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Bursts of communication increase 
opinion diversity in the temporal 
Deffuant model
Fatemeh Zarei 1,2, Yerali Gandica 3 & Luis E. C. Rocha 1,2*

Human interactions create social networks forming the backbone of societies. Individuals adjust their 
opinions by exchanging information through social interactions. Two recurrent questions are whether 
social structures promote opinion polarisation or consensus and whether polarisation can be avoided, 
particularly on social media. In this paper, we hypothesise that not only network structure but also the 
timings of social interactions regulate the emergence of opinion clusters. We devise a temporal version 
of the Deffuant opinion model where pairwise social interactions follow temporal patterns. Individuals 
may self-organise into a multi-partisan society due to network clustering promoting the reinforcement 
of local opinions. Burstiness has a similar effect and is alone sufficient to refrain the population from 
consensus and polarisation by also promoting the reinforcement of local opinions. The diversity of 
opinions in socially clustered networks thus increases with burstiness, particularly, and counter-
intuitively, when individuals have low tolerance and prefer to adjust to similar peers. The emergent 
opinion landscape is well-balanced regarding groups’ size, with relatively short differences between 
groups, and a small fraction of extremists. We argue that polarisation is more likely to emerge in social 
media than offline social networks because of the relatively low social clustering observed online, 
despite the observed online burstiness being sufficient to promote more diversity than would be 
expected offline. Increasing the variance of burst activation times, e.g. by being less active on social 
media, could be a venue to reduce polarisation. Furthermore, strengthening online social networks by 
increasing social redundancy, i.e. triangles, may also promote diversity.

Individual opinions are created by combining self-reflection and external inputs, such as mass media and infor-
mation from social interactions. Social interactions play a significant role in opinion dynamics because individu-
als might be influenced by their peers (i.e. social contacts), and consequently, opinions diffuse through social 
 networks1–4. In the last decades, social media has become widespread by providing platforms for online social 
networks. In contrast to offline social networks, those networks are not bound by the physical space and thus 
increase people’s exposure to information via long-range connections. The broader exposure facilitates the rein-
forcement of certain opinions with the formation of echo chambers, which eventually leads to polarisation and 
radicalisation of  ideas4–11. Such phenomena may be exacerbated by sharing emotional news stories, controversial 
 opinions8,9,11, or by controlling how information reaches social  contacts12,13.

There are different paradigms to model opinion  dynamics14–17. An important class of models is based on 
reinforcing opinions by social  contacts18–20. Such models assume that individuals are more likely to change their 
opinions if enough neighbours have a particular opinion. This complex contagion mechanism has been observed 
in experimental settings and social media and shown to depend on the underlying social network  structure3,20,21. 
The structural heterogeneity of complex social networks plays a pivotal role in regulating the spread of opinions 
via complex contagion. For example, clustering (e.g. network triangles) creates social redundancy and locally 
reinforces the prevalent opinion within the group (echo chambers)12,20. On the other hand, socially poorly con-
nected individuals will constantly be exposed to a single opinion and thus less to reinforcement. Another class 
of opinion dynamic models do not implicitly assume that reinforcement is needed, but single exposure may be 
 sufficient22–24. Some of these models make the realistic assumption that, despite individuals being embedded 
in social networks, interactions are most often one-to-one and thus, every social interaction has the potential 
to contribute to adjusting someone’s opinion. The Deffuant model captures this mechanism, with individuals 
adjusting their opinions (defined by real values from 0 to 1) at each pairwise social interaction if the difference 
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between their opinions is less than a given  threshold22. One consequence of such assumption is that reinforce-
ment is weakened because, at each interaction, a single individual influences only another individual, and thus 
some network structures become less  relevant25.

