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A deep multi‑stream model 
for robust prediction of left 
ventricular ejection fraction in 2D 
echocardiography
Jennifer Alvén 1,2*, Eva Hagberg 2,3, David Hagerman 1,2,3, Richard Petersen 2,3 & 
Ola Hjelmgren 2,4

We propose a deep multi‑stream model for left ventricular ejection fraction (LVEF) prediction in 2D 
echocardiographic (2DE) examinations. We use four standard 2DE views as model input, which are 
automatically selected from the full 2DE examination. The LVEF prediction model processes eight 
streams of data (images + optical flow) and consists of convolutional neural networks terminated 
with transformer layers. The model is made robust to missing, misclassified and duplicate views via 
pre‑training, sampling strategies and parameter sharing. The model is trained and evaluated on an 
existing clinical dataset (12,648 unique examinations) with varying properties in terms of quality, 
examining physician, and ultrasound system. We report R2

= 0.84 and mean absolute error = 4.0% 
points for the test set. When evaluated on two public benchmarks, the model performs on par or 
better than all previous attempts on fully automatic LVEF prediction. Code and trained models are 
available on a publi c proje ct repos itory.

Echocardiography is one of the most common, versatile and cost-effective imaging technique for cardiovascular 
 evaluation1. Estimation of LVEF (left ventricle ejection fraction) is an important part of the assessment of systolic 
function. It is defined as the percentage of the left ventricle end diastolic volume that is ejected with each contrac-
tion and is often calculated with biplane Simpson  method2, but also relies on visual assessment “eyeballing” 3. 
However, evaluation of LVEF with echocardiography is associated with uncertainty because of interobserver 
variation, with better reproducibility among experienced  readers3. Deep learning methods for 2DE analysis can 
help towards a more automated, consistent and accurate assessment  process4.

We propose a deep model for LVEF prediction in 2DE examinations based on an 8-stream convolutional 
neural network (CNN) and transformer model. We use four 2DE views as input: apical two-, three- and four-
chamber (A2C, A3C, A4C), and parasternal long axis (PLAX), which are automatically selected from the full 
2DE examination. We focus on 2DE datasets with properties that are common in clinical settings: with varying 
quality, examining physician and 2DE system, with limited metadata such as missing view information, and with 
missing or duplicate views. The model is made robust to missing, misclassified and duplicate views via custom-
ised pre-training, sampling strategies and parameter sharing. The model is trained, validated and tested on an 
existing clinical dataset, and in addition, evaluated on two public benchmarks: the EchoNet-Dynamic  dataset5, 
and the CAMUS  dataset6. The methods and the results are reported in accordance with the PRIME checklist, 
see the Supplementary Table S1.7.

There have been several previous attempts to determine LVEF from 2DE examinations with deep models. 
Some models segment the cardiac chambers in one or several 2DE views, and compute the LVEF from these 
 segmentations6,8–10. Others determine LVEF directly from the 2DE examination without an intermediate seg-
mentation  step11–16, or use a mix of the two  approaches5. Most often, LVEF determination is posed as a prediction 
 problem5,6,8–10,12–15,while some pose it as a classification  problem11,16. A majority use datasets with known view 
 labels5,6,8,11,13–16, while only a few address the more challenging problem with unknown  views9,10,12. Some only 
use the A4C view as  input5,11,13,15,16, others use both A2C and  A4C6,8,9,12, and a few use the five views A2C, A3C, 
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A4C, PLAX and parasternal short axis (PSAX)10,14. Some evaluate their LVEF determination model on publicly 
available datasets: the EchoNet-Dynamic  dataset5,11,15, and the CAMUS  dataset6,8,9.

Methods
Model
We use four 2DE views as input for the LVEF prediction model: A2C, A3C, A4C and PLAX. These views were 
selected since they are standard views normally included in most 2DE examinations, and since they contain 
information that should be helpful for LVEF determination. We use a standard classification model to extract the 
selected views from the full 2DE examination detailed in the section on pre-processing. For LVEF prediction, 
we use a 2-stream CNN and transformer model with four views (image + optical flow) as input, that is, eight 
streams of data in total. See Fig. 1 for a graphical summary of the full model.

