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Integration of Swin UNETR 
and statistical shape modeling 
for a semi‑automated 
segmentation of the knee 
and biomechanical modeling 
of articular cartilage
Reza Kakavand 1, Mehrdad Palizi 2, Peyman Tahghighi 1, Reza Ahmadi 1, Neha Gianchandani 1, 
Samer Adeeb 2, Roberto Souza 3,4, W. Brent Edwards 1,5,6 & Amin Komeili 1,5,6*

Simulation studies, such as finite element (FE) modeling, provide insight into knee joint mechanics 
without patient involvement. Generic FE models mimic the biomechanical behavior of the tissue, 
but overlook variations in geometry, loading, and material properties of a population. Conversely, 
subject‑specific models include these factors, resulting in enhanced predictive precision, but are 
laborious and time intensive. The present study aimed to enhance subject‑specific knee joint FE 
modeling by incorporating a semi‑automated segmentation algorithm using a 3D Swin UNETR 
for an initial segmentation of the femur and tibia, followed by a statistical shape model (SSM) 
adjustment to improve surface roughness and continuity. For comparison, a manual FE model was 
developed through manual segmentation (i.e., the de‑facto standard approach). Both FE models were 
subjected to gait loading and the predicted mechanical response was compared. The semi‑automated 
segmentation achieved a Dice similarity coefficient (DSC) of over 98% for both the femur and tibia. 
Hausdorff distance (mm) between the semi‑automated and manual segmentation was 1.4 mm. The 
mechanical results (max principal stress and strain, fluid pressure, fibril strain, and contact area) 
showed no significant differences between the manual and semi‑automated FE models, indicating 
the effectiveness of the proposed semi‑automated segmentation in creating accurate knee joint 
FE models. We have made our semi‑automated models publicly accessible to support and facilitate 
biomechanical modeling and medical image segmentation efforts (https:// data. mende ley. com/ datas 
ets/ k5hdc 9cz7w/1).

Simulation studies, such as finite element (FE) modeling, provide insight into the stresses, strains, and contact 
mechanics within the knee joint under physiologically relevant loading  conditions1–7. Generic FE models typically 
predict the biomechanical behavior of the knee joint based on representative or aggregate  data8 from a cohort 
of subjects,allowing researchers to create a simplified and standardized representation of the biological system 
or mechanical structure under investigation as a fundamental starting point for research studies. Alternatively, 
subject-specific FE models include personalized information resulting in more accurate  predictions9–14, but 
require labor- and time-intensive manual segmentation of computed tomography (CT) and magnetic resonance 
images (MRI)15,16, with limited  reproducibility17–19.
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Convolutional neural network (CNN) and statistical shape models (SSM) have demonstrated the ability to 
accelerate segmentation operations of medical images. SSM involves a principal component analysis (PCA), 
performed on a training set of extracted subject geometries to determine its modes of spatial  variation20–23. 
Different CNNs and SSMs have succeeded at various segmentation  tasks24. Ambellan et al.25 used CNN for 2D 
and 3D segmentation of knee tissues and implemented SSM to control regions with abnormal shapes. The Dice 
similarity coefficient (DSC) values for the femur and tibia were 98.6% and 98.5% using data from the Osteoar-
thritis Initiative (OAI) (https:// nda. nih. gov/ oai/). Paproki et al.26 and Tack et al.27 facilitated the segmentation of 
menisci in healthy and OA knees using active shape modeling and SSM. Deep Convolutional Neural Networks 
(DNNs), particularly the U-Net model, have demonstrated exceptional performance in medical image segmen-
tation across different modalities and  organs28,29. However, CNN-based approaches often struggle to capture 
long-range dependencies (the influence of pixels or regions that are spatially distant from each other) due to 
their reliance on localized receptive fields (the image segment for the convolution)30.