Another aspect of real-world opinion dynamics is the timings of interaction events between individuals. 
Temporal patterns of human communication follow some regularity, for example, circadian or weekly  cycles26, 
but are mostly highly  heterogeneous27. A common temporal heterogeneity is burstiness, i.e. bursts of interac-
tion events followed by periods of  inactivity28–31. Burstiness is characterised by a right-skewed distribution of 
inter-event times between subsequent events and has been observed in various forms of social media and human 
 communication27,28. Researchers generally assume that the power-law is an appropriate model to describe the 
distribution of inter-event times due to its connection with critical phenomena, fitting the model to empirical 
data within short intervals of the distribution, i.e. not in the full  range27. Heterogeneous temporal activity affects 
dynamic processes, e.g. epidemic spread, opinion dynamics, and  cooperation31–36, and together with network 
structure, regulate the relaxation (mixing) time to  stationarity37. Heterogeneous interactions from online com-
munication also contribute to emotional polarisation in co-evolving  networks38–40.

In this paper, we hypothesise that reinforcement can be obtained by repeated exposure to the same social 
contact and thus peer pressure (complex contagion) is not necessary to reinforce opinions. We thus design a vari-
ation of the Deffuant model (originally based on a single pairwise interaction per time step and therefore unable 
to create peer pressure) where the interactions follow burst activity patterns. Our model shows that burstiness 
not only slows down the dynamics towards stationarity but also increases the number of opinion clusters, i.e. 
promotes a multi-partisan society, independently of the network structure. Diversity increases the likelihood of 
extreme opinions but does not lead to the emergence of disproportionate large clusters. Furthermore, structurally 
clustered networks boost those effects by combining two forms of reinforcement, the first due to repeated expo-
sure to the same social contact (temporal) and the second by the collective impact of peer pressure (structural).

Methods
Social networks
A social network comprises N nodes, each node i representing an individual i, and E links (i, j) representing social 
ties between nodes (individuals) i and j. The degree ki is the number of the social relations to node i, whereas the 
average number of social ties in the network is given by the average degree 〈k〉 . Nodes are clustered if they form 
triangles (social redundancy i.e. node A is connected to B and C, which are in turn connected as well), and the 
level of clustering can be measured by the clustering coefficient cci = 2ei/(ki(ki − 1)) , where ei is the number 
of links between common neighbours of i. At the mesoscale, clustering can be quantified by the modularity Q, 
which measures the level of connectivity within groups of nodes (i.e. network communities) compared to what 
would be expected by chance. Higher modularity indicates a more robust community structure. These types of 
clustering will be referred to as structural clustering. Degree assortativity r is the tendency of nodes with similar 
degrees to be connected (homophily by degree)41.

Three network models are used to create social ties (links) between individuals. The Erdős-Rényi (ER) is the 
reference network model in which social ties are formed between pairs of nodes with a fixed probability p. This 
model generates a homogeneous random network where nodes have a characteristic  degree41. The second model 
is the Watts-Strogatz (WS), which generates networks with local clustering (high clustering coefficient) yet short 
connections between any pair of nodes. The WS model is built by connecting the knn = 6 nearest neighbours of 
a node and then rewiring the social ties with probability q41. The third model (fitness model) reproduces social 
networks more realistically by assuming that individuals tend to form social ties with others similar to them 
according to an attribute, e.g., age or gender (homophily by attribute)10. In the model, nodes are added to a net-
work following a preferential attachment mechanism regulated by the level of similarity between the individuals. 
This is incorporated by using a fitness function φJ(i) such that a newly added node J preferentially connects to a 
high-degree node taking into account its level of similarity to the existing nodes (eq. 1).

where ki and θi are respectively the degree and attribute of an existing node i, θJ is the attribute of the newly added 
node J, and β is a coefficient controlling the fitness level regarding the attribute.

When β = 0 , the growth mechanism follows the classical preferential attachment, resulting in a Barabási-
Albert network with degree distribution P(k) ∝ k−341. Attribute similarity is introduced with β > 0 , which 
competes with the degree to attract new links. The distribution becomes closer to an exponential for larger β . 
This fitness function thus enables sweeping connections from high-degree nodes (reducing the rich-get-richer 
effect) to those with similar attribute values (balancing the network towards attribute homophily).

