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An innovative machine learning 
based on feed‑forward artificial 
neural network and equilibrium 
optimization for predicting solar 
irradiance
Ting Xu 1, Mohammad Hosein Sabzalian 2, Ahmad Hammoud 3,4, Hamed Tahami 5, 
Ali Gholami 6 & Sangkeum Lee 7*

As is known, having a reliable analysis of energy sources is an important task toward sustainable 
development. Solar energy is one of the most advantageous types of renewable energy. Compared to 
fossil fuels, it is cleaner, freely available, and can be directly exploited for electricity. Therefore, this 
study is concerned with suggesting novel hybrid models for improving the forecast of Solar Irradiance 
(IS). First, a predictive model, namely Feed-Forward Artificial Neural Network (FFANN) forms the non-
linear contribution between the IS and dominant meteorological and temporal parameters (including 
humidity, temperature, pressure, cloud coverage, speed and direction of wind, month, day, and hour). 
Then, this framework is optimized using several metaheuristic algorithms to create hybrid models 
for predicting the IS. According to the accuracy assessments, metaheuristic algorithms attained 
satisfying training for the FFANN by using 80% of the data. Moreover, applying the trained models 
to the remaining 20% proved their high proficiency in forecasting the IS in unseen environmental 
circumstances. A comparison among the optimizers revealed that Equilibrium Optimization (EO) 
could achieve a higher accuracy than Wind-Driven Optimization (WDO), Optics Inspired Optimization 
(OIO), and Social Spider Algorithm (SOSA). In another phase of this study, Principal Component 
Analysis (PCA) is applied to identify the most contributive meteorological and temporal factors. The 
PCA results can be used to optimize the problem dimension, as well as to suggest effective real-world 
measures for improving solar energy production. Lastly, the EO-based solution is yielded in the form 
of an explicit formula for a more convenient estimation of the IS.

Background
Recent advances in computational and engineering domains have provided reliable responses to various problems 
in human modern life1–5. Intelligent tools, sophisticated simulation packages, and soft computing approaches 
are evident examples of these advances6–9. In the field of energy, engineers have successfully employed these 
tools and methodologies to improve the sustainable development of renewable energy systems10–13. Recently, 
solar energy has been introduced as an outstanding renewable source due to its numerous benefits like environ-
mental friendliness, universality, high capacity, and inexhaustible supply14,15. Scholars attempted to evaluate the 
solar energy production pattern by forecasting related parameters such as IS. However, the evaluation of these 
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factors required reliable approaches to handle non-linear calculations because of the existing many involved 
parameters16,17. Today, Machine Learning (ML) models proved to have an impressive approach to handling 
non-linear calculations18–20. In terms of forecasting tasks, ML methods can be used to conduct complicated 
mathematical relationships and provide exact solutions. Artificial Neural Network (ANN)21,22, Support Vector 
Machine (SVM)23,24, decision trees25,26, and neuro-fuzzy tools27,28 are among the most popular ML algorithms 
utilized for prediction aims related to solar energy calculations.

Literature review
ML algorithms provided fast, inexpensive, and reliable solutions, which motivated experts to take advantage 
of them in the forecasting tasks29–33. Kim, Seong and Choi34 utilized ANN Models to forecast the energy con-
sumption of an actual air handling unit and the appropriate result was obtained. Bhatt and Gandhi35 used two 
different statistical and ANN models to forecast the energy consumption in the wind power plants and the error 
of the feed-forward neural network was determined to be around 9.85%. Yin, Jia, Wu, Dai and Tang36 used a 
feedforward ANN model for forecasting tasks in the case of energy demand and the mean relative error value of 
the forecast was determined to be 1.58%. Malvoni, De Giorgi and Congedo37 utilized an SVM method to forecast 
the data from the Photovoltaic (PV) power. This method was also utilized in Ref. for forecasting wind energy 
production in Estonia and compared to other traditional methods like Behavior-Driven Development (BDD), 
appropriate results were obtained.