Recent machine learning methods have significantly improved the segmentation of organs from biomedical 
images. For instance, UNETR is a neural network architecture that combines the strengths of UNet and trans-
former models for accurate image segmentation  tasks30. Swin  UNETR31 was developed for segmenting brain 
tumors from MRI and demonstrated superior accuracy and efficiency in a variety of benchmarks. Swin UNETR 
combines the encoder from Swin transformers, a modified version of Vision Transformer (ViT), with a decoder 
inspired by 3D U-Net32,33. Swin transformers, specialized for the visual domain, overcame the quadratic model 
complexity drawback of ViT by employing a shifted windowing scheme. The hierarchical structure of Swin trans-
formers allows for modeling and combining image features at multiple scales, similar to CNNs. Furthermore, 
the linear computational complexity of Swin transformers enhances their efficiency for dense prediction tasks 
using high-resolution  images34. Nevertheless, the outcome of the automatic segmentation methods requires 
manual correction to improve surface smoothness, fill holes, and correct abnormal morphologies. Therefore, 
3D FE model preparation from biomedical images still requires significant human intervention and supervi-
sion, with the potential to introduce bias. Taking advantage of recent advances in medical image segmentation, 
the previous algorithms for knee joint cartilage segmentation could be revisited to enhance their accuracy and 
reproducibility for computational modeling. A gap exists between the existing advanced automated segmentation 
models and their implementation in biomechanical modeling. In addition, there seems to be a lack of publicly 
available automated segmentation models suitable for subject-specific biomechanical modeling of knee joints.

This study aimed to develop an advanced semi-automated segmentation method for creating knee joint FE 
models. The objectives of this study were: (1) to train a 3D Swin UNETR transformer and SSM for the semi-
automated segmentation of distal femur and proximal tibia, which is suitable for biomechanical modeling, and 
(2) to assess the FE model outcome, including maximum principal stress and strain, interstitial fluid pressure, 
fibril strain, and contact area, predicted by the semiautomated model and the manually segmented model. We 
have made our semi-automated models publicly accessible to support the community and facilitate biomechanical 
modeling and medical image segmentation efforts (https:// data. mende ley. com/ datas ets/ k5hdc 9cz7w/1).

Method
Two FE models, manual and semi-automated, were generated and then applied to a total of nine knee MRIs, 
details of which were given in Section "Computational modeling". The geometry of the femur and tibia was 
the only difference between the manual and semi-automated FE models, created using either manual or semi-
automated segmentation, respectively. The geometries for cartilages were manually segmented and added to 
both FE models. For the semi-automated segmentation, a 3D Swin UNETR transformer was used for the initial 
segmentation of femur and tibia, which was further adjusted with SSM to improve their surface quality in terms 
of surface roughness and hole filling. Bone surfaces (from both the manual and semi-automated FE models) 
were meshed using quadrilateral elements. The quadrilateral elements in the calcified region were extruded to 
the articular surface of the cartilage using hexahedral meshes. These hexahedral meshes represented cartilage in 
the FE models. Ligaments were modelled as bi-linear springs that could withstand tension but not compression 
(Fig. 1). The predicted mechanical response of the manual and semi-automated FE models, including the cartilage 
contact mechanics and pore pressure, were compared. Specific details of these procedures are outlined below.

Data
MRIs from 507 individuals (61.9 ± 9.3 years; 29.27 ± 4.52 BMI [kg/m2]; 0.36 × 0.36 × 0.7 mm image resolution, 262 
males and 245 females) were extracted from the Osteoarthritis Initiative (OAI) database (https:// nda. nih. gov/ 
oai/). Regions-of-interest (ROIs) for the femur, tibia and cartilage were segmented by skilled users from the Zuse 
Institute  Berlin25. All grades of OA were included, but with a high tendency towards severe cases. Specifically, the 
dataset included 60 MRIs with Kellgren-Lawrence (KL) grade 0, 77 grade 1, 61 grade 2, 151 grade 3, and 158 MRIs 
with grade 4  OA25. To evaluate the performance of Swin UNETR and SSM models, we used randomly selected 
fivefold cross-validation (Fig. 1S in the supplementary material). Each fold had 405 MRIs for training and 102 
MRIs for testing. To evaluate the performance of FE models, we used 9 randomly selected samples from the test 
set since FE modeling of 102 samples is extremely time-consuming and currently infeasible (until the automation 
of the steps in FE modeling of knee joint such as meshing, material property assigning and loading is achieved).