Dynamic social networks
A dynamic social network is defined by a sequence of links (i, j) active at certain times t. In other words, a link 
(i, j) can be active or inactive at time t, unlike static networks where links are persistently active, i.e. independently 
of the time. To generate dynamic networks following specific temporal patterns of inter-event times. We first 
define a fixed network structure and then activate links at random times t sampled from a normal distribution. 
The network then evolves via a sequence of random link activation. At each time a link (i, j) is active, the sub-
sequent activation (or event) time tnext of the same link is set to tnext = t +�t , where �t is the inter-event time 
sampled from a distribution of inter-event times P(�t) and t is the time of the current link activation. Links are 
sorted to guarantee that the continuous activation times are chronologically ordered. The Markov process results 
in a transient period discarded before the network dynamics becomes  stationary32,42. This procedure guarantees 
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uncorrelation of structure and timings of link activation, where the dynamic network contains a pre-defined 
topology with asynchronous activation of links to the same node, also following a pre-defined activation pattern.

Different inter-event time distributions P(�t) can be used to simulate chosen patterns. The baseline model is 
the exponential distribution, P(�t) = be−b�t , with ��t� = 1/b , defined as the average inter-event time, corre-
sponding to a memoryless Poisson process. This model generates homogeneous activation times and is equivalent 
to activating a link uniformly at random at each time step t. Empirical evidence, however, suggests that human 
interactions have memory and are better described by heterogeneous right-skewed distributions. The power-law 
model is usually assumed to be an appropriate model for such  distribution27. Comparative rigorous statistical 
 analysis43 is, however, missing and thus competing models, such as the log-normal or Weibull, cannot be a priori 
rejected. A rigorous assessment of the best model fitting real data is beyond the scope of our study. We thus use a 
log-normal model to capture the burstiness of link activations (eq. 2). The log-normal has well-defined moments 
and allows us to study configurations with different shapes (Fig. 1). Furthermore, for large σ (see definition 
below), the log-normal and power-law are similar within the interval of  interest44.

where ��t� = exp(ν + σ 2/2) ( ν is a parameter) and the burstiness depends on the variance σ of the 
 distribution29,37. The log-normal distribution approaches a Dirac delta distribution as σ → 0 and has nearly 
linear log density as σ ≫ 1 (a power-law has linear log density). The log-normal distribution provides a con-
venient transition function between a random or low burstiness ( σ ≪ 1 ) regime and nearly power-law or high 
burstiness ( σ ≫ 1)37.

Temporal Deffuant model
The Deffuant model of opinion dynamics assumes a population of N individuals, wherein individuals i and j are 
connected via a static social tie (i, j)22. The collection of such social ties forms a social network. The opinions of 
the two individuals at time t are represented respectively by xi(t) and xj(t) , with x(t) ∈ [0, 1] . Each individual i 
is assigned a random opinion xi(t) at time t = 0 . At each time step t, a randomly chosen pair of connected indi-
viduals (i, j) interact pairwise. The interaction is successful if the difference between the individuals’ opinions 
is smaller than a confidence level d (eq. 3), where d is constant and corresponds to the individuals’ openness to 
adapt their opinion.

A successful interaction leads to both individuals updating their opinions based on the difference between their 
original opinions (eq. 4). The parameter µ ∈ [0, 1] defines the influenceability of an individual towards another, 
i.e. the extent that two opinions can adjust and converge.