The base building block of our LVEF prediction model is the 2-stream I3D model in Carreira and Zissserman, 
which consists of two 3D CNNs, one for the image and one for the optical flow of the  image17. Our reasoning 
behind using a model originally intended for action recognition is the common denominator of having spati-
otemporal data. We modify each 3D CNN by adding a terminating BERT (Bidirectional Encoder Representations 
from Transformers) layer for temporal pooling, which showed improved results on action recognition tasks in 
Kalfaoglu et al.18. The motivation for using a terminating BERT layer is to fully exploit the temporal information 
using transformer attention mechanisms without loosing any information due to averaging and ignored order-
ing. We use the FRMB (feature reduction by modified block) solution in Kalfaoglu et al. for  this18. The same 
instance of the model (i.e. shared weights) is used to process all the views. We let the four views share parameters 
since (i) we want the model to be robust to missing, misclassified and duplicate views, and (ii) 2DE views share 
many common features which allows for a more compact model. The outputs from the eight streams of data 
are combined in a linear layer. Since each examination might include none, one or several videos of each view 
class, we construct input data instances according to the following rules: (i) If a view is missing, it is replaced 
with another view according to the following (descending) priority order: A4C, A2C, A3C, PLAX. This is pos-
sible due to the model’s shared weights between views, and should increase the model’s robustness to missing or 
misclassified views. (ii) If an examination includes several instances of the same view, we create data instances 
of all possible view combinations. This should increase the model’s robustness to examinations with varying 
quality, and works as an augmentation strategy. Further, it eliminates the need for a more sophisticated view 
classifier that chooses between videos of the same view. Details on the optical flow computations can be found 
in the section on pre-processing.

Data
The study is a retrospective register study. Inclusion criteria were: (i) A 2DE performed at the Department of 
Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden between 2007 and 2017, (ii) 2DE 
performed on a GE ultrasound system (GE Vivid 7, GE Vivid 9, GE Vivid e9), (iii) clinical report signed by an 
experienced physician with more than 500 signed reports, (iv) saved image data with minimum one of the fol-
lowing views: A2C, A3C, A4C or PLAX, and (v) a numeric value of LVEF in the clinical report. No exclusions 
were made due to quality issues (reverberations, artefacts, noise). We included all examinations that fulfilled 
the inclusion criteria and where LVEF was reduced. We balanced the dataset by adding a randomized sample of 
examinations with normal LVEF. The final dataset consists of 2DE examinations from 12,648 unique patients 
where LVEF is reduced in 50% of the examinations, supranormal in 1.5%, and normal in 48.5%. Normal LVEF 
is defined according to Lang et al. as ≥ 52% for men and ≥ 54% for  women19. Supranormal is defined as ≥ 70% , 
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Figure 1.  The proposed 8-stream model. Videos (image + optical flow) from four 2DE views are used as input, 
which are analysed by the image-processing model, and the flow-processing model. The output of the eight 
streams are combined in a linear layer.
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which is the definition of supranormal used at the site. Since examinations above 70% were classified as 70% (see 
below), we could not use the definition by Lang et al. (men 72%, women 74%).

Each examination contains 2DE video(s) from one or several views, and corresponding metadata such as 
heart rate (HR), frames-per-second (FPS), and LVEF. The dataset is split into a training set (70%, 8853 exami-
nations), a validation set (15%, 1898 examinations) and a test set (15%, 1897 examinations). The examinations 
do not include view metadata, and a view classifier was used to generate view labels for all videos. All examina-
tions include at least one video classified as any of the included views (A2C, A3C, A4C, PLAX). The ground 
truth LVEF values were manually reported at the time of examination by the examining physician, either by 
“eyeballing” or by calculations with biplane Simpson or Teichholz  method20. The videos differ in size, length 
and FPS. All LVEF values were at the time of examination reported in multiples of five. LVEF values below 20% 
were reported as 20%, and LVEF values above 70% were reported as 70%. Note that this procedure of binning 
and truncation of the LVEF values is the standard practice of the echocardiography lab where the dataset was 
generated. The study population is summarized in Table 1, and the distribution of LVEF values are reported in 
Fig. 2. All data was anonymized before use and informed consent was not obtained from the study subjects. This 
protocol was approved, and the need for informed consent was waived, by the Clinical Medical Research Ethics 
Board of Sweden (ref. number: 818-18). The study was performed in accordance with this ethical approval and 
the Declaration of Helsinki. The dataset is described in detail in Hagberg et al.21.

Pre‑processing
Videos were converted from RGB to grayscale via averaging, and pixels values were normalized to [−1, 1] . Frames 
were resized to the same size ( 223× 169 pixels), and the videos were resampled to have the same FPS/HR, set 
to 18 frames/heartbeat. This temporal resolution was carefully selected to strike a balance between minimizing 
computational complexity (favoring lower temporal resolution) and preserving video interpretability (favoring 
higher temporal resolution). To guarantee that each input video includes one complete cardiac cycle, we used the 
first 20 frames for each resampled video (corresponding to ≈ 1.1 cardiac cycles), and resampled videos with less 
than 20 frames were periodically extended (“looped”) before resampling. A subset of pre-processed videos was 

Table 1.  A summary of the study population. The data is presented as median (interquartile range) and/or 
counts n. LVDd  left ventricle diastolic diameter.

All subjects Training set Validation set Test set

n = 12648 n = 8853 n = 1898 n = 1897

Age (years) 67 (56–77) 67 (56–77) 68 (57–78) 67 (56–76)

Female sex 38% 38% 39% 35%

Heart rate (bpm) 72 (62–85) 72 (62–85) 73 (62–85) 72 (62–85)

LVEF (%) 50 (40–60) 50 (40–60) 50 (40–60) 50 (40–60)

Weight (kg) 78 (68–90) 78 (68–90) 78 (67–89) 79 (68–90)

n = 11869 n = 8338 n = 1771 n = 1760

Length (cm) 173 (165–180) 173 (165–180) 172 (165–180) 174 (166–180)

n = 11866 n = 8345 n = 1766 n = 1755

LVDd (mm) 51 (47–56) 51 (47–56) 51 (47–56) 51 (47–56)

n = 10938 n = 7678 n = 1648 n = 1612

LVEF assessed with

 Eyeballing 74.5% 74.5% 75.1% 74.0%

 Biplane Simpson 24.5% 24.4% 24.2% 25.3%

 Teichholtz 0.9% 1.1% 0.7% 0.7%
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Figure 2.  The distribution of LVEF (%) for the (a) training data, (b) validation data, and (c) test data.
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inspected by experienced physicians to make sure that it was possible to analyse LVEF with this pre-processing, 
and that all inspected videos contained a full heart cycle with both end systolic and end (or near end) diastolic 
information. We used the Dual TV L1 optical flow algorithm in Zach et al.22. implemented in OpenCV 4.4.0, for 
flow computations (stopping criterion threshold 0.05, number of warpings per scale 1, number of pyramid scales 
1). This is the same optical flow algorithm used by Carreira and  Zisserman17, and Kalfaoglu et al.18.

We used a pre-trained Inception2D (v3) from Szegedy et al. for view  classification23, where the first con-
volutional layer was modified to have one input channel (grayscale) instead of three (RGB) by averaging the 
pre-trained weights. We used five different view classes: (i) A2C, (ii) A3C, (iii) A4C, (iv) PLAX, and (iv) other 
(which includes all other views). The classes A2C, A3C and A4C include views with optimized depth settings 
for focusing on the left ventricle. We annotated the view labels for a subset of the examinations in the dataset, 
and divided these into a training set (70%, 381 examinations), a validation set (10%, 55 examinations) and a test 
set (20%, 103 examinations). The model was trained on predicting the views from individual frames, the view 
class for a full video was computed with majority voting. We used the AdamW  optimizer24, learning rate (LR) 
1e−4, batch size 8, weight decay 2e−5 and the cross-entropy loss (weighted with respect to class distribution). 
The model reached an average accuracy of 94% for the test set, with class accuracies 95% (A2C), 98% (A3C), 
93% (A4C), and 95% (PLAX). Additional view classification networks were also explored, see Hagberg et al., 
while the best performance was obtained using Inception2D (v3), which is why this architecture was  selected21.