Swin UNETR
The hierarchical structure of the Swin transformer allows for modeling and combining image features at multiple 
scales (like CNNs), and it maintains linear computational complexity in relation to image  size34. The four output 
features extracted from the Swin transformer (indicated by red arrows) were fed into the 3D U-Net blocks to 
reconstruct an image with the same size as the input (Fig. 2). The model yields a single output for each pixel. 

https://nda.nih.gov/oai/
https://data.mendeley.com/datasets/k5hdc9cz7w/1
https://nda.nih.gov/oai/
https://nda.nih.gov/oai/
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Figure 1.  FE model development workflow used in this study. Semi-automated and manual segmentations 
were developed from MRIs of knee joints from OAI database (https:// nda. nih. gov/ oai/). A SSM model of knee 
joint was registered to the geometry outcome of 3D Swin UNETR, giving smooth surfaces suitable for mesh 
generation for FE analysis. A gait loading was applied to both manual and semi-automated models, and their 
mechanical responses were compared, including cartilage contact mechanics and pore pressure. PC: principal 
components.

Figure 2.  The structure of the employed Swin UNETR segmentation model. It was a combination of a Swin 
transformer as the encoder and 3D U-Net blocks as the decoder. Swin transformer extracted hierarchical 
representation from given MRIs and 3D U-Net utilized these representations to construct the segmentation 
mask. The model outputs a binary label for each pixel. Please note that for each femur and tibia, we developed 
a separate Swin UNETR segmentation model. Here, for the illustration, the outputs of femur and tibia were 
combined.

https://nda.nih.gov/oai/
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For 3D Swin UNETR, a patch size of 2, a window size of 7, and an initial feature size of 48 were used. The Swin 
transformer had four stages and utilized three 3D U-Net blocks for upsampling (Fig. 2). The Swin UNETR was 
trained using the DSC and binary cross entropy focal loss.

Our proposed method was implemented in Python, and our deep learning models were implemented using 
the Pytroch library. All models were trained with a batch size of 8, using the Adam  optimizer35,36 with an initial 
learning rate of 0.0001 and early stopping to avoid overfitting. The model was evaluated using fivefold cross-
validation (Fig. 1S in the supplementary material). The original image size was 160,384,384 pixels. During 
training, each MRI was resized to 128× 128× 160 pixels (to reduce the computational costs) and cropped to 
96× 96× 96 pixels from random regions. The resizing and cropping significantly improved the generalization 
of the Swin UNETR model. We applied window center adjustment on MRIs as the preprocessing step to translate 
them to the range [0,1]. The data augmentation and Swin UNETR implementation were done using the Monai 
library (https:// docs. monai. io/ en/ stable/). All the other variables were the default settings in the Monai. The Swin 
UNETR models and codes have been made publicly available, so researchers can use these models or customize 
the code for a different dataset to meet their needs (https:// data. mende ley. com/ datas ets/ k5hdc 9cz7w/1). The 
output of Swin UNETR, which is an image, needs to be manually converted to a CAD format (for example, using 
ITK-SNAP software), making this approach a semi-automated method. A tutorial video was recorded about 
converting segmented images to a CAD, which is available at https:// data. mende ley. com/ datas ets/ k5hdc 9cz7w/1.

SSM
Using SSM, a shape may be defined as:

where M is the mean of the points of the shape, PC  (PC1,  PC2,  PC3, …) is the principal components (the modes 
of variations of the points of the shape), and b is a vector of weights. To build an SSM for the femur and tibia, 
correspondence was first established between the samples, and then, Principal Component Analysis (PCA) 
was employed to model anatomical variation. The SSM was developed with a custom Python script (available 
in our data at https:// data. mende ley. com/ datas ets/ k5hdc 9cz7w/1). Constructing correspondence between the 
samples included coarse and fine alignment steps using point-set representation. First, a manually segmented 
mesh belonging to one of the subjects was selected as the initial template. The template mesh for the femur and 
tibia was refined into meshes with optimized tessellation quality using the iso-parametrization  method37. The 
mesh was then smoothed using the Taubin  method38. A dense set of points with uniform distribution was sam-
pled on each mesh (representing the femur or tibia for a subject or the template). To uniformly sample points 
on the meshes, the Poisson-disk point-set sampling  method39 was used to achieve well-distributed points, then 
the uniformization  technique40 was used to further homogenize the distance between the neighboring points.