We design a variation of this model incorporating temporal dynamics to the original Deffuant model via dynamic 
social networks, meaning that a link (social tie) can now be active or inactive at different times. The opinions of 
both individuals xi(t) and xj(t) can thus only be updated if the link (i, j) is active at time t. The activation times 
follow independent (asynchronous) temporal activity patterns. The activation of links is independent of the 
opinion updates, but opinion exchanges can only occur via an active link. The dynamic network is initialised 
for a chosen inter-event time distribution ( P(�t) ). After the initial transient, the Deffuant opinion dynamics 
start. Each time a link (i, j) becomes active, the subsequent activation time of the same link (i, j) is defined as 

(2)P(�t) =
1

√
2πσ�t

e
− (ln�t−ν)2

2σ2 ,

(3)|xi(t)− xj(t)| < d

(4)
xi(t + 1) = xi(t)+ µ(xj(t)− xi(t))

xj(t + 1) = xj(t)+ µ(xi(t)− xj(t))

Figure 1.  Exponential, log-normal, and power-law inter-event time distributions. The parameters of the 
log-normal are (a) σ = 0.1 ( ��t� = 1.0 ), (b) σ = 1 ( ��t� = 1.65 ), (c) σ = 2.7 ( ��t� = 37.9 ), and (d) σ = 20 
( ��t� = 1.9× 104 ). The parameters of the distributions are set such that the exponential (green curve) and the 
log-normal (blue curve) distributions have the same mean inter-event time. The parameter of the power-law 
(red curve) P(�t) ∝ �t−γ , drawn visually for reference, is (c) γ = 1.42 and (d) γ = 0.99 . Both axes are in log 
scale.
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tnext = t +�t , where �t is sampled from an inter-event time distribution. Opinions are updated following the 
temporal order of active links (See also Section “Methods” for more details on how links are activated).

The opinion dynamics evolves until the stabilisation of the opinions. This stabilisation time Tf  is defined as 
the time after �t = N  consecutive time steps without a successful exchange of opinions, i.e. either the nodes 
converged to the same opinion, or the opinions became so different that no more updates are possible. In this 
stationary state, individuals are clustered according to their opinions (hereafter called opinion clusters). This is 
done by sorting the (values of) opinions of the individuals. If two successive opinions differ less than ǫ = 10−4 , 
the individuals are assigned to the same opinion cluster. Otherwise, a new opinion cluster is created. The number 
and sizes of opinion clusters are given by Nf  and Sf  , respectively. Some individuals may get stuck on a particular 
opinion and not converge to an opinion cluster. To distinguish those cases and individuals collectively forming 
opinion clusters, an opinion cluster must have at least 1% of the total population N.

The convergence parameter µ in the Deffuant model influences the relative speed of the dynamics but not 
the final state (i.e. the number of opinion clusters)22. Therefore, we set µ = 0.5 in our experiments. We also set 
N = 1, 000 and �k� = 20 . For each experiment, we generate 15 independent samples of a chosen random net-
work model with the same set of parameters and repeat the simulations 20 times with random start conditions. 
Therefore, the average and standard deviations are calculated over m = 300 points.

Results
Evolution of the opinion dynamics
Figure 1 shows the log-normal distribution with different levels of burstiness, together with two reference models, 
the exponential distribution with the same average inter-event time, and the power-law. A low value of σ gives a 
distribution peaked around the mean (which results in nearly regular activation times). In contrast, increasingly 
right-skewed distributions (and thus increasingly burst activity) are obtained for increasing σ.

The evolution of the opinion dynamics with exponential inter-event times on a random network is equivalent 
to the standard Deffuant model on static  networks22. Initially, opinions are homogeneously distributed among the 
individuals, but self-organisation leads to the emergence of opinion clusters in the stationary state. The number 
of opinion clusters and the stabilisation time depends on the confidence level d, with lower tolerance (i.e. lower 
values of d), leading to more opinion clusters (less consensus) (Fig. 2a–c). Burst activation patterns (log-normal 
distribution) also decrease consensus as d decreases. However, the system generally takes longer to reach the 
stationary state, and the number of emergent opinion clusters changes, for some configurations, compared to the 
reference exponential case using the same average inter-event times (Fig. 2d–f). Some individuals do not change 
opinions through social interactions due to poor connectivity. Consequently, their opinions do not converge to an 
opinion cluster. This effect decreases with burst activity. The stabilisation time Tf  occurs sooner for the exponen-
tial case because of the absence of long inter-event times that slowdown the convergence to the stationary state.