Training
We used the training set for learning the weights of the LVEF prediction model, and the validation set for hyper-
parameter and model selection. The LVEF model was trained with a 3-step procedure: (i) I3D without BERT was 
pre-trained on ImageNet, we re-used the weights in Kalfaoglu et al.18. (ii) 2-stream I3D with BERT was trained 
on mixed views, and (iii) 8-stream I3D with BERT was trained on separated views. We used same the training 
strategies, and the same set of hyperparameters, for step (ii) and (iii). The training data was sampled with respect 
to continuously updated sample weights computed from the loss for each training data instance. The weight for 
each training instance was set to the ratio between the training instance loss and the corresponding batch loss, 
and clamped to [0.1, 3] to avoid extreme sample weights. If an examination in the training set included duplicate 
views, we sampled one of the possible inputs with an uniform probability over all possible inputs. We did not 
use any other augmentation strategies since evaluated techniques (e.g. using different types of noise, geometric 
transformations, brightness adjustments, occlusion strategies) gave no significant improvements on the valida-
tion set. We used the AdamW  optimizer24, LR 1e−3, batch size 16, weight decay 1e−4, loss function MSE, half-
precision accuracy for input data and a LR scheduler that decreases the LR by a factor 1e1 if no improvement 
on the validation loss can be seen after 100 iterations (validation loss were computed every 10th iteration). If an 
examination in the validation set included duplicate views, we used weighting when computing the evaluation 
metrics such that each examination had a total weight equal to one. For all experiments, we used PyTorch 1.7.1 
with Cuda 10.1. Average training time was 136 h (500 iterations) on a Nvidia DGX-2 with 22 CPUs and four 
V100 GPUs, with a memory footprint of 218 GB RAM and 19 GB per GPU.

Evaluation
We evaluated the model’s performance on an internal test set with 1897 examinations, on two public bench-
mark datasets and in an ablation study investigating the impact of (i) sharing the weights between the models 
processing each view, (ii) replacing missing views with other view classes according to the predefined priority 
order, (iii) using all available view instances in case of duplicate views, (iv) using optical flow as a second data 
stream, (v) using BERT as a terminating layer, (vi) different loss functions and (vii) different number of input 
views. We used bias ± standard deviation (SD), the coefficient of determination R2 and the mean absolute error 
(MAE) as evaluation metrics.

Results
Test set results
We used the 1897 examinations in the test set for testing the model’s final performance. If an examination in 
the test set included duplicate views, we used averaging over all possible outputs to compute the LVEF predic-
tion. See Table 2 for bias ± SD, R2 and MAE depending on the available input views, and Fig. 3 for scatter and 
Bland-Altman plots.

Table 2.  Performance of the proposed 8-stream model depending on the available views for all test 
examinations with all views available, pp = percentage points.

N/A views Bias ± SD (pp) MAE (pp) R
2

– 0.1 ± 5.2 4.0 0.84

PLAX − 0.5 ± 6.7 5.5 0.73

A4C − 0.7 ± 5.9 4.8 0.79

A3C − 0.6 ± 6.3 5.2 0.76

A2C − 0.8 ± 6.1 5.0 0.77
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CAMUS and EchoNet‑dynamic results
Table 3 reports the model’s performance when evaluated on the CAMUS and the EchoNet-Dynamic test datasets, 
as well as previously reported LVEF prediction results for these datasets.

For the CAMUS dataset, we finetuned and evaluated a 4-stream version of the model, since the CAMUS 
dataset only includes A2C and A4C views. We used the training dataset for finetuning (450 examinations) and 
the test dataset for testing (50 examinations). We employed the model trained on our in-house dataset for ini-
tialization, and used the identical learning strategy and hyperparameters as outlined in the Training section. The 
CAMUS examinations only include the contraction phase (systole), and lack heart rate metadata. Therefore, we 
resampled all videos to have 20 frames corresponding to one contraction.

For the EchoNet-Dynamic dataset, we finetuned and evaluated a 2-stream version of the model, since the 
dataset only includes A4C views. We used the training dataset for finetuning (10751 examinations) and the test 
dataset for evaluation (1897 examinations). Since the EchoNet-Dynamic examinations lack heart rate metadata, 
we resampled all videos to have 20 frames with 9 frames/second. As for the CAMUS dataset, we used the model 
trained on our in-house dataset for initialization, and the same learning strategy and hyperparameters as outlined 
in the Training section.

Ablation study
Table 4 reports R2 and MAE values for the following comparisons on the validation set: (i) w/o shared model 
weights between the different views, (ii) w/o view replacement in case of missing views by using empty views 
instead, (iii) w/o using all available views in case of duplicate views, (iv) w/o optical flow as a second data stream 
in the I3D models, (v) w/o BERT as a terminating layer in the I3D models, (vi) with MSE (regression), balanced 
all-threshold (ordinal regression) and balanced cross-entropy (classification) as loss function, and (vii) with 
one input view (A4C) in a 2-stream model, two input views (A2C, A4C) in a 4-stream model, three input views 
(A2C, A3C, A4C) in a 6-stream model, and four input views (A2C, A3C, A4C, PLAX) in an 8-stream model. To 
ensure a fair comparison, the LVEF predictions are rounded to the nearest multiple of five for the MSE loss in 
comparison (vi), and the validation set only includes examinations with at least one A4C (1870 examinations) 
in comparison (vii).
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Figure 3.  (a) Scatter plot with with predicted LVEF % versus target LVEF (%). (b) Bland-Altman plot with 
difference between predicted and target LVEF (pp) versus target LVEF (%). Red dashed lines = ± 1.96SD.

Table 3.  Performance of the proposed model, and previous models, for LVEF prediction for the CAMUS and 
the EchoNet-Dynamic datasets, pp = percentage points.

Method Dataset Bias ± SD (pp) MAE (pp) R
2

Ours CAMUS − 0.1 ± 2.4 1.9 0.94

Leclerc et al.6 CAMUS 0.5 ± 7.7 5.6 0.79

Liu et al.8 CAMUS − 1.7 ± 4.1 n/a n/a

Smistad et al.9 CAMUS 1.8 ± 8.9 6.7 n/a

Ours EchoNet-Dynamic − 0.3 ± 5.4 4.1 0.81

Ouyang et al.5 EchoNet-Dynamic n/a 4.1 0.81

Reynaud et al. 15 EchoNet-Dynamic n/a 6.0 0.52
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Discussion
In this paper, we present a fully automatic model for LVEF assessment, with a MAE of 4.0 pp. We conclude from 
Table 2 that while depending on all included views for optimal performance, the model relies less on A2C, A3C 
and A4C than on PLAX, which is expected due the somewhat overlapping information (from the same apical 
window) in A2C, A3C, and A4C compared to PLAX using a different ultrasound window. One possible reason 
for the less impressive performance for LVEF = 20% and 70% than the intermediate values in Fig. 3 is the trun-
cation of the ground truth labels, which may have resulted in a model prone to overestimate small LVEF values, 
and correspondingly, to underestimate large LVEF values.

Second, we conclude that using BERT as a terminating layer is crucial for optimal performance, which is 
expected due to transformers’ superior capability to incorporate temporal information compared to e.g. average 
or max pooling. Further, we conclude that using all possible view instances in case of duplicate views boosts the 
model’s performance, which is of little surprise since it increases the amount of available training data. Further, 
the model’s performance consistently improves with an increased number of views, and using optical flow seems 
to boost the performance somewhat. However, these improvements (more views, and multiple data streams) 
need to be weighted against the increased computational complexity they add. Using view replacement gives a 
modest performance boost, however, it has the advantage of adding no computational complexity. Similarly, using 
shared weights between the different views only gives a small performance boost, while it has the advantage of 
significantly reducing the computational complexity. Surprisingly, there is only small differences between posing 
LVEF determination as a regression, ordinal regression and classification problem.

When comparing the proposed model to previous methods on the CAMUS dataset, we can conclude that 
we outperform all previous works in terms of bias, MAE, R2 and SD. When comparing the proposed model to 
previous methods on the EchoNet-Dynamic dataset, we can conclude that we outperform one, and perform on 
par with another, in terms of MAE and R2 . Our dataset comprises real-world clinical examinations from hos-
pital archives, with no exclusions based on image quality. We view this as a strength, as more curated datasets, 
such as CAMUS, tend to present a simplified problem. Conducting a prospective test in a clinical setting would 
undoubtedly provide a valuable opportunity to further assess performance.

We envision (at least) three immediate research directions. Firstly, when evaluating, the video most suit-
able for LVEF determination should be automatically selected when there are duplicate views, instead of using 
weighting/averaging. Secondly, the output from each stream should be paired with a learned model confidence 
to enable a more sophisticated fusion of the output from each stream. Finally, the model should be implemented 
in a picture archiving and communication system, and evaluated in a clinical setting, including analysis of the 
clinical significance, usability and reliability.

Limitations
Our paper has several limitations. (i) One limitation arises from the nature of our dataset, a real-world clinical 
dataset. Specifically, LVEF values in this dataset have been truncated, with values below 20% set to 20% and 
values exceeding 70% set to 70%. While this truncation aligns with clinical practices, it introduces a potential 
drawback in our study. It may lead to an overestimation of low LVEF values and an underestimation of high LVEF 
values. It’s important to acknowledge, however, that the clinical relevance of this limitation is likely minimal. 
(ii) Another limitation stems from the fact that we did not explore various methods for balancing the dataset 
in favor of impaired LVEF values. Employing such balancing techniques could have potentially improved our 

Table 4.  R2 and MAE (pp = percentage points) values for the validation set for the proposed model versus (i) 
w/o shared model weights between the different views, (ii) w/o view replacement, (iii) w/o duplicate views, (iv) 
w/o optical flow, (v) w/o BERT, (vi) balanced all-threshold (ordinal regression) and balanced cross-entropy 
(classification) loss, and (vii) with 1, 2, 3 input view(s).  Note that the first model (“Proposed model”) and the 
last model (views: 4) are the same models evaluated on different validation sets the first one is evaluated on the 
full validation set while the last one is evaluated only on examinations with at least one A4C view (to ensure a 
fair comparison to 1/2/3 views).

R
2 MAE (pp)

Proposed model 0.83 4.12

 w/o Shared weights 0.82 4.13

 w/o View replacement 0.81 4.28

 w/o Duplicate views 0.77 4.69

 w/o Optical flow 0.82 4.13

 w/o BERT 0.65 6.48

 Loss MSE 0.81 4.13

 Loss All-threshold loss 0.81 4.17

 Loss Cross-entropy loss 0.80 4.26

 Views 1 0.78 4.53

Views 2 0.79 4.45

 Views 3 0.81 4.25

 Views 4 0.82 4.21
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results, particularly for low LVEF values. (iii) A further limitation pertains to the handling of duplicate views 
during examinations. In our analysis, we incorporated all possible inputs from duplicate views and averaged 
the LVEF measurements obtained from them. This approach deviates from a more refined dataset, where only 
the best-case duplicate view is selected. However, it is essential to note that our analysis is fully automated, and 
incorporating a manual step to choose the optimal duplicate view is not a practical option. In summary, while 
our study is not devoid of limitations, we believe that these constraints do not significantly detract from the 
clinical implications of our findings.

Conclusions
We have proposed a deep 8-stream model for LVEF prediction in 2DE examinations using four automatically 
selected 2DE views as input. The model was trained and evaluated on an existing clinical dataset with varying 
quality, examining physician and 2DE system, with limited metadata such as missing view information, and 
with missing or duplicate views. We reported R2 = 0.84 , MAE = 4.0%  points and bias = 0.1 ± 5.2% points for 
the test set. We also evaluated on two public benchmarks. These datasets differ significantly from our focus: they 
include only A2C/A4C and A4C views respectively, no examinations have missing or duplicate views, and view 
labels are known. Still, we performed on par or better than all previous LVEF prediction methods evaluated on 
these two datasets.

Data availability
The in-house dataset analysed during the current study are not publicly available since the ethical approval does 
not allow for this. However, the dataset is available from the corresponding author on reasonable request includ-
ing an approved ethical approval by the Clinical Medical Research Ethics Board of Sweden. The two benchmark 
datasets are publicly available at the CAMUS  proje ct homep age and EchoN et Dynam ic homep age. The trained 
models are available on a publi c proje ct repos itory.
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