Optimization-oriented efforts form lots of studies in the engineering literature38–40. In particular, many schol-
ars have suggested metaheuristic algorithms for optimization purposes41,42. They can also serve to optimize 
traditional ML methods like ANN and ANFIS43. These algorithms were concerned in the case of renewable 
energy analysis in many studies previously44,45 such as solar power energy46 and wind energy47,48. Computational 
problems such as local minima can be removed by using the metaheuristic-based hybrids29. In the following, 
previous works related to the use of metaheuristic algorithms to optimize ML methods in the case of energy 
forecasting tasks are briefly summarized. Moayedi and Mosavi49 utilized an innovative metaheuristic approach 
(Electromagnetic Field Optimization (EFO)) to optimize a neural network and proved that the EFO-supervised 
neural network algorithm can appropriately mine a dataset of nonlinearly tuning the network elements. Abedinia, 
Amjady and Ghadimi50 utilized a productive engine consisting of a metaheuristic optimizer, namely shark smell 
optimization to optimize ANN. They claimed that this hybrid method had better performance compared to other 
conventional predictors such as ANN with lower normalized Root Mean Square Errors (RMSEs) by about 27% 
compared to ANN and other traditional methods. Galván, Valls, Cervantes and Aler51 used a multi-objective 
Particle Swarm Optimization (PSO) method to enhance the ANN method and observed that the PSO optimizer 
had outstanding results compared to traditional ANN. Tran, Luong and Chou52 introduced a new model namely 
Evolutionary Neural Machine Inference Model (ENMIM) consisting of different models of Least Squares Support 
Vector Regression (LSSVR), and the Radial Basis Function Neural Network (RBFNN) together with Symbiotic 
Organism Search (SOS) for obtaining optimized tuning parameters. This approach was proved to be a promising 
alternative for the energy management tasks. Halabi, Mekhilef and Hossain53 demonstrated that the algorithm 
introduced in54 can be coupled with an ANFIS system in the case of IS predictions. Louzazni, Khouya, Amech-
noue, Gandelli, Mussetta and Crăciunescu55 have proven the competency of the algorithm of firefly to evaluate 
the solar energy harvesting parameters and observed that the firefly algorithm was very reliable in the case of 
solar energy forecasting. Bechouat, Younsi, Sedraoui, Soufi, Yousfi, Tabet and Touafek56 also concerned the PSO 
and Genetic Algorithm (GA) in this case. Zhou, Moayedi and Foong57 have studied the limitation of neural 
computing approaches, for example, local minima, and suggested a novel metaheuristic method namely Teach-
ing–Learning-Based Optimization (TLBO) for enhancing a Multi-Layer Perceptron Neural Network (MLPNN). 
They observed that, by using TLBO method, the prediction error is reduced by 19.89% compared to the ANN 
approach. Vaisakh and Jayabarathi58 utilized a hybrid approach called the deer hunting optimization algorithm 
as well as grey wolf optimization to adjust the structure of ANNs, which was used for solar energy calculations. 
Their achievements reflected a notable improvement attained by the tested optimizer. Abedinia, Amjady and 
Ghadimi59 have used a neural network algorithm enhanced by a metaheuristic algorithm as the hybrid method 
for the forecasting tasks in the case of solar energy harvesting, and appropriate results were obtained. Abdalla, 
Rezk and Ahmed60 have successfully utilized Wind-Driven Optimization (WDO) to track the elements of pho-
tovoltaic systems and justified that the mentioned algorithm had better results compared to many traditional 
optimization techniques such as cuckoo search.