Figure 3a–d shows the average number of final opinion clusters 〈Nf〉 for various levels of burstiness (log-
normal with ν = 0 and a given σ ). A single opinion cluster always emerges for confidence levels d ≥ 0.3 , like the 

Figure 2.  Temporal evolution of individual opinions. The tolerance level (a) d = 0.1 , (b) d = 0.2 , and (c) 
d = 0.5 for the exponential inter-event time distribution, and (d) d = 0.1 , (e) d = 0.2 , and (f) d = 0.5 for the 
log-normal ( σ = 2.7 ) inter-event time distributions. All cases have the same ��t� = 37.9� . The underlying 
network structure follows the Erdős-Rényi network model. The stabilisation time Tf occurs sooner for the 
exponential case and thus the simulation stops earlier as well. We plot all cases using the same time interval in 
the x-axis to highlight the slowdown to stationarity due to bursts.
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homogeneous (exponential) and non-temporal cases (standard Deffuant model). This indicates that a sufficiently 
high tolerance for different opinions leads individuals to self-organise towards consensus. On the other hand, for 
d < 0.3 , the population is split into multiple opinion clusters. Near regular ( σ = 0.1 ) and exponential temporal 
patterns show similar results, but increasing heterogeneity (i.e. burstiness, with larger σ ) leads to an increas-
ing number of opinion clusters (more diversity). For example, σ = 20 creates two times more opinion clusters 
( �Nf� ∼ 9 , for d = 0.1 ) than what would be created in the homogeneous case with the same 〈�t〉 and d. If σ = 1 , 
a significant difference in the number of opinion clusters happens only for d = 0.1 (low tolerance). A relatively 
small increase in burstiness ( σ = 2.7 ) increases the tolerance level ( d = 0.2 ) in which bursts disproportionally 
affect the number of emerging opinion clusters.

Figure 3e–h shows that the stabilisation times are also affected by burstiness; for both temporal patterns, 
decreasing d increases 〈Tf〉 . Lower d means lower tolerance, which results in fewer interactions leading to opinion 
updates and thus requiring longer times before reaching stationarity. For d < 0.3 , near regular ( σ = 0.1 ) interac-
tions lead to a small but significant speedup in the convergence to stationarity compared to the homogeneous 
case. On the other hand, increasing burstiness (larger σ ) leads to a substantial slowdown (up to 5 times slower 
for σ = 20 ). In contrast to the number of opinion clusters, burstiness always affects the convergence times 
(compared to the homogeneous case); higher burstiness leads to a dynamic slowdown, despite both temporal 
patterns leading to global consensus for confidence levels d > 0.3.

Burstiness of social interactions means that pairs of individuals interact often during specific short periods 
of time, followed by extended periods of inactivity. Such fast and repeated interactions reinforce existing opin-
ions, increasing the similarity of opinions locally and consequently creating spots or local clustering of opinions 
(local consensus). This local consensus makes the opinion clusters diverge more quickly early in the dynamics, 
followed by a slowdown in the convergence to stationarity due to the long periods of social tie inactivity (i.e. 
the large inter-event times).

Structure, burstiness and diversity
The complex network structure is included in the analysis via the fitness random model. The model generates 
networks with different structures by controlling the fitness parameter β (See Section “Methods”). The average 
degree 〈k〉 is fixed for all networks, but the average betweenness 〈b〉 and average clustering coefficient 〈cc〉 (i.e. 
triangles) are larger than expected in the configuration model (fixed degree sequence and rewired social  ties45) 
(Table 1). Figure 4 shows that lower β generates networks closer to those produced by the standard preferential 
attachment model (BA model), whereas larger β results in networks with fewer hubs, higher betweenness, and 
higher clustering coefficient. A modular structure emerges (measured by the modularity 〈Q〉46) for larger β , but 
the networks are not assortative by degree (measured by the assortativity index r41), independently of the value 
of β . These results show that the fitness function (based on attribute preference) creates social clustering and, 
consequently, brokerage in the network.