For each subject, the combined point set for the femur and tibia was coarsely aligned to the template using 
the centroid, the centroid size, and the principal axes of the combined point  set40. Next, the template point set 
was matched on each sample. The matching process involved the rigid registration of the template to the sample, 
followed by a non-rigid registration. The coherent Point Drift (CPD)  method41 was used for the rigid and non-
rigid registration tasks. After registering the template to all samples, the redundant rigid transformation within 
the samples was removed using the Generalized Procrustes Analysis (GPA)42. The average shape for the femur 
and tibia was computed as the arithmetic mean of the point sets in correspondence (after applying GPA). To 
generate a mesh for each instance of the SSM, the deformation field between the average point set and the point 
set of the shape instance was decomposed into affine and non-rigid components using the Thin-Plate Spline 
(TPS)  formulation43, and the characterized transformation was applied to the vertices of the average (with high 
quality of tessellation). This process resulted in a representation of each sample (femur or tibia) with a deformed 
version of the average mesh with high-quality tessellation.

Cartilage extrusion
The segmented femora and tibiae were meshed using quadrilateral elements. The femoral condyle and tibial 
plateau surfaces that share the calcified cartilage zone were mapped to the articular cartilage surface using 8 node 
solid elements, creating 5 layers of hexahedral elements (Fig. 3). In this way, the variation of cartilage thickness 
over the joint was captured, and common nodes were defined at the interface of bone and cartilage (a detailed 
explanation of meshing cartilage can be found in Fig. 2S in the supplementary material). This aimed to accelerate 
computational time and improve the convergence rate.

Mesh sensitivity was performed with three different element sizes of 2, 1, and 0.5 mm (coarse, fine, and very 
fine). A 1% change in the contact area and average contact pressure between models were used as the convergence 
criterion to select the optimized mesh size. The difference in outputs between fine and very fine elements was less 
than 1%, indicating successful convergence at the fine resolutions, which was selected for further FE analyses.

Computational modeling
Material and finite element modeling
We employed the biphasic constitutive model proposed by Federico and  Gasser44 and Federico and  Grillo45 
for cartilage, which consisted of an incompressible fluid phase and a fibril-reinforced solid/matrix phase. Col-
lagen fibrils were separated into isotropic and anisotropic components under the assumption that the matrix 
was isotropic and inhomogeneous along its thickness. The directional orientation of the fibrillar network was 
captured by the anisotropic fibrils. Table 1S in the supplementary material provides a description of the biphasic 
model and associated material constants. The results of creep indentation experiments conducted by  Pajerski46 
and Athanasiou et al.47 on human knee cartilage served as the basis for the extracellular matrix (ECM) material 

(1)Shape = M+ PC× b

https://docs.monai.io/en/stable/
https://data.mendeley.com/datasets/k5hdc9cz7w/1
https://data.mendeley.com/datasets/k5hdc9cz7w/1
https://data.mendeley.com/datasets/k5hdc9cz7w/1
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 properties46. A detailed explanation of the cartilage constitutive laws with its material constants used for describ-
ing cartilage behavior can be found in the supplementary material and also in our previous  work48,49. Briefly, the 
state of stress was defined by:

where σ is the total stress in the tissue, p is the hydrostatic interstitial fluid pressure, I is the unity tensor, and ∅ 
is the volume fraction. Here, subscripts 0 and 1 denote matrix and collagen fibrils, respectively. The matrix was 
considered isotropic, while the collagen fibrils were divided into isotropic ( σ1i) and anisotropic ( σ1a).

Hexahedral pore pressure elements (C3D8P) were used to define knee cartilage mesh. A surface-to-surface 
contact with frictionless tangential behavior was presented with the contact mechanics of cartilage surfaces. 
Bones were considered as rigid bodies. The Anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), 
and medial and lateral collateral ligaments (MCL, LCL) were modelled as bi-linear springs that could withstand 
tension but not compression. Tensile stiffness k = 380 N/mm was used for the  ACL50, whereas k = 200 N/mm was 
used for the  PCL51. Tensile stiffness for the MCL and LCL were k = 100 N/mm51,52.

The middle-central position between the medial and lateral epicondyles of the femur was used as the refer-
ence point for coupling the femur surface to the  loading53,54. The bottom nodes of the tibial cartilage were fixed. 
The cartilage surfaces at the calcified zone were impermeable, while the pore pressure of the articular cartilage 
surfaces was set to zero, permitting free fluid flow. A gait stance phase was simulated by applying a combination 
of an indentation load and a flexion angle at the reference point (Fig. 1)53,55. A settling step was considered before 
the stance phase, where a load of 30 N was applied for one second on the reference point of the femur to make 
the initial contact of cartilage surfaces. Abaqus/CAE software 2018 (Dassault Systems Simulia Corp., Johnston, 
RI, USA) was used for the FE modeling. The FE mesh was done in HyperMesh 2019 (Altair Inc, Santa Ana, CA).

Evaluation metrics for segmentation
The metrics to evaluate the segmentation performance of the femur and tibia using the Swin UNETR and SSM 
methods included the DSC, Hausdorff distance, average distance, and the percentage of surface area associ-
ated with a distance greater than 1 mm between the two methods. The DSC measures the overlap between the 
segmented regions and the manual segmentation as the ground truth (intersection over union). The Hausdorff 
distance quantifies the maximum distance from the nearest  neighbor56 between corresponding points on the 
segmented surface and the ground truth. The other calculated parameter to assess the accuracy of the semi-
automated method was the average distance, which represents the average separation between the segmented 
surface and the ground truth surface. The percentage of surface area associated with a distance greater than 1 mm 
(∆area% > 1mm) represents the percentage of surface area where the distance between the segmented regions 
and the ground truth exceeds 1 mm.

Statistical analysis for FE
To compare the mechanical response from the manual and semi-automated FE models, 5 parameters, including 
the max principal stress, max principal strain, fluid pressure, fibril strain, and contact area, were considered for 
the duration of a stance simulation. The first 4 parameters were compared in superficial and deep zones, while the 
contact area was only calculated on the articular surface of the cartilage. In each zone, the average and peak values 
of these parameters were compared. We selected the statistical parametric mapping (SPM) method based on its 
inherent advantage in accommodating multiple comparisons when examining smooth and random 1-D trajec-
tories. In contrast to traditional 0-D approaches, such as the parametric t-test, the SPM method demonstrates 
superior suitability for this  purpose57. The SPM t-test was performed for two independent samples with a criterion 
alpha-level of 0.05. The SPM was implemented using a Python package from https:// spm1d. org/# for 1-D SPM.

(2)σ = −pI +∅0σ0 +∅1(σ1i + σ1a)

Figure 3.  (a) Mapping the quadrilateral surface elements of the bone to the articular cartilage surface using 
solid elements. (b) 3D knee joint model.

https://spm1d.org/
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Results
Table 1 presents the evaluation metrics for the segmentation performance of the femur and tibia using the Swin 
UNETR and SSM methods. For all bone structures and segmentation methods, the DSC was consistently high, 
with a value over 98%. The Swin UNETR method achieved a Hausdorff distance of 1.66 ± 0.34 mm for femur 
and 1.65 ± 0.48 mm for tibia. The SSM adjustment resulted in a slightly lower Hausdorff distance of 1.42 ± 0.37 
mm for femur and 1.47 ± 0.41 mm for tibia. For the femur and tibia, the Swin UNETR method resulted in an 
average distance of 0.30 ± 0.04 mm and 0.31 ± 0.03 mm, with the SSM adjustment yielding a slightly lower value 
of 0.23 ± 0.05 mm and 0.25 ± 0.043 mm, respectively. The femur and tibia segmentation using the Swin UNETR 
method showed a ∆area% > 1 mm of 0.98 ± 1.61% and 1.11 ± 1.25%, respectively. After the SSM adjustment, the 
∆area% > 1 mm values slightly decreased to 0.57 ± 1.10% and 0.71 ± 1.01%, respectively. Figure 3S in the sup-
plementary material illustrates a comparison of manual and Swin UNETR segmentations. The semi-automated 
segmentation took approximately 10 min of computational time (5 min for Swin UNETR and 5 min for SSM) 
to produce tibia and femur geometry as compared to the manual segmentation, which took about 2 h from an 
expert to segment tibia and femur (~ 90 min for the manual segmentation in ITK-SNAP software, ~ 30 min for 
smoothing the model in MeshLab). A video was recorded on how to implement the Swin UNETR model at 
https:// data. mende ley. com/ datas ets/ k5hdc 9cz7w/1.

Statistical analysis showed no significant difference between the manual and semi-automated FE models for 
all 9 samples. Figure 4 depicts the SPM of maximum principal stress and strain, fluid pressure, fibril strain, and 
contact area as a function of time (s). All parameters were within the critical values indicating no significant 
difference (p-value > 0.05).

The distribution of mechanical responses over the surface and depth-wise at 20% and 80% of the stance phase 
were illustrated in Fig. 5 for subject 2. The manual and semi-automated FE models resulted in a similar distribu-
tion of parameters. Figures 4S–7S in the supplementary material illustrate the distribution for each sample in 
tibial and femoral cartilages for each of the five mechanical responses.

Table 1.  DSC, Hausdorff distance (mm), average distance (mm), and percentage of surface area associated 
with a distance greater than 1 mm for Swin UNETR and SSM.

DSC Hausdorff distance (mm) Average distance (mm) �area% > 1mm

Femur Swin UNETR 98.51 ± 0.09 1.66 ± 0.34 0.30 ± 0.04 0.98 ± 1.61

Tibia Swin UNETR 98.59 ± 0.06 1.65 ± 0.48 0.31 ± 0.03 1.11 ± 1.25

Femur SSM adjustment 98.63 ± 0.11 1.42 ± 0.37 0.23 ± 0.05 0.57 ± 1.10

Tibia SSM adjustment 98.69 ± 0.07 1.47 ± 0.41 0.25 ± 0.04 0.71 ± 1.01

Figure 4.  Statistical parametric mapping (SPM) as a function of time for the mechanical response of 5 
parameters in superficial and deep zones. The dashed line shows the t-critical corresponding to a p-value of 
0.05. The average column shows the average of the respected parameter over the contact region of all samples. 
Similarly, the Peak column shows the maximum value of these 5 parameters. The contact region over the 
articular surface was projected into the deep zone to calculate parameters in the deep zone.

https://data.mendeley.com/datasets/k5hdc9cz7w/1
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The average and peak values of the mechanical parameters in the superficial and deep zones are illustrated 
in Fig. 6. The dotted line represents the absolute differences between the two FE models. The contact region 
over the articular surface was projected into the deep zone to measure the mechanical parameters in the deep 
zone in Fig. 6. The fluid pressure had the largest error of 0.01 MPa. In the supplementary material, Figs. 8S–11S 
are plotted for each sample separately to provide a more detailed comparison between the semi-automated and 
manual FE models. All these figures indicated no significant variation in the mechanical response of the semi-
automated FE model compared to the manual FE model.

Discussion
In the present study, a trained SSM model of tibia and femur was mapped to a Swin UNETR segmentation model. 
The Swin UNETR generated a personalized geometry from MRIs, and the SSM automated the post-processing 
operations associated with filing holes and smoothing surfaces, which are essential steps to increase the conver-
gency rate in FE simulations (Fig. 7)22,25,58. By incorporating prior knowledge and capturing shape variations from 
a training dataset of 507 MRIs, the SSM adjustment consistently delivered high-quality surfaces in the context 
of image segmentation. These benefits make the proposed Swin UNETR and SSM a valuable semi-automated 
approach for accurate and robust FE model development from the tibia and femur MRIs.

Generally, geometrical models, such as SSM, require manual landmark selection by the user. This can nega-
tively impact the accuracy, reproducibility, and segmentation time due to intra-individual variability. However, 
we tackled this challenge by employing Swin UNETR to generate unlimited anatomical landmarks automatically 
for SSM. Such models can capture spatial dependencies and long-range context information, leading to more 
precise  segmentations25.

Figure 5.  The distribution of maximum principal stress and strain, fluid pressure, and fibril strain over the 
surface and thickness of the tibial compartments at 20% and 80% of the stance phase for subject 2. The depth-
wise illustration was from the cross-section where the peak value occurred.
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Overall, the segmentation performance of the Swin UNETR model and SSM adjustment exhibited high 
DSC values (Table 1), indicating a strong agreement with the ground truth (i.e., the manual segmentation). The 
combination of Swin UNETR and SSM methods demonstrated lower Hausdorff distances and lower average 
distances compared to the Swin UNETR method, indicating better boundary conformity and closer agreement 
with the ground truth surface. Furthermore, the ∆area% > 1mm values indicated minimal discrepancies in the 
segmented surface area for both methods (Table 1). In comparison to existing algorithms for segmenting knee 
images, the DSCs in our research were in the range of 98.6% for femur and 98.7% for tibia. These results are on 
par with the performance of previous works. For instance, a recent study reported DSC of 96.2% for tibia and 
97.0% for  femur59. Two other recent studies obtained DSC of 98–99% for tibia and 98.6 for  femur24,25,60. However, 
these studies did not use their segmentation model in biomechanics (under physical loading for mechanical 
responses). Our study attempted to bridge the gap between a highly advanced segmentation model and its 
application in biomechanical engineering. This is essential given that a high DSC does not guarantee a suitable 
shape for mechanical modeling; a shape must be tailored so that proper meshing and interactions can be made 
feasible in FE modeling.

The 20% and 80% stance phase selected for evaluating the most common mechanical  metrics11,15,16,54,55 in 
Fig. 5 corresponded to the two peaks of the loading condition (Fig. 1). A strong agreement was found for the 

Figure 6.  The average (over contact area) and maximum values of maximum principal stress and strain, 
fluid pressure, and fibril strain in the superficial and deep zones. The shaded region represents one standard 
deviation. The solid line with a circular marker represents the manual FE model, whereas the dashed line 
represents the semi-automated FE model. The dotted line is the absolute difference between the two models. 
The contact region over the articular surface of the cartilage was projected into the deep zone to calculate the 
parameters.
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distribution of all parameters between the two models, except for fluid pressure, for which the semi-automated 
FE model resulted in a larger fluid pressure at 80% stance phase compared to the manual FE model. This was 
reflected in a larger t-value of SPM for fluid pressure compared to the other four parameters (Fig. 4); however, the 
respected values were well below the t-critical value and thus, the fluid pressure difference between the manual 
and semi-automated FE models was not significant.

Figure 5 illustrates a qualitative comparison of the mechanical responses between the manual and semi-
automated FE models for one sample at 20% and 80% of the stance phase, while Fig. 6 provides quantitative com-
parisons over the entire stance phase averaged for elements in the contact region, where the five parameters had 
higher magnitudes across the model. The time scale in Fig. 6 corresponds to the one used in statistical analysis 
(SPM) presented in Fig. 4. From the analysis of these figures, it becomes evident that despite some discrepancies, 
there were no significant differences (p-value > 0.05) between the manual and semi-automated FE models across 
the entire stance phase and samples. These results highlight the reliability and accuracy of the semi-automated 
segmentation approach, supporting its potential as a viable alternative to manual segmentation for the analysis 
of mechanical properties in the studied samples.

Multiple factors unrelated to the semi-automated segmentation method may affect the variation in mechani-
cal responses when comparing two FE models. For instance, model outputs are available at discrete time points 
selected by the FEA solver at each time increment of the analysis. These time points vary slightly from one model 
to another. For instance, the maximum principal stress and strain distributions in Fig. 5 were plotted at 19.91% 
and 20.14% of the stance phase for manual and semi-automated methods, respectively. That is because those 
time points were the closest to the 20% stance. A high temporal resolution can rectify this issue. Nevertheless, 
the temporal resolution effect may become more pronounced for FE models with high loading rates, especially 
when the comparison is conducted at the time instances where applied loads are at the peak. The other source 
of variations in the results of FE models is spatial resolution. Mechanical responses of FE models are available at 
element nodes or element Gaussian points. When meshing the geometry, it may not be possible to generate an 
identical mesh for the two models due to differences in geometry. Therefore, the location of two corresponding 
points used for comparison may vary slightly from one model to another. Moreover, there was no correlation 
between the Hausdorff distance and the mechanical error. For example, subjects 3 and 6 had relatively larger 
errors than other subjects (Figs. 8S–11S in the supplementary material), but their corresponding Hausdorff 
distances were below and above, respectively, the average values in Table 1. Likewise, we could not attribute 
errors in mechanical parameters to the differences in the OA severity. The KL grade and Hausdorff distance vs. 
mechanical responses of 9 models in Figs. 12S in the supplementary material, had correlation coefficients  R2 in 

Figure 7.  The outcome of the 3D Swin UNETR has a coarse surface topology with occasional artifacts, noises 
and holes (shown by arrows) that require post-processing before being used in a FE study. The SSM adjustment 
produced high-quality surfaces without compromising the accuracy of the segmentation.
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the range of 0.01–0.2. Nevertheless, this conclusion is drawn from the examination of 9 FE models in this study, 
and it may be subject to change with a larger dataset.

The current study has some limitations. One limitation of our study was the exclusion of the meniscus and 
cartilage contact in the finite element modeling of knee  cartilage61,62; however, in the context of our specific 
research objectives and scope, this omission does not significantly impact the findings and conclusions drawn. 
While the meniscus and cartilage contact play important roles in knee biomechanics, their inclusion would 
have significantly increased the computational time for FE modeling. Given the focus and objectives of our 
research, the decision to exclude these components does not compromise the validity and relevance of our 
study  findings16. Another limitation of our study is the small number of samples used in FE modeling, which 
may limit the generalizability of our findings. We included nine samples for finite element modeling. Future 
studies should aim to include a larger sample size and consider the use of automatic meshing  techniques20,63, 
while ensuring consistent and reliable geometries to achieve a high convergence  rate57. Additionally, the spring 
elements representing the ligaments did not include the wrapping effect of ligaments. This might affect the FE 
element  outcome64. However, since we have considered the same simplifications for both models, neglecting 
the wrapping effect of ligaments would not likely affect the interpretation of results in the present study. Lastly, 
the cartilage geometry was segmented, and ligaments’ insertion points were labeled manually from MRIs for 
both manual and semi-automated models. This is to avoid multifactorial effects and assess the performance of 
the semi-automated bone segmentation model. In future studies, the presented procedure can be applied to 
cartilage, instead of manual segmentation, along with an automatic cartilage mesh generation  technique65. This 
will advance the development of the knee joint FE model towards full automation.

In summary, the integration of Swin UNETR and SSM has demonstrated remarkable effectiveness in the seg-
mentation of MRIs. By harnessing the strengths of both Swin UNETR and SSM, this method not only enhances 
segmentation precision but also creates suitable shapes and geometries for FE models. We have released our 
semi-automated segmentation models to the public (https:// data. mende ley. com/ datas ets/ k5hdc 9cz7w/1), aiming 
to contribute to the progress of biomechanical modeling and medical image segmentation. The ultimate goal 
of this study is to develop a segmentation of knee joint components, including cartilage, ligaments, and menis-
cus, to further facilitate computational modeling. This will help the biomechanical community swiftly achieve 
subject-specific knee joint segmentation.

Data availability
Please refer to the https:// data. mende ley. com/ datas ets/ k5hdc 9cz7w/1 for segmentation models. For OAI please 
refer to https:// nda. nih. gov/ oai/ (please email the website to request the images). FE models are available upon 
request to Reza Kakavand at reza.kakavand@ucalgary.ca.
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