Motivation, novelty, and objective
The above literature shows the necessity of utilizing modern tools and techniques for coping with intricate engi-
neering problems61–65. In this sense, different ML models have great contributions to the concept of renewable 
energy, particularly for SE-related predictions. On the other hand, metaheuristic algorithms have been recom-
mended for optimal development of ML models. Based on the previous literature, incorporating metaheuristic 
optimizers with ML models such as ANN helps to avoid computational drawbacks, and therefore, is becoming a 
research hotspot in this way66. However, a gap of knowledge emerges when these studies mostly focus on earlier 
metaheuristic methods such as PSO and GA67,68, because the metaheuristic family is being extended by new 
potential members. This gap calls for evaluating the capability of newer hybrid models to improve SE-related 
predictions. Hence, in this research, a novel potential metaheuristic technique named EO is employed through an 
FFANN framework to analyze the meteorological and temporal conditions and predict the IS. The EO algorithm 
here is responsible for best-tuning the FFANN’s weights (and biases) which connect the IS to the environmental 
conditions. Moreover, to comparatively validate the performance of the EO, this algorithm is evaluated versus 
three benchmark optimizers including WDO, Optics Inspired Optimization (OIO), and Social Spider Algorithm 
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(SOSA), as well as three algorithms of the EFO, Shuffled Complex Evolution (SCE), and Shuffled Frog Leaping 
Algorithm (SFLA) used in an earlier study by Moayedi and Mosavi49. Accuracy assessment is carried out using 
different criteria to rank them and distinguish the most competent model. Since the used models have not been 
applied to this problem before, the findings of this study can assist solar energy experts in the appropriate selec-
tion of predictive models. For more convenience, a mathematical formula is also extracted from the EO-FFANN 
model to eliminate the need for computer-aided implementations in predicting the IS. Moreover, a well-known 
statistical technique called Principal Component Analysis (PCA) is applied to identify the most contributive 
meteorological and temporal parameters, and therefore, to optimize the dimension of the problem.

To sum up, the main strengths and novelties of this study can be highlighted as follows:

–	 Evaluating the applicability of ensemble learning theory for predicting the IS as a crucial parameter of renew-
able (solar) energy,

–	 Employing the EO metaheuristic algorithm to create a novel FFANN-based model whose absence is consid-
ered a gap of knowledge in the literature on IS prediction,

–	 Introducing the optimal configurations (i.e., population size and No. of iterations) for the used models,
–	 Exposing various environmental and temporal conditions as key parameters in the IS prediction and deter-

mining the principal dataset components using the PCA method which has not been performed in the previ-
ous literature. In addition to optimizing the problem dimension, the results of the PCA can be regarded for 
suggesting real-world measures (attributing to the key parameters) to maximize solar energy production.

–	 Conducting a comparative assessment by evaluating six other metaheuristic algorithms in this study (i.e., 
WDO, OIO, and SOSA) and previous literature (i.e., EFO, SCE, and SFLA). It makes this study a suitable 
benchmark for future applications of hybrid models and appropriate model selection by energy experts,

–	 Developing a monolithic explicit formula from the proposed EO-FFANN model to be used as a convenient 
method for predicting the IS.

Overall, the achievements of this research can greatly contribute to the body of knowledge (from both data 
and methodology perspectives) that deals with solar energy modeling. Performing several optimization ideas 
carried out in this study can be helpful to reduce the complexities (i.e., computational costs) in the way of proper 
IS prediction.

In the following, the study continues by introducing the used materials and methods in Sect. 2, presenting 
the results and discussion in Sect. 3, followed by providing conclusions in Sect. 4.

Materials and methods
Dataset and splitting
From previous studies, it is evident that the amount of received IS is a function of various meteorological 
conditions69,70. In this work, this amount is represented by a so-called parameter Global Horizontal Irradiance 
(GIH) which is measured for Yemen. Along with the GIH, the records of five meteorological factors, namely: Air 
Temperature (T), Relative Humidity (H), Surface Pressure (P), Wind Direction (WD), and Wind Speed (WS) are 
downloaded from the Solcast community (https://​solca​st.​com/). All measurements are hourly within one year 
(2021-05-31 to 2022-06-01). Figure 1 shows the time series of the T, H, P, WD, WS, and GIH.

In addition to these five parameters, three temporal inputs, namely Month (m), Day (d), and Hour (h) are also 
considered influential parameters. When this dataset is exposed to the considered ML models, the influential 
parameters (i.e., m, d, h, T, H, P, WD, and WS) play the role of inputs, while the GIH is the target of the system. 
Therefore, the used models explore the relationship between the temporal and meteorological parameters to 
understand and predict the hourly GIH. Table 1 gives the results of the statistical analysis performed on the used 
dataset.

As per Table 1, a total of 8803 records exist in the dataset. These records are split into two sub-sets for creat-
ing the training and testing sets. The training set is required to provide the training material for the models, 
and the testing set examines the generalizability of the models. Based on previous works, 80:20 ratio is applied 
to split the dataset, meaning that 7042 records exist in the training set, and 1761 records exist in the testing set.

Applied algorithms
Overview of EO
As the name implies, the EO is an optimization technique that mimics specific laws of physics to obtain an 
optimum solution71. It is a capable metaheuristic algorithm for dealing with problems with different levels of 
complexity. The search units of the EO are called particles each of which receives an initial concentration value 
as in Eq. (1):

where r is a random value in [0, 1]. Moreover, LB and UB are the lower and upper bounds of the space.
Similar to other population-based optimizers, the quality of the particles is reflected by a fitness value. They 

are then sorted, and the algorithm hires four of them which are distinguished by the highest fitness value. A fifth 
particle is also considered that represents the mean of these four particles.

The exponential term (F) of the algorithm is defined by Eqs. (2), (3), (4).

(1)Cj = LB+ r × (UB− LB),

(2)F = CP1sign(r − 0.5)(e−βt
− 1),

https://solcast.com/
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Figure 1.   Time-series of the GIH and meteorological parameters.

Table 1.   Correlation factors showing the proportionality of the parameters.

T (°C) H (%) P (hPa) WD (°) WS (m/s) GIH (w/m2)

Mean 25.64 30.64 898.12 132.60 3.38 273.85

Standard error 0.07 0.18 0.04 0.86 0.02 3.80

Median 26.10 28.10 898.30 121.00 3.00 10.00

Mode 28.30 16.30 901.20 56.00 1.90 0.00

Standard deviation 6.78 16.49 3.99 80.83 1.98 356.42

Sample variance 45.94 271.87 15.93 6532.69 3.92 127,036.86

Kurtosis  −0.69  −0.20  −0.88  −0.24 0.50  −0.84

Skewness  −0.15 0.63  −0.10 0.60 0.85 0.88

Range 33.00 87.00 20.00 360.00 12.60 1113.00

Minimum 7.50 3.10 887.60 0.00 0.00 0.00

Maximum 40.50 90.10 907.60 360.00 12.60 1113.00

Sum 225,706.00 269,723.30 7,906,112.80 1,167,256.00 29,760.90 2,410,715.00

Count 8803.00 8803.00 8803.00 8803.00 8803.00 8803.00
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in which β stands for the turnover rate,CP1 and CP2 are controlling parameters for the exploration and exploita-
tion phases, respectively.

Assuming GCP and GP as a controlling parameter and the generation probability, respectively, generation rate 
is calculated by Eqs. (5) and (6).

where Ceq is the equilibrium pool, and r1 and r2 are random numbers in [0, 1].
Based on the above calculations, the solution is updated as in Eq. (7)72:

where V  is the considered unit.

Comparative algorithms
Wind-driven optimization was first introduced by Bayraktar, Komurcu and Werner73 in 2010 for electromagnetics 
applications. The WDO relies on the air parcel’s movement in hyper-dimensional space. These movements are 
supposed to be affected by four natural forces of Coriolis force, gravitational force, frictional force, and pressure 
gradient force. Also, by taking into consideration the ideal gas equation, the position (as well as the velocity) of 
the air parcels is updated to find the best responses. Scholars like Moayedi, Bui and Ngo74 and Bayraktar75 have 
successfully used the WDO for optimizing the neural parameters.

As a physic-based scheme, the OIO was suggested by Kashan76 in 2014. It is inspired by optics (a law in 
physics) which works by a group of artificial light-related stuff. After randomly generating the fixed number of 
individuals, the initial position of the light points is determined. Each point is then put in front of an artificial 
mirror and its image is created in the search space with a certain distance from the main axis. The position of 
the image is then updated to be a new solution This process continues until a stopping criterion is satisfied77.

The SOSA, as the name implies, takes the idea from the food-seeking action of social spider, introduced by 
James and Li78 in 2015. In this method, the solution space is considered a hyper-dimensional spider web that 
the agents (i.e., spiders) can move on it. As assumptions, the agents have regular interaction with each other and 
every position in this area corresponds to a possible solution79. Each spider distinguishes itself by the position 
and fitness value. The agents possess a memory to hold three basic attributes: all possible vibration intensities are 
positive, (ii) the larger the fitness values mean more intense vibrations, and (iii) once the best solution is getting 
close, the vibration does not experience excessive increase.

Mathematical details pertaining to the above algorithms can be found in the literature (like the WDO60,80, 
OIO81,82, and SOSA83,84).

Evaluation method
Statistical indices are normally used for evaluating the accuracy of ML models. In this work, RMSE along with 
Mean Absolute Error (MAE) is used to indicate the prediction error. Given GIHireal and GIHipredict as the real and 
predicted GIHs, respectively, Eqs. (8) and (9) formulate the RMSE and MAE as follows:

where S stands for the size of the set.
Moreover, a so-called correlation indicator “Pearson Correlation Coefficient (R)” is designated as per Eq. 

(10) to reflect the agreement between reality and prediction.

(3)t = (1− Riter)
(CP2×Riter ),

(4)Riter =
iter

T
,

(5)RG = G0GCP

(
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)
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Results and discussion
Hybridization of algorithms
When the FFANN is hybridized with a metaheuristic algorithm, the basic idea is to optimize its weights and 
biases to establish the best relationship between the target and input parameters. In this research, the FFANN is 
optimized by the EO algorithm, as well as OIO, WDO, and SOSA. The metaheuristic algorithms are able to find 
the solution in an iterative process.

The used FFANN is represented by an MLPNN (8,6,1) model indicating a three-layered neural network with 
8 input neurons in the first layer, 6 hidden neurons in the middle layer, and 1 output neuron in the last layer. 
The activation functions in the middle and last layers are Tansig and Purelin, respectively. This configuration is 
obtained after an extensive trial-and-error effort. A topology of the used FFANN is embedded in Fig. 2. Accord-
ing to this figure, this network has a total of 61 weights and biases which are optimized by the metaheuristic 
algorithm. In this process, the training dataset is used solely. First, the mathematical equation of the FFANN is 
extracted and is considered as the problem function. Next, a metaheuristic algorithm is run to tune the FFANN 
equation (i.e., weights and biases) so that the training RMSE is minimized by 1000 iterations. In each iteration, 
new 61 variables construct the FFANN, and the training RMSE is calculated. Note that, each of the EO, OIO, 
WDO, and SOSA algorithms were implemented with different population sizes (varying from 50 to 700) and it 
was observed that the best population size for them is 400, 200, 100, and 200, respectively.

Optimization results
Figure 3 shows the optimization process for the used algorithms (with the mentioned best population sizes) that 
are iterated 1000 times. From the comparison of the curves, it is immediate that the EO has reached a higher 
quality of solution due to the minimum RMSE error. While the solutions of the WDO and OIO are very close, 
the SOSA has found the solution with considerably higher error. Note that this process was carried out using 
the training set only because the testing set should be kept away from the models in this stage. In the next two 
sections, the training and testing results are assessed using the accuracy methods.

Training accuracy
Figure 4 forms part of the training results as the final RMSEs are the training RMSEs. Having the order of algo-
rithms as OIO-FFANN, WDO-FFANN, SOSA-FFANN, and EO-FFANN, training RMSEs were 161.22, 152.16, 
230.61, and 142.38 w/m2.

Figure 4 illustrates the error values for the 7042 records in the training set. Each single value in this figure 
indicates the pure difference between GIHireal and GIHipredict . Hence, the lower the value, the higher the accuracy. 
In a glance, it can be seen that the results of the EO are better positioned around the Y = 0 line. Quantitatively 
speaking, the training MAEs were 127.52, 119.33, 189.56, and 110.09 w/m2.

The calculated values of the RMSE and MAE indicated an acceptable level of error for all used models. As 
for the R index, the values were 0.89, 0.90, 0.76, and 0.91 which demonstrate a significant level of agreement 
between the reality and prediction results of all four models. However, again, the superiority of the EO algorithm 
is obvious in terms of the R, too. It was the only model that achieved a correlation larger than 90%.

Figure 2.   Optimization process of the hybrid models.
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Testing accuracy
This section shows the performance of the OIO-FFANN, WDO-FFANN, SOSA-FFANN, and EO-FFANN when 
they are subjected to the 1761 records in the testing set. This process demonstrates the power of the trained 
models in dealing with unseen environmental conditions for estimating hourly GIH.

From the obtained RMSEs of 161.63, 151.57, 230.16, and 141.61 w/m2, it is quantitatively inferred that the 
testing results enjoy a satisfying level of accuracy. Figure 5 illustrates the statistics of the testing errors. In these 

Figure 3.   Optimization curves of the OIO-FFANN, WDO-FFANN, SOSA-FFANN, and EO-FFANN 
algorithms.

(a) OIO-FFANN (b) WDO-FFANN

(c) SOSA-FFANN (d) EO-FFANN

Figure 4.   Training errors of (a) OIO-FFANN, (b) WDO-FFANN, (c) SOSA-FFANN, and (d) EO-FFANN.
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histogram charts, the higher the frequency of 0 error, the better the accuracy. As is seen, the distribution is almost 
normal for all models. It professes the high quality of testing results. Besides, the MAEs of 127.52, 118.72, 188.20, 
and 108.07 w/m2 indicate a low level of average errors.

Figure 6 shows the correlation diagrams of the testing set. The values on the horizontal and vertical axis 
represent the GIHireal and GIHipredict , respectively. Hereupon, the ideal prediction happens when all points are 
positioned on the line x = y, and the R-value is 1. As per Fig. 6, all four models have performed a nice predic-
tion and their calculated Rs were 0.89, 0.90, 0.77, and 0.91. Similar to the training stage, EO-FFANN is the only 
algorithm with a correlation above 90%.

Accuracy comparison
It was in general shown that the EO-based model outperformed the benchmarks in both training and testing 
stages. In this section, the models are subjected to a more detailed comparison to rank them. For this purpose, 
Taylor diagrams are generated and presented in Fig. 7. These figures can simultaneously show the correlation 
(Correlation Coefficient) and error (RMSD = RMSE). As is seen, in both training and testing sets, the same pat-
tern is obtained, and it means there is no discrepancy between the training and testing qualities. The EO-FFANN 
is distinguished by the lowest error and highest correlation, followed by WDO-FFANN and OIO-FFANN. As 
for SOSA-FFANN, this model has a considerable weakness in its performance in comparison with three other 
models. As per Fig. 7, the point of the SOSA-FFANN is separated from the others.

PCA importance analysis
In this section, an importance assessment is applied to the used dataset. The results of such efforts can be of great 
importance for the proper selection of input factors from the statistical point of view. The PCA technique85 is 
used to determine the most contributive factors for the GIH prediction. Figure 8 shows the obtained scree plot, 
according to which, four components have an eigenvalue larger than 1. These four components are considered as 
principal components, and based on Table 2, cumulatively account for about 75% of the variance in the dataset.

Table 3 shows the results of the Varimax rotation method. In each of the four components, the factors with 
loading above + 0.70 and below −0.70 are selected. As is seen, Component 1 reflects T and H, Component 2 

(a) OIO-FFANN (b) WDO-FFANN

(c) SOSA-FFANN (d) EO-FFANN

Figure 5.   Testing histogram of errors of (a) OIO-FFANN, (b) WDO-FFANN, (c) SOSA-FFANN, and (d) 
EO-FFANN.
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reflects P and WD, Component 3 reflects d, and Component 4 reflects m. Hence, it can be deduced that h and 
WS can be discarded for optimizing the dataset.

A monolithic formula
In order to eliminate the need for implementing computer-based programs, this section provides a mathematical 
expression that is derived from the proposed model i.e., EO-FFANN, for predicting the GIH. The reason for con-
sidering EO-FFANN is that this model achieved the highest accuracy in the previous assessments. The formula 
is a monolithic relationship; however, it has two steps and the GIH needs to be calculated in the second step.

Referring to the FFANN topology in Fig. 2, this equation is constructed from 61 weights and biases. The 
general inputs of this equation are m, d, h, T, H, P, WD, and WS that feed Eq. (11). With the help of Table 4, the 
outcomes of this equation are Ni (i = 1, 2, …, 6) that feed Eq. (12) for calculating the GIH. In other words, Eq. 
(11) and Table 4 together express the process between the input and hidden layers of the FFANN, while Eq. (12) 
expresses the process between the hidden and output layers (see Fig. 2).

(11)
Ni = Tansig(Wi1 ×m+Wi2 × d +Wi3 × h+Wi4 × T +Wi5 ×H +Wi6 × P +Wi7 ×WD +Wi8 ×WS + bi),

(a) OIO-FFANN (b) WDO-FFANN

(c) SOSA-FFANN (d) EO-FFANN

Figure 6.   Correlation diagrams for testing set of (a) OIO-FFANN, (b) WDO-FFANN, (c) SOSA-FFANN, and 
(d) EO-FFANN.
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(12)
GIH = 0.4187 × N1 + 0.5094 × N2 − 0.4479 × N3 + 0.3594 × N4

+ 0.3102 × N5 − 0.6748 × N6 − 0.7620,

Figure 7.   Taylor diagrams for (a) training and (b) testing sets.

Figure 8.   Scree plot of the PCA analysis.

Table 2.   Total variance explained.

Component

Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.417 30.213 30.213 2.417 30.213 30.213 2.141 26.764 26.764

2 1.537 19.218 49.431 1.537 19.218 49.431 1.796 22.451 49.215

3 1.034 12.919 62.350 1.034 12.919 62.350 1.040 12.999 62.214

4 1.016 12.706 75.056 1.016 12.706 75.056 1.027 12.842 75.056

5 0.840 10.501 85.557

6 0.633 7.910 93.466

7 0.397 4.967 98.434

8 0.125 1.566 100.000
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Strength, limitations, and future guidelines
This study presented novel applications of metaheuristic-empowered ML models for predicting IS. A valid dataset 
with various meteorological and temporal factors was applied for this purpose. The models were optimized in 
terms of their hyper-parameters such as the FFANN topology and population size of the metaheuristic algo-
rithms. Therefore, it can be claimed that the used models are among the most optimum ones. The desirable 
level of accuracy obtained in this study proved the applicability of the applied models, however, a comparison 
showed that the EO-FFANN shows greater promise. This model achieved improvement when it is compared to 
previous studies. For instance, Moayedi and Mosavi49 used the EFO algorithm, along with the SCE and SFLA, to 
optimize a similar FFANN. These models reached an R-value (non-percentage) of 0.82132, 0.78046, and 0.75212, 
respectively, which are lower than the R values of the EO-FFANN in this work.

Presenting a simplified formula is another outcome of this study which enables the users to predict the GIH 
without the need for computer-aided facilities. Furthermore, regarding the performed trial and error efforts in 
different stages, it can be said that this solution is captured carefully among numerous candidates.

In Sect. 3.6, the PCA model was applied to the dataset and its results highlighted the T, H, P, WD, d, and m 
as the most contributive input factors. As is known, reducing the dataset inputs from 8 to 6 results in lighten-
ing the computational burden due to the reduction in the problem dimension86. Considering this idea is highly 
recommended for future efforts towards improving the solution for the GIH prediction.

However, this study encountered some limitations, too. About the used dataset, it includes the records from 
2021-05-31 to 2022-06-01. Hence, updating this dataset with the most recent data (e.g., late 2022 and early 2023) 
could be of great interest to future efforts. It may help in enhancing the generalizability of the suggested models 
for new climate conditions. As far as the models are concerned, although the applied metaheuristic algorithms 
are among the recent members of this family, more algorithms have been developed lately. Comparing the results 
of the EO with the most recent metaheuristic algorithms would greatly help in updating the solutions, and prob-
ably, increasing the accuracy of GIH prediction.

Conclusions
The importance of analyzing environmental conditions is evident in the forecast of renewable energy potentials. 
This work was dedicated to optimizing solar energy simulation using state-of-the-art ML and feature selec-
tion strategies. An FFANN was optimally trained using different metaheuristic algorithms for predicting solar 
irradiance from meteorological and temporal parameters (including humidity, temperature, pressure, cloud 
coverage, speed and direction of wind, month, day, and hour). Assessing the prediction results revealed that the 
EO performs more accurately than the three optimization algorithms evaluated in this study (OIO, WDO, and 
SOSA), as well as three optimization algorithms (EFO, SCE, and SFLA) from the earlier literature. Therefore, 
the mathematical representation of the EO-FFANN was presented in the form of a predictive formula to be reli-
ably used for practical GIH predictions. Moreover, the PCA method could successfully analyze the datasets and 
address the T, H, P, WD, d, and m as the input factors that are most essential in forecasting solar irradiance. This 
part of the results can be regarded in the real world for enhancing the generation of solar energy. In conclusion, 

Table 3.   Rotated component matrix from Varimax method. Significant values bold and italics.

Component

1 2 3 4

m −0.039 0.019 0.030 0.983

d 0.031 −0.012 0.936 0.032

h 0.655 −0.138 0.126 −0.039

T 0.720 0.565 −0.110 0.162

H −0.736 0.094 0.316 −0.042

P −0.301 −0.868 −0.010 −0.093

WD −0.346 0.794 0.012 −0.099

WS 0.663 0.255 0.189 −0.113

Table 4.   Optimized internal parameters of the FFANN.

i Wi1 Wi2 Wi3 Wi4 Wi5 Wi6 Wi7 Wi8 bi

1 0.6970 −0.4906 1.0125 0.6472 0.3959 0.4563 0.4315 0.5881 −1.7514

2 0.8025 0.0927 −0.0289 0.9087 0.5097 −0.9258 −0.3617 0.5838 −1.0509

3 −0.6994 0.8579 0.5630 0.2920 0.4559 −0.4183 0.8442 −0.5871 0.3503

4 0.6707 0.7543 −0.5810 −0.7533 −0.1749 −0.7363 −0.7554 −0.0166 0.3503

5 0.3433 −0.8881 −0.2029 0.9056 0.4033 −1.0450 −0.1589 −0.1411 1.0509

6 −0.7074 0.8272 0.7308 0.7629 −0.5780 0.5686 −0.2082 0.2572 −1.7514
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the findings of this study professed the efficiency of the PCA and metaheuristic techniques for optimizing the 
performance of ML models. However, some ideas were presented for future work toward coping with the limita-
tions of the study, most notably updating the used dataset and predictive models.

Data availability
All data analysed during this study can be downloaded from the Solcast community (https://​solca​st.​com/). Also, 
the used codes will be made available upon reasonable request from the authors.
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