Figure 5a shows that the clustered structure (increasing β ) affects the opinion dynamics by creating more 
opinion clusters for d < 0.3 , whereas it has no effect for d ≥ 0.3 in the stationary state. Adding the heterogene-
ous temporal activity further affects the opinion dynamics by increasing the number of opinion clusters for all 
values of β (Fig. 5b,c). The results also indicate an overall slowdown of the opinion dynamics towards stationar-
ity (Fig. 5d–f). In this case, the slowdown occurs for all values of d but is more pronounced for d < 0.3 (when 
opinion clusters emerge). The effect of burstiness is relatively more significant on the convergence time ( Tf  ) 
compared to the formation (number) of opinion clusters ( Nf  ). The triangles are sufficient to increase diversity 

Figure 3.  Opinion clusters and stabilisation times for burstiness. The average number of opinion clusters 〈Nf〉 
for different levels of burstiness (a) σ = 0.1 , (b) σ = 1.0 , and (c) σ = 2.7 and (d) σ = 20 as a function of the 
confidence level d. The average stabilisation time 〈Tf〉 at the stationary state for different levels of burstiness (e) 
σ = 0.1 , (f) σ = 1.0 , and (g) σ = 2.7 and (h) σ = 20 as a function of the confidence level d. The averages are 
taken over m = 300 realisations. Vertical bars represent the standard errors.
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Table 1.  Summary of network statistics for the fitness random network model and the respective 
configuration model (swapping of one of the ends of two social ties chosen at  random45).

Model β 〈k〉 〈b〉 〈cc〉 〈Q〉 〈r〉

Fitness 0 5.98 0.0025 0.029 0 −0.08

Configuration – 5.98 0.0025 0.025 0 −0.21

Fitness 20 5.98 0.0030 0.086 0.57 −0.09

Configuration – 5.98 0.0026 0.021 0 −0.24

Fitness 100 5.98 0.0036 0.176 0.69 −0.06

Configuration – 5.98 0.0027 0.014 0 −0.29

Watts-Strogatz – 6 0.0036 0.177 0.50 −0.04

Configuration – 6 0.0032 0.003 0 −0.01

Figure 4.  Structural characteristics of the fitness random network model. (a) cumulative degree distribution, 
(b) betweenness centrality distribution (bin size 0.02), and (c) clustering coefficient distribution (bin size 0.1) 
for different values of the fitness parameter β . The histograms (b) and (c) are normalised probability density 
functions, where each bin’s height is scaled to maintain the total area under the histogram as 1.

Figure 5.  Opinion clusters and stabilisation times for burstiness and social clustering. The average number of 
opinion clusters 〈Nf〉 for the (a) exponential, (b) log-normal ( σ = 2.7 ), and (c) log-normal ( σ = 20 ) inter-event 
times as a function of the confidence level d. The average stabilisation time 〈Tf〉 for the (d) exponential, (e) log-
normal ( σ = 2.7 ), and (f) log-normal ( σ = 20 ) inter-event times as a function of the confidence level d. The 
averages are taken over m = 300 realisations. Vertical bars represent standard errors.
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(WS model), but the effect increases in the fitness model with the same average clustering coefficient but higher 
modularity (Table 1).

The results show that network clustering increases the emergence of opinion clusters while slowing down 
the creation process of those clusters. Network clustering, particularly triangles, creates local redundancies in 
communication and thus locally reinforces existing opinions. On the other hand, bridging nodes are exposed 
to opinions from different clusters and therefore take longer to converge to one or another opinion. The intro-
duction of burstiness on clustered networks boosts the reinforcement mechanism because bursts on redundant 
social ties (e.g., in triangles) promote exchanges between social neighbours. This leads to local consensus and 
makes the small opinion clusters too different early in the dynamics. After a few interactions, individuals strug-
gle to find neighbours sufficiently close in the opinion space to potentially adjust opinions. Furthermore, the 
long inter-event times slow the convergence to the stationary state because they counter-balance the fast local 
convergence with individuals having intermediate opinions.

The confidence level d, as well as, structural and temporal patterns affect the number of opinion clusters 
(Fig. 5a–c). We measure the relative size of these opinion clusters ( � ), i.e. the number of individuals per cluster 
divided by N. Figure 6 shows that opinion clusters are symmetric around the centre of the opinion space and 
〈�〉 decreases with the increasing number of opinion clusters Nf  . This means that the individuals are redis-
tributed to different opinion clusters when more clusters emerge in the opinion dynamics. In configurations 
where individuals self-organise into several opinion clusters (e.g., for smaller d), cluster size heterogeneity exists. 
Still, the emergence of (large or small) disproportionate clusters is not observed. Opinion clusters are usually 
equally spaced but not always of the same size in the (structure and activity) homogeneous case (Fig. 6a). Add-
ing temporal heterogeneity brings a better balance on the size of clusters in both homogeneous (ER)(Fig. 6b) 
and heterogeneous (fitness)(Fig. 6d) network structures. Furthermore, extreme opinions are more likely when 
multiple clusters emerge, i.e. in case of higher diversity, but they are generally observed within a relatively small 
fraction of the population.

Figure 6.  Size of opinion clusters. The relative average size of an opinion cluster 〈�(�x)〉 as a function of the 
distance ( �x = xcluster − 0.5 ) of the cluster from the central opinion ( x = 0.5 ) for various confidence levels 
d. (a) ER model and exponential inter-event times, (b) ER model and log-normal ( σ = 2.7 ) inter-event times, 
(c) fitness model and exponential inter-event times, and (d) fitness model and log-normal inter-event times 
( β = 100 ). Simulations are repeated for m = 300 starting conditions with the same set of parameters.
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Discussion
Individuals attempt to adjust their opinions via social interactions and communication. One-to-one exchanges 
occur when individuals are similar, but those with disparate opinions may hardly reach  consensus47. The cost 
to reduce large gaps in the opinions of different individuals is too large, and potential incremental gains to close 
this gap may be relatively insignificant and unable to homogenise opinions. Attempting to mitigate large gaps 
may be more damaging because lacking common ground may encourage individuals to push back if facing 
opposite  views48. In this paper, we approached the problem from a different perspective. We studied funda-
mental mechanisms to encourage interactions between relatively similar individuals and analysed the potential 
for departing from consensus and polarisation towards a more diversified opinion landscape. We designed a 
temporal version of the Deffuant opinion dynamics model to include the social network structure and temporal 
patterns of pairwise interactions. We first studied the impact of burstiness on the formation of opinion clusters 
(local consensus), then analysed the effect of the same temporal pattern in combination with social network 
clustering on opinion dynamics.

A fundamental mechanism to advance opinions towards others is reinforcement, the act of repeatedly expos-
ing someone to a given opinion so that the individual might eventually accept it. Reinforcement may be imple-
mented by social influence of peers (i.e. social contacts)16,  nudging49, algorithmic  reinforcement12,50 or, as we 
demonstrated in this paper, by bursts of interactions. We found that burstiness promotes local consensus due to 
frequent pairwise opinion adjustments during short periods, followed by longer periods of no interaction, slow-
ing down the process of opinion cluster stabilisation. The emergence of various spots of local consensus impedes 
individuals to self-organise into larger groups sharing the same opinion. Homogeneous (Poisson) temporal 
activity often leads to consensus or the emergence of two or four opinion clusters, typical signs of polarisation. 
Burstiness, on the other hand, leads to a multi-partisan population with up to ten opinion clusters in completely 
random social structures. This effect is more substantial for lower tolerance to adjust opinions; if individuals only 
accept interacting with those very similar to them, chances are higher that multiple opinion clusters emerge. As 
mentioned above, local structural clustering (i.e. social triangles) also promotes reinforcement. The higher the 
social clustering, the higher the number of opinion clusters. According to our computational experiments, the 
combination of burstiness and clustering substantially reduces polarisation with the emergence of at least ten 
opinion clusters for relatively high tolerance values ( d ≤ 0.2 ). Furthermore, these temporal structures refrain 
the emergence of disproportionately large groups dominating the population, independently of the number of 
opinion clusters. Furthermore, burstiness promotes a more balanced opinion landscape, where opinion clusters 
are less far apart. Moderate opinions generally prevail, but diversity led to higher chances of extreme opinions, 
albeit those clusters with extreme opinions are relatively smaller than moderates.

These results suggest that homogeneity (i.e. a lack of social clustering and absence of burstiness) promotes 
polarisation. Burstiness and structural clustering (triangles and community structure), on the other hand, 
increase opinion diversity. A maximum variety of opinions is, of course, observed if each individual has their 
own opinion. However, in real settings, groups often converge to a consensus by sharing similar views. Fitting 
our model to real data is challenging because data on the temporal patterns of daily offline social interactions 
are unavailable. However, previous research suggested that the distribution of inter-event times of communica-
tion via letters fits a power-law P(�t) ∝ �t−1.551 (which is approximately our log-normal model with σ = 2.7 ) 
whereas online communication follows P(�t) ∝ �t−128 (which is approximately our log-normal model with 
σ = 20 ). In these cases, our experiments suggest that online communication should create less polarisation than 
expected in offline communication. We argue that this phenomenon is not observed in real-life (i.e. less polarisa-
tion online) because structural clustering is substantially lower in online social media ( ccmedian ∼ 0.04 ) compared 
to offline social networks ( ccmedian ∼ 0.37)52. We stress that the relatively low social clustering observed in social 
media is thus sufficient to promote polarisation. The reported difference in social clustering is independent of 
the network  size52, but the studied offline social networks are relatively small, with a few hundred individuals. 
Individuals are constrained and organised into strong (network) communities (e.g., within schools, work, clubs, 
cities). The potential fragmentation of offline social networks would further promote diversification and thus 
a multi-partisan society, as suggested by our model. This rationale implies that the low cost of creating online 
friends, leading to almost unrestricted opportunities for social interactions, creates the sufficient conditions for 
polarisation, independently of any other social mechanisms.

Our study also showed that the convergence towards stationarity is extended in the presence of heterogeneity, 
with both network clustering and burstiness contributing to the slowdown of the dynamics. This is a consequence 
of the coexistence of several small clusters of different opinions. Bridging individuals (i.e. brokers, with high 
betweenness and more often observed in highly clustered networks) require more time to position themselves 
in a particular opinion cluster because they are exposed to different social groups. Similarly, the longer periods 
of absence of activity (due to the tail of the distribution of inter-event times) increases the time needed for pairs 
of individuals to converge to one or another  opinion33,34,37. Similar dynamics have been observed in the spread 
of simulated infectious diseases, with bursts initially accelerating the spread but eventually slowing down the 
diffusion because the long periods of inactivity reduce the chances of finding susceptible nodes to  infect30–32,53.

Our study starts with the assumption that individuals adjust their opinions via pairwise interactions with 
similar peers. Therefore, both social network structure and the timings of social interaction are shown to be 
responsible for regulating the emergence of groups of individuals sharing the same opinion. This is reasonable 
in both offline and online environments. However, in real-life settings, individuals are also exposed to mass 
media (e.g., radio, TV, newspapers) and group activism that may contribute to shaping opinions. Future models 
could include broadcasting and synchronous group interactions to accommodate that  mechanism23. Information 
personalisation also plays a role. In offline social interactions, power relations, norms, or contextual conversa-
tions may prevent individuals from sharing certain opinions socially. On the other hand, automated algorithmic 
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personalisation is the norm in online settings and biases the information exposed to individuals based on their 
previous activity, creating the so-called filter  bubbles12. Other social structures and temporal patterns may also 
play a role. We assumed populations with a fixed size, fixed density of social contacts, and a log-normal dis-
tribution of inter-event times. Other models may be more appropriate, including higher density networks and 
the power-law model of inter-event times, which is often adopