use of the Adam solver for the optimization algorithm (with 
β1 = 0.5,β2 = 0.999 ) and the activation functions, were maintained consistent with the original frameworks.

The trained model is then applied to the test images which are also subdivided into overlapping patches 
of 256 × 256 pixels. An overlap of ~ 50% is usually sufficient to avoid visible artifacts at the borders of adjacent 
patches in the final stitched image. The colorization algorithm is implemented in Python version 3.10.6 and model 
training is implemented using PyTorch version 2.0.0 with the support of CUDA version 12.

Results and discussion
In previous PARS virtual staining embodiments10,17,19, only the non-radiative and radiative (denoted as NR and 
R, respectively, in this section for notation simplicity) channels are used as inputs for the virtual staining model. 
Traditionally, NR images are created by integrating the post excitation modulations in the detection signal. 
This method omits valuable temporal information because the shape of the signal may contain information 
associated with specific biological structures20,21. In this paper, we opt to broaden the range of input channels 
by incorporating features extracted from the NR TD signals. These features augment information at each pixel 
location, which can enhance the colorization model’s ability to comprehend the statistical transformation between 
the input and the target domains.

The multi-channel virtual staining workflow is shown in Fig. 4. The pipeline consists of two main parts: (1) 
feature learning, extraction, and selection, and (2) MC-GAN model training. Feature learning, of K features, takes 
place using a representative subset of the NR TD signals. Feature extraction is performed on all the TD signals 
to form K feature images. These K different feature images, along with the NR signal integral (as described in 
Section II.B) from each excitation wavelength (266 nm and 532 nm), and the R channel from 266 nm excitation 
only, are then fed into the feature selection stage. Feature selection is used to enhance the model’s prediction 
power by eliminating redundant data, increasing contrast between the selected features, and reducing the training 
volumes and times. Finally, the images of the selected features are used as an input to the proposed MC-GAN 
model, and the true H&E serves as the ground truth.

A study (the “ K-study”) was conducted to determine the optimal number of features K to extract from each 
section. In this K-study, feature extraction is performed using the K*-means algorithm (presented in Section 
II.D) generating MK

f  for every K ∈ {2, . . . , 6} . Then, the MC-GAN is trained using the R channel and MK
f  for each 

K . Since the K features are extracted from the NR channel TD signals, they are independent of the R contrast. 
Hence, the R channel is always used as an additional component in the virtual staining phase of the K-study for 
a fair comparison. The model performance is then assessed.

Figure 3.   CycleGAN architecture, adopted from 18. The model employs a UNet generator and a PatchGAN 
discriminator. A stride of 2 is used in all layers, except for the last convolutional layer in the discriminator, where 
the stride is set to 1. The convolutional kernel size remains constant at 4 across all layers. Note that the input 
image may have varying channel numbers, but the generated image consistently comprises three channels, with 
any surplus N-3 channels being discarded.
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Visual assessment, and Structural Similarity Index (SSIM)25, computed between the colorized images and their 
corresponding ground truth, are used to determine the optimal value of K . The best K is selected independently 
for the two datasets in hand. For the human skin dataset, the K-study revealed that the best results are obtained 
when K = 3 , whereas for the mouse brain dataset, the K-study SSIM results indicate an optimal value for K of 2.

After extracting the features, a combinatorial study (the “ C-study”) is conducted to identify the optimal subset 
of features. In the C-study, the analysis encompasses all the available image components. By utilizing the optimal 
value of K obtained from the K-study, a set of features denoted as Mopt

f  is generated. Additionally, the conventional 
NR and R channels are combined with Mopt

f  feature images forming an array of images A , where 
A =

[

NR532,NR266,R266,M
opt
f

]

. This array provides a comprehensive representation of the image data. It is 
possible that using all the elements in A to train a model could lead to redundancy and thus confuse the model. 
Consequently, the C-study conducts an exhaustive search across all the possible combinations of elements in 
array A to determine the optimum feature combination for creating a robust colorization model. The size of array 
A is determined by the sum of the number of features obtained from the K-study and the three conventional 
channels. Therefore, the total number of elements in array A is given by N = K + 3 . The number of possible 
combinations is 2N − 1.

To evaluate the model performance for the C-study, pixel-wise evaluation metrics, SSIM, Peak Signal-to-Noise 
Ratio (PSNR)26, and Root Mean Squared Error (RMSE), are calculated since paired input and ground truth 
images are available27. The three metrics are computed between the colorized images and the true H&E. Images of 
the two domains are blurred prior to computing the metrics to avoid the effect of registration errors. Additionally, 
colorization results, specifically on human skin data, are further evaluated using the LPIPS28 quantification 
method. This approach aligns more closely with human visual perception by computing low-level features at a 
level proximate to the object itself. Based on the assessment outcomes, a feature selection process is carried out 
to determine the best-performing members from set A , as presented in Section II.E. These are then used to train 
virtual staining models. The results of the two datasets are presented in the following subsections.

Human skin dataset
The number of elements in A is determined based on the value of the best K that is selected during the K-study. 
For instance, using K = 3 results in an image set A =

[

NR532,NR266,R266,mf1 ,mf2 ,mf3

]

 which contains three 
extracted feature images along with the conventional PARS contrasts. Figure 5a–f displays the members of A , 
along with their corresponding ground truth (Fig. 5h). It is worth mentioning that the three extracted features 
do exhibit a certain level of correlation, as shown in Fig. 5g, however the colorization results do show that these 
features are less redundant and better segment the structures compared to the conventional channels.

In the C-study, an exhaustive search is conducted on the set A , as explained earlier in this section. The 
objective is to determine the best combination of features for colorization. Given that there are six ( K + 3 ) 
elements in A for the human skin data, there are a total of 63 possible combinations that can be used to train 
individual models. After training the 63 models, virtual staining is performed on unseen test data. This generates 
63 colorized image sets using all the feature combinations from A . The test images are acquired from a distinct 

Figure 4.   Multi-Channel Virtual Staining Workflow. First, feature learning, of K features, takes place using a 
subset (shown in red box) of the NR channel TD signals. Second, feature extraction is performed on all the TD 
signals of the data in hand forming K feature images. NR images of each excitation wavelength (266 nm and 
532 nm in this case) and R images are extracted separately and passed along with the K feature images to the 
feature selection phase. The selected features are then used as the input data to the proposed MC-GAN model, 
and the true H&E is used as the model ground truth.
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tissue section compared to the training data. These colorized test images are then compared against true H&E 
images.

Table 1 summarizes the quantitative assessment results. All of the employed metrics reached a consensus 
that there are at least 16 feature combinations which produce superior colorizations compared to the conven-
tional PARS channels. Additionally, there are 13 combinations that outperform using all N elements in A . This 

Figure 5.   Example of PARS channels. (a) NR channel at 532 nm. (b) NR channel at 266 nm. (c) R channel at 
266 nm. (d–f) Feature images (mf1 ,mf2 and mf3) corresponding to features 1–3 in (g), respectively. (g) TDs of 
three features extracted from NR channel. (e) True H&E of the same field-of-view.

Table 1.   Summary of quantitative analysis of the C-study colorization results using the human skin dataset. 
Significant values are in bold.

Rank Feature combination

Score

SSIM PSNR RMSE LPIPS

Best

NR532, R266, mf1, mf3 0.89 (1) 22.92 (3) 18.22 (3) 0.15 (8)

NR266, R266, mf1 0.88 (2) 23.02 (1) 17.99 (1) 0.14 (2)

NR266, R266, mf1 0.88 (3) 22.99 (2) 18.06 (2) 0.14 (3)

⁝

Moderate
NR532,NR266, R266, mf1, mf2, mf3 0.87 (14) 22.50 (15) 19.13 (15) 0.17 (25)

NR266, R266, mf1 0.87 (19) 22.40 (18) 19.35 (18) 0.16 (17)

⁝

Worst
NR266 0.80 (61) 19.92 (62) 25.74 (62) 0.27 (61)

mf2 0.72 (63) 17.83 (63) 32.71 (63) 0.40 (63)
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suggests that certain features may be redundant when combined and may potentially confuse the model learning 
process. Conversely, other features prove extremely valuable in colorization as they enhance the segmentation of 
tissue structures with distinct colors. Notably, the R channel is included in all the top 30 feature combinations, 
highlighting the critical role which the R contrast plays in achieving precise colorization by offering distinctive 
and valuable biomolecule information.

The colorization results are depicted in Fig. 6. The least satisfactory outcomes are obtained when using only 
one or two features, simply too limited to capture the complexity of different structures and their correspond-
ing stained colors. An example using only NR266 is shown in Fig. 6b, which represents one of the poorest three 
combinations. With this very limited input data, the trained model appears to mistakenly identify red blood 
cells as connective tissue and confuses the connective tissue with lipids, as highlighted in the yellow box. Con-
versely, using all the conventional channels ( NR266,NR532 and R266 ) in Fig. 6c demonstrates better performance, 
but still with shortcomings. For instance, some red blood cells appear more purple than they do in the ground 
truth H&E, as highlighted in green. In addition, the colorization of the connective tissues sometimes exhibits 
a mixture of purple and pink shades instead of a consistent pink tone, as shown in the blue highlighted results. 
These artifacts may be attributed to insufficient input information, noise, or redundancy within the input data, 
all of which can hinder the effective model learning.

In contrast, the feature combination which yielded the highest SSIM scores, and top three RMSE and PSNR, 
is shown in Fig. 6d. In the highlighted sections, the colorization is the most accurate of the presented results. This 
is particularly prevalent in the red blood cells and the shading of the connective tissue. These visual comparisons 
between the PARS virtual H&E and the true H&E images, are supported by the quantitative measurements 
depicted in leftmost column of Fig. 6.

Figure 6.   A comparison of virtual staining results using different combinations of PARS feature images 
as inputs. (a) RGB image of raw PARS data where R: NR532, G: R266, B: NR266 (displayed for visualization), 
highlighting different parts of a human skin tissue sample. (b–d) Worst, moderate, and best results, respectively, 
using the feature combination labeled on the left. (e) True H&E image of the same field-of-view.
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The NR TD signals encompass information about the material properties being analyzed. Extracting features 
from these signals can significantly improve the labeling of biomolecules, leading to enhanced contrast. Notably, 
feature extraction surpasses the conventional image reconstruction methods in segmenting tissue structures 
such as nuclei, as presented in Fig. 5b and e. The effectiveness of feature extraction in tissue labelling has been 
previously demonstrated in studies involving PARS data of murine brain fresh tissue sample21 and human 
breast tissue slide20. Incorporating these enhanced contrasts as input channels to a virtual staining model proves 
beneficial for colorization performance, ultimately enhancing the accuracy and visual representation of the 
colorized images.

Furthermore, the exhaustive search highlights that using an optimized set of features can be more 
advantageous than simply employing all available features. Targeted selection of features may lead to improved 
performance and reduced training time. This is likely because certain features may have a stronger ability to 
accurately label tissue structures, while others may be redundant and consequently cause confusion, negatively 
affecting the performance of the model.

Mouse brain dataset
The mouse brain dataset shows a comparable performance pattern to the human skin. The workflow is replicated, 
starting with the K-study analysis. In this case, with an optimal K value of 2, the number of channels in domain 
A (PARS raw data) is 5 which allows for 31 trainable models with different channel input combinations.

Following a comparison of all 31 input combinations, the quantitative assessment shows that there are at 
least 10 feature combinations that outperform the utilization of conventional features alone. Additionally, there 

Figure 7.   Another comparison of virtual staining results of mouse brain tissue. (a) RGB image of raw PARS 
data where R: NR532, G: R266, B: NR266 (displayed for visualization). (b–d) Worst, moderate, and best results, 
respectively, using the feature combination labeled on the left. (e) True H&E image of the same field-of-view.
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are 8 alternative options that demonstrate superior performance compared to using all the features in domain 
A . Figure 7 presents a comparative analysis of the worst, moderate, and best colorization results achieved with 
various feature combinations as inputs to the model. The outcomes presented here further support the findings 
from the human dataset, which indicate that there are superior features for virtual staining that outperform the 
conventional features. Moreover, there is an optimal subset of features that produce best results, as opposed to 
all features combined.

Figure 7b illustrates the outcomes obtained from a feature combination ( R266 and mf1 ) that exhibit the poorest 
performance among the evaluated combinations. Notably, with this input combination, the trained model 
erroneously classifies parts of connective tissue as cell nuclei. Upon observing Fig. 7b and c, it becomes apparent 
that connective tissue structures and tissue surrounding the tumor, which should ideally exhibit a distinct pink 
color (as demonstrated in the ground truth image, (e)), are more accurately colorized in (d) compared to (c). In 
(c), a significant portion of the pink color is substituted with shades of brown. The model can sometimes employ 
an averaging strategy for colors as a means to minimize loss29, resulting in the prediction of colors like gray or 
brown when uncertain about the best color choice. In contrast, the highest level of accuracy among the presented 
results is observed in (d), which exhibits significant correspondence with the ground truth in terms of visual 
appearance and quantitative measurements. These observations provide additional evidence that the extracted 
features contribute to the learning process of the model. Furthermore, they emphasize the significance of selecting 
features that accurately label and represent the data, ultimately resulting in improved overall performance. The 
presented results highlight that superior feature extraction methods and feature combinations exist for improved 
colourization of the raw input data.

Currently, our strategy involves training distinct models for each tissue and stain type, influenced by resource 
constraints. However, the proposed method holds practical significance, contributing to data volume reduction 
and enhancing virtual staining quality. As our research progresses, we anticipate refining the adaptability of 
our approach to various tissue types, especially with increased resource availability. Moreover, our overarching 
goal is to broaden the applicability of our approach to encompass fresh tissue samples, eliminating the need for 
sample processing, as demonstrated by the PARS system’s ability to produce high-quality images from freshly 
resected samples12. The initial focus on tissue slides aimed to establish a one-to-one ground truth, crucial for 
method validation and quality assessment, as demonstrated in the clinical study conducted by Tweel et al.30.

Conclusion and future work
In conclusion, this study explores the use of the time resolved non-radiative signals for improving virtual staining 
of PARS images in both human skin and mouse brain. Using the K*-means method20,21 to extract features from 
the non-radiative TD signals, additional information about imaged targets is captured. The proposed MC-GAN 
extends the conventional colorization model to accept more than three channels, allowing for the utilization of 
these additional features. The experimental results demonstrate that certain feature combinations outperform 
the conventional PARS channels as they exhibit improved labeling of tissue structures.

Several experiments are conducted to determine the optimum number of K*-means features (K) as well as 
the optimum feature combination for training virtual staining models. Three different metrics are employed 
to evaluate the model’s performance for feature selection. The limitations of using only one or two features are 
evident, as they fail to accurately represent the complexity of different structures and their colors. Moreover, 
employing all the available features can lead to confusion within the model due to the potential redundancy 
among them. Therefore, it was crucial to conduct a comprehensive search to identify the most effective feature 
combinations, which not only reduced training time by utilizing fewer features but also alleviated model 
confusion.

With the optimal feature combination, the colorization results exhibit a high degree of accuracy, as observed 
in the results. These findings highlight both high visual and quantitative agreement between the H&E-like PARS 
and the true H&E images among the two datasets, emphasizing the potential of TD signals in enhancing the 
accuracy of virtual staining techniques.

Future efforts aim to overcome the constraints of the current histology gold standard, characterized by 
extended sample preparation and permanent alterations to tissue composition through histochemical staining. 
Traditional staining methods, restricted by specific stains necessitating separate slides for each desired staining 
contrast, pose additional challenges. In the evolution of our PARS technique, our focus is on addressing these 
issues by employing multiple virtual stains on a single sample, utilizing the distinctive features of PARS data to 
enhance the adaptability and efficiency of histological analyses. Additionally, we aim to extend the applicability 
of our approach to fresh tissue samples, eliminating the need for prolonged sample processing.

Data availability
The data that support the findings of this manuscript are available from the corresponding author, P.H.R., upon 
reasonable request.
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