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Improved image quality in CT 
pulmonary angiography using 
deep learning‑based image 
reconstruction
Ann‑Christin Klemenz 1, Lasse Albrecht 1, Mathias Manzke 1, Antonia Dalmer 1, 
Benjamin Böttcher 1, Alexey Surov 2, Marc‑André Weber 1 & Felix G. Meinel 1*

We investigated the effect of deep learning‑based image reconstruction (DLIR) compared to iterative 
reconstruction on image quality in CT pulmonary angiography (CTPA) for suspected pulmonary 
embolism (PE). For 220 patients with suspected PE, CTPA studies were reconstructed using filtered 
back projection (FBP), adaptive statistical iterative reconstruction (ASiR‑V 30%, 60% and 90%) and 
DLIR (low, medium and high strength). Contrast‑to‑noise ratio (CNR) served as the primary parameter 
of objective image quality. Subgroup analyses were performed for normal weight, overweight and 
obese individuals. For patients with confirmed PE (n = 40), we further measured PE‑specific CNR. 
Subjective image quality was assessed independently by two experienced radiologists. CNR was 
lowest for FBP and enhanced with increasing levels of ASiR‑V and, even more with increasing strength 
of DLIR. High strength DLIR resulted in an additional improvement in CNR by 29–67% compared 
to ASiR‑V 90% (p < 0.05). PE‑specific CNR increased by 75% compared to ASiR‑V 90% (p < 0.05). 
Subjective image quality was significantly higher for medium and high strength DLIR compared to all 
other image reconstructions (p < 0.05). In CT pulmonary angiography, DLIR significantly outperforms 
iterative reconstruction for increasing objective and subjective image quality. This may allow for 
further reductions in radiation exposure in suspected PE.

Abbreviations
ASiR-V  Adaptive statistical iterative reconstruction
CNR  Contrast-to-noise ratio
CT  Computed tomography
CTA   Computed tomography angiography
CTDIvol  Volume computed tomography dose index
CTPA  Computed tomography pulmonary angiography
DLIR  Deep learning-based image reconstruction
DLP  Dose length product
FBP  Filtered back projection
HU  Hounsfield units
PE  Pulmonary embolism
ROI  Region of interest
SNR  Signal-to-noise ratio

Pulmonary embolism (PE) is the third common cardiovascular disease in Europe and North  America1,2 and 
CT pulmonary angiography (CTPA) is the most commonly used imaging modality for diagnosis of  PE3,4. The 
increasing use of CT scans has raised concerns regarding the long-term risks of radiation  exposure5–7. Advances 
in CT acquisition technique including tube current modulation and patient-specific tube voltage selection have 
already significantly reduced the radiation exposure from CT pulmonary  angiography8 but are limited by decreas-
ing image quality and increasing image noise at lower dose.
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Compared to filtered back projection (FBP) as the historical standard, iterative reconstruction techniques 
have shown great potential to decrease radiation dose requirements without impairing the image quality as they 
can substantially decrease image noise in CT pulmonary  angiography9–14. Iterative reconstruction is a collective 
term for various algorithms that reduce noise and improve image quality through cyclic image processing in 
the raw data and/or image data  domain15. In contrast, the more recent technique of deep learning-based image 
reconstruction (DLIR) is based on convolutional neural networks trained on a large amount of corresponding 
high- and low-dose  data16,17.

Previously, DLIR has been shown to improve image denoising and increase image quality beyond the lev-
els of achieved with iterative reconstruction techniques in various cardiovascular CT applications including 
coronary CTA 18–23, CT for planning of transcatheter aortic valve  repair24,25, CT of the  aorta26, head and neck 
CT  angiography27 and triple-rule-out  CT28. There are very limited data about DLIR in CTPA despite this being 
one of the most commonly performed cardiovascular CT examinations. So far only one relative small study 
previously investigated DLIR in CTPA and reported a significant potential for image quality improvement and 
noise  reduction29.

Therefore, the purpose of this study was to investigate the effect of various levels of DLIR reconstructions 
compared to iterative reconstruction and FBP on image quality in CTPA performed for suspicious PE and to 
explore its potential for further dose reduction.

Methods
Patient selection and study design
This retrospective study was performed as a single-center cohort study. We analyzed 220 consecutive patients 
who had been referred to our department between November 2022 and April 2023 for a clinically indicated CT 
pulmonary angiography. Individuals were selected by searching the Radiology information system of our hospital 
for CTPA studies. Patients’ age, weight and height as well as radiation metrics were documented. For 8 patients, 
weight and height data were missing.

Ethical approval and informed consent
The study was approved by the responsible Institutional Review Board (Ethical committee, Rostock University 
Medical Center) with waiver of informed consent and was conducted in accordance with the Declaration of 
Helsinki.

CT acquisition protocol
All patients were examined on a 256-detector-row CT system (Revolution CT, GE HealthCare) with a gantry 
rotation time of 0.28 s/rotation, a tube voltage of 100 kV and an attenuation-based automatic tube current with a 
reference noise index of 15. A bolus of intravenous contrast agent (60–70 ml of Imeron® 400 mg/ml or Ultravist® 
370 mg/ml) was injected with a flow of 4.0 ml/s followed by a saline chaser at the same injection rate. Bolus 
tracking technique initiated the scan after achieving a determined threshold in the main pulmonary artery. The 
volumetric CT dose index  (CTDIvol) and the dose length product (DLP) were collected from the dose reports 
in the picture archiving and communication system. All CT acquisition parameter are summarized in Table 1.

Image reconstruction
For every patient, seven axial image series were reconstructed using filtered back projection (FBP), hybrid 
iterative reconstruction (ASiR-V (GE HealthCare) with 30%, 60% and 90% intensity) and DLIR (TrueFidelity™ 
(GE HealthCare). DLIR was applied in low (DLIR-L), medium (DLIR-M) and high (DLIR-H) strength. Slice 
thickness was 0.625 mm with a slice interval of 0.25 mm for all reconstructed images. Reconstruction time was 
approximately 25 frames per second for ASiR-V and approximately 10 frames per second for DLIR.

Table 1.  CT protocol.

Parameter Value

Acquisition parameters

Tube voltage [kV] 100

Tube current Attenuation-based automatic tube current

Reference noise index Reference noise index of 15

Contrast protocol

Contrast volume [mL] 60 (60–70)

Contrast concentration [mg/mL] 370–400

Flow rate [mL/s] 4

Saline chaser [mL] 40 at 4 mL/s

Radiation metrics

CTDIvol [mGy] 3.1 (2.6–3.4)

DLP [mGy*cm] 111 (93–125)
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Analysis of objective image quality
Quantitative analysis of image quality was performed by determining intravascular attenuation, intravascular 
image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). For each patient three circular region 
of interests (ROI) where positioned in the reconstructed CT images. The first ROI ( RCentral) was positioned in 
the main pulmonary artery with an area of 100  mm2, the second ROI 

(

Rperiph

)

 was positioned in one segmental 
pulmonary artery with an area of 10  mm2 and the third ROI (RMuscle) was positioned in the paraspinal muscle 
with an area of 15  mm2 for determining the reference attenuation. All ROIs were systematically applied to the 
DICOM image data in all reconstructions (see Fig. 1). Attention was paid to avoid artifacts and contrast filling 
defects in the presence of PE. Manual ROI positioning was only done in one of the seven reconstructed images 
and the ROIs were automatically transferred into the remaining reconstructed axial series of each patient at the 
exact same slice position. All measurements of attenuation and image noise were extracted from those ROIs 
using an analyzer tool developed in house based on Matlab R2022a—Update 4. The detailed determination of 
the SNR and CNR including an image example can be found in the supplemental section “Determination of 
signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)”.

Intravascular image noise was defined as the standard deviation of the intravascular CT attenuation. Paraspi-
nal muscles were used for attenuation references. Signal-to-noise ratio and contrast-to-noise ratio were computed 
for each patient in main pulmonary artery and in segmental pulmonary artery by using the equation below.

where Scentral is the intravascular attenuation [HU], Speripheral is the segmental pulmonary artery attenuation 
[HU], Smuscle is the attenuation in paraspinal muscle [HU] and Ncentral is the intravascular image noise [HU] and 
Nperipheral is the segmental pulmonary artery image noise [HU] as well.

These four features, where determined for all CT reconstructions (FBP, ASiR-V 30%, ASiR-V 60% and ASiR-V 
90%, DLIR-L, DLIR-M and DLIR-H) and analyzed for all patients in the subsection “Statistical analysis”.

To evaluate the specific effect of DLIR depending on body size, objective image quality was further analyzed 
by dividing the patient cohort into three subgroups based on BMI: normal weight (BMI < 25 kg/m2), overweight 
(25.0–29.9 kg/m2) and obese (≥ 30 kg/m2).

For the subset of patients with confirmed PE, we additionally quantified the PE-specific contrast-to-noise 
ratio defined as

CNRPE =
|Sintra−SPE |

Nintra
,

where Sintra is the intravascular attenuation adjacent to pulmonary embolus [HU], SPE is the attenuation 
within pulmonary embolism [HU] and Nintra is the intravascular image noise in [HU].

SNRcentral =
Scentral

Ncentral
and SNRperipheral =

Speripheral

Nperipheral

CNRcentral =
|Scentral − Smuscle|

Ncentral
and CNRperipheral =

|Speripheral − Smuscle|

Nperipheral
,

Figure 1.  Visualization of objective image measurement: examples with one circular ROI (segmental 
pulmonary artery—peripheral) in upper row and two circular ROIs (main pulmonary artery—central and 
muscle) in lower row, which were defined at the same position for all reconstructed images (FBP; ASiR-V 30%, 
60% and 90%; DLIR in low (L), medium (M) or high (H) strengths) per patient.
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Analysis of subjective image quality
Subjective image quality was assessed independently by two experienced radiologists (both 5 years of experi-
ence). Both observers rated the image quality on a 5-point scale (5 = excellent; 4 = good; 3 = sufficient; 2 = poor; 
1 = non-diagnostic). Separate ratings were made for central and peripheral pulmonary arteries.

Statistical analysis
GraphPad Prism (Version 9.5.1, GraphPad Software LLC) was used for statistical analysis. All results are pre-
sented as median and interquartile range (25th–75th percentiles). Demographic parameters and results of CTPA 
were compared between men and women using Mann–Whitney-U test and Chi-squared test as appropriate. 
Friedman test for paired data was used to compare objective image quality. Dunn’s test for pairwise multiple 
comparisons of the ranked data was used for post-hoc test following Friedman test. P-values < 0.05 were con-
sidered as statistically significant.

Results
Patient characteristics, radiation dose and results of CTPA
Patient characteristics are summarized in Table 2. CTPA examinations of 220 patients (116 male, 104 female) 
with a median age of 70 years (IQR: 58–80 years) were included into the study. Median BMI was 26.4 kg/m2 
(IQR: 23.5–30.2 kg/m2). Median CTDI was 3.1 mGy (IQR: 2.6–3.4 mGy) and DLP was 111 mGy*cm (IQR: 
93–125 mGy*cm, Table 1). Overall, 40 patients (18.2%) had a CTPA positive for pulmonary embolism. There 
was a non-significant trend for a higher diagnostic yield of CTPA in women (21.2% positive for PE) than in men 
(15.5%, p = 0.28). PE was anatomically categorized by the most central location of emboli into central (n = 15), 
lobar (n = 8), segmental (n = 14) and subsegmental (n = 3).

Objective image quality
The results of the objective image quality analysis can be found in Table 3 and are visualized in Fig. 2. Differences 
in intravascular attenuation of the main pulmonary artery were minimal between reconstruction techniques. 
Image noise was highest for FBP (median 50 HU) and decreased with increasing levels of ASiR-V and, even 
more so in DLIR. DLIR-H showed lowest intravascular image noise with a median value of 17 HU (IQR: 15–20 
HU). For SNR, the highest values were calculated for DLIR-H, DLIR-M and ASiR-V 90% with 23 HU (IQR: 
19–27 HU), 16 HU (IQR: 13–18 HU) and 14 HU (IQR: 12–17 HU), respectively. CNR showed a similar trend.

Intravascular image noise was lower and SNR and CNR were higher in segmental pulmonary arteries com-
pared to the main pulmonary artery. The effects of ASiR-V and DLIR on image noise, SNR and CNR were 
consistent between main pulmonary artery and segmental pulmonary arteries. DLIR-L showed similar image 
quality as ASiR-V with an intensity of 60% and DLIR-M was equivalent to ASiR-V 90%. These were the only 
pairwise comparisons, which showed no statistically significant differences.

DLIR-H provided a substantial additional improvement in contrast-to-noise ratio by 29–67% compared to 
ASiR-V 90% (20 (IQR: 16–24) vs. 12 (IQR: 10–15) for main and 22 (IQR: 17–28) vs. 17 (IQR: 13–23) for segmen-
tal pulmonary arteries, p < 0.05). P-values of all pairwise comparisons of CNR can be found in Supplementary 
Tables S1–S2.

Objective image quality stratified by body size
The results of the subgroup analysis based on patients’ body size are shown in Fig. 3 (for main pulmonary artery) 
and Table 4. Supplementary Fig. S1 shows the corresponding subgroup analysis for the segmental pulmonary 
artery. Intravascular attenuation was lower in heavier patients while image noise did not show major differences 
due to the use of attenuation-based tube current modulation. The observed effects of ASiR-V and DLIR on image 
quality were consistent across all subgroups. For all subgroups, SNR and CNR were highest for DLIR-H and 

Table 2.  Patient Characteristics.

All patients
(n = 220)

Men
(n = 116)

Women
(n = 104) p-value

Demographic parameters

Age 70 (58–80) 69 (58–78) 71 (58–82) 0.18

Weight [kg] 78 (67–90) 84 (73–95) 71 (63–82)  < 0.05

Height [m] 1.70 (1.65–1.79) 1.78 (1.72–1.82) 1.65 (1.60–1.70)  < 0.05

BMI [kg/m2] 26.4 (23.5–30.2) 26.9 (23.9–29.4) 25.8 (23.4–32.0) 0.85

Result of CTPA

No PE 180 98 82

0.28

PE 40 18 22

 Central 15 5 10

 Lobar 8 5 3

 Segmental 14 8 6

 Subsegmental 3 0 3
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lowest for FBP. In all subgroups, image quality parameters were equivalent between DLIR-L and ASiR-V 60% as 
well as between DLIR-M and ASiR-V 90%.

DLIR-H provided a substantial additional improvement in contrast-to-noise ratio compared to ASiR-V 90% 
in all subgroups (by 62–75% for the main pulmonary artery and by 27–33% for the segmental pulmonary arter-
ies). The results of objective image quality stratified by body size can be found in Table 4 for the main pulmonary 
artery and in Supplementary Table S3 for segmental pulmonary arteries. P-values for pairwise comparisons of 
CNR in central pulmonary arteries for all subgroups are listed in Supplementary Tables S4–S6.

PE‑specific contrast‑to‑noise ratio
In the subgroup of 40 patients with confirmed PE, the PE-specific CNR (based on the contrast between pul-
monary emboli and adjacent blood) was highest for DLIR-H with an additional increase of 75% compared to 
ASiR-V 90% (Fig. 4, Supplementary Table S7).

Subjective image quality
Overall image quality ranged from sufficient to excellent. None of the studies was rated as non-diagnostic or poor 
quality. Subjective image quality was rated best for DLIR-M and DLIR-H, both received significantly higher image 
quality ratings than ASiR-V 90% (p < 0.05 for both). Subjective image quality for DLIR-L was comparable to ASiR-
V 90% (p > 0.99). Detailed results of the subjective image quality assessment are displayed in Table 5. P-values 
for pairwise comparisons of subjective image quality are listed in Supplementary Tables S8–S9. Representative 
examples of the image reconstructions in a patient with central pulmonary embolism are shown in Fig. 5.

Discussion
In our study, we compared different CT image reconstructions (FBP, ASiR-V and DLIR) of CTPA in patients 
suspicious for PE. By analyzing the objective and subjective image quality, we found major improvements in 
diagnostic confidence, SNR and CNR in deep learning reconstructed images in high strength. Even though 
ASiR-V reconstructions with 60% and 90% intensity were not significantly better than DLIR in low and medium 
strength, respectively, DLIR in high strength showed improved image quality even in adipose patients.

To our knowledge, only one study previously investigated DLIR for  CTPA29. This previous study investigated 
the DLIR algorithm of a different vendor at 50% strength and compared this to the same vendor’s hybrid iterative 
reconstruction technique at 50% strength. It could be demonstrated that subjective and objective image quality 
was improved (17% improvement in CNR) with DLIR even though radiation dose was reduced by 17% in the 
DLIR group. The results of our study cannot be directly compared to this previous study since our study was 
performed using the DLIR algorithm of a different vendor and a different study design. We also systematically 
investigated the effect of DLIR compared to iterative reconstruction using different strengths of both reconstruc-
tion techniques in identical patients (intra-individual comparison).

Furthermore, in our study, we found that DLIR-H provided a substantial additional improvement in contrast-
to-noise ratio by 29–67% compared to ASiR-V 90% driven by an additional reduction in image noise by 22–39%. 
Image noise is inversely proportional to the square root of the applied radiation dose in linear image processing. 
Even though DLIR is a non-linear image processing method, a further dose reduction compared to ASiR-V 90% 
can be anticipated. Despite possible dose reductions, the dose levels should always be established based on the 

Table 3.  Objective image quality.

FBP

ASiR-V DLIR

p-value30% 60% 90% Low Medium High

Attenuation 
paraspinal muscle 
[HU]

55 (46–62) 55 (47–61) 54 (47–61) 54 (47–60) 54 (48–60) 53 (48–59) 53 (49–58)  < 0.05

Main pulmonary artery

 Intravascular 
attenuation [HU] 399 (312–494) 399 (311–494) 399 (311–494) 398 (311–493) 399 (312–495) 400 (312–495) 400 (312–495)  < 0.05

 Intravascular 
image noise [HU] 50 (46–54) 42 (39–46) 35 (32–39) 28 (25–32) 34 (30–37) 26 (23–29) 17 (15–20)  < 0.05

 Signal-to-Noise 
ratio 8 (6–10) 9 (8–12) 11 (9–14) 14 (12–17) 12 (10–15) 16 (13–18) 23 (19–27)  < 0.05

 Contrast-to-Noise 
ratio 7 (5–9) 8 (6–11) 10 (8–12) 12 (10–15) 11 (8–13) 14 (11–17) 20 (16–24)  < 0.05

Segmental pulmonary artery

 Intravascular 
attenuation [HU] 374 (307–461) 374 (305–461) 373 (303–461) 372 (301–461) 371 (306–461) 371 (304–461) 370 (301–461)  < 0.05

 Intravascular 
image noise [HU] 38 (33–45) 31 (26–37) 25 (20–30) 18 (14–24) 25 (21–30) 20 (17–24) 14 (12–17)  < 0.05

 Signal-to-Noise 
ratio 10 (8–13) 12 (9–16) 15 (12–20) 20 (16–27) 15 (12–18) 19 (15–24) 25 (21–33)  < 0.05

 Contrast-to-Noise 
ratio 9 (6–11) 11 (8–14) 13 (10–17) 17 (13–23) 13 (10–16) 16 (13–21) 22 (17–28)  < 0.05



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2494  | https://doi.org/10.1038/s41598-024-52517-2

www.nature.com/scientificreports/

specific clinical task to ensure diagnostic accuracy. Therefore, further studies are needed to confirm that image 
quality and diagnostic confidence are indeed preserved at such low radiation dose.

We also observed statistically significant differences in intravascular attenuation between reconstruction 
techniques but these were minimal (≤ 4 HU, approximately 1%) and not clinically relevant. This is due to the 
high sensitivity of the paired statistical tests in which even minimal differences can be statistically significant if 
they are consistent across individuals.

One interesting aspect of our data is that the relative benefit of DLIR compared to ASiR-V was even greater 
for subjective image quality than for objective image quality. Specifically, while objective quality was equivalent 
between DLIR-M and ASiR-V 90%, subjective image quality was rated as significantly better in DLIR-M com-
pared to ASiR-V 90%. The most likely explanation for this finding is that, at equivalent levels of noise reduction, 
DLIR images are perceived by radiologists as more “natural” and less “plastic” compared to images generated 
with iterative reconstruction. This has also been observed in other studies on  DLIR17.

We applied DLIR to CTPA studies in suspected PE. Our results are in line with those that have been described 
for various cardiovascular CT applications including coronary CTA 19–23, CT for planning of transcatheter aor-
tic valve  repair24,25, CT of the  aorta26, head and neck CT  angiography27 and triple-rule-out  CT28. In the field 
of thoracic imaging, several previous studies have investigated the value of DLIR with regards to pulmonary 
imaging and lung nodule detection. Specifically, one prospective study found that DLIR applied to ultra-low 
dose CT improved the nodule detection rate and the accuracy of nodule measurements compared to ASiR-V 
 reconstructions30. A phantom study demonstrated higher accuracy of ultra-low-dose chest with DLIR for volu-
metric assessment of ground glass nodules compared to model-based iterative reconstruction and hybrid iterative 
 reconstruction31. A study on cadaveric human lungs reported that with DLIR dose could be reduced by up to 
85% with preserved image quality compared to  FBP32. Others have used combinations of deep learning-based 

Figure 2.  Objective image quality: intravascular image noise (in HU), SNR and CNR of main pulmonary artery 
and segmental pulmonary artery. Blue boxplots indicate values of filtered back projection (FBP), red boxplots 
values of adaptive statistical iterative reconstruction (ASiR-V) in different levels and yellow boxplots indicate 
results of deep learning-based image reconstruction (DLIR) in different levels.
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image denoising and iterative reconstruction and reported improved assessment of pulmonary nodules when 
both were  combined33.

Our study has several limitations. Due to the retrospective nature of our investigation, we were not able to 
directly demonstrate that DLIR allows for further reduction in radiation dose with constant image quality. We 
evaluated a specific DLIR algorithm of a single manufacturer. Further, we did not evaluate the impact of DLIR 
on diagnostic accuracy of CTPA or its impact on the performance of automated PE detection algorithms.

In conclusions, our analysis demonstrated that DLIR significantly outperforms iterative reconstruction for 
increasing objective and subjective image quality in CT pulmonary angiography. This may allow for further 
reductions in radiation exposure in suspected pulmonary embolism.

Figure 3.  Objective image quality adjusted by BMI: CNR of main pulmonary artery in different BMI groups. 
Blue boxplots indicate values of filtered back projection (FBP), red boxplots values of adaptive statistical iterative 
reconstruction (ASiR-V) in different levels and yellow boxplots indicate results of deep learning-based image 
reconstruction (DLIR) in different levels.

Table 4.  Objective image quality: subgroup analysis by body size (main pulmonary artery).

FBP

ASiR-V DLIR

p-value30% 60% 90% Low Medium High

Intravascular attenuation [HU]

 BMI < 25 (n = 85) 451 (356–568) 451 (356–569) 450 (355–569) 450 (355–569) 451 (357–568) 451 (356–568) 451 (356–568)  < 0.05

 BMI 25.0–29.9 
(n = 73) 388 (323–481) 388 (324–480) 388 (324–480) 389 (324–480) 389 (325–480) 390 (326–480) 389 (326–481)  < 0.05

 BMI ≥ 30 (n = 54) 333 (267–440) 334 (267–440) 334 (267–440) 334 (267–439) 332 (267–439) 332 (267–439) 332 (267–438)  < 0.05

Intravascular image noise [HU]

 BMI < 25 (n = 85) 50 (47–55) 43 (39–47) 35 (33–39) 29 (26–33) 35 (30–39) 27 (23–30) 18 (15–21)  < 0.05

 BMI 25.0–29.9 
(n = 73) 48 (45–51) 41 (38–44) 33 (31–37) 27 (25–31) 31 (28–35) 24 (21–27) 16 (14–18)  < 0.05

 BMI ≥ 30 (n = 54) 52 (46–55) 44 (39–47) 35 (32–40) 28 (24–34) 36 (30–39) 27 (23–30) 17 (15–20)  < 0.05

Signal-to-noise ratio

 BMI < 25 (n = 85) 9 (7–11) 10 (8–13) 12 (10–15) 15 (13–18) 13 (11–15) 17 (14–19) 24 (21–27)  < 0.05

 BMI 25.0–29.9 
(n = 73) 8 (7–10) 10 (8–12) 11 (10–14) 14 (12–17) 13 (10–15) 17 (14–19) 25 (20–29)  < 0.05

 BMI ≥ 30 (n = 54) 6 (5–9) 8 (6–10) 9 (7–12) 12 (10–15) 10 (8–13) 13 (10–16) 19 (14–23)  < 0.05

Contrast-to-noise ratio

 BMI < 25 (n = 85) 8 (6–10) 9 (7–12) 11 (8–14) 13 (11–17) 12 (9–14) 15 (12–17) 21 (18–24)  < 0.05

 BMI 25.0–29.9 
(n = 73) 7 (5–9) 8 (7–10) 10 (8–12) 12 (11–15) 11 (8–13) 15 (11–17) 21 (17–25)  < 0.05

 BMI ≥ 30 (n = 54) 5 (4–8) 6 (5–9) 8 (6–11) 10 (7–13) 8 (7–11) 11 (8–14) 17 (11–20)  < 0.05
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Figure 4.  Assessment of PE-specific contrast-to-noise-ratio: for the subgroup of patients with PE (n = 40), 
PE-specific contrast-to-noise ratio quantified as intravascular attenuation adjacent to pulmonary embolus—
attenuation within pulmonary embolus/intravascular image noise.

Table 5.  Subjective image quality.

FBP

ASiR-V DLIR

p-value30% 60% 90% Low Medium High

Main pulmonary artery

 Reader 1 4 (3–4) 4 (3–4) 4 (4–5) 5 (4–5) 5 (5–5) 5 (5–5) 5 (5–5)  < 0.05

 Reader 2 3 (3–3) 3 (3–3) 4 (3–4) 4 (3–4) 4 (4–4) 5 (4–5) 5 (5–5)  < 0.05

 Median (Range) 3 (3–4) 3 (3–4) 4 (3–4) 4 (4–5) 4 (4–5) 5 (4–5) 5 (5–5)  < 0.05

Segmental pulmonary artery

 Reader 1 4 (3–4) 4 (3–4) 4 (4–5) 5 (4–5) 5 (4–5) 5 (5–5) 5 (5–5)  < 0.05

 Reader 2 3 (3–3) 3 (3–3) 4 (3–4) 4 (3–4) 4 (4–4) 5 (4–5) 5 (5–5)  < 0.05

 Median (Range) 3 (3–4) 3 (3–4) 4 (3–4) 4 (3–5) 4 (4–5) 5 (4–5) 5 (5–5)  < 0.05
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Data availability
The dataset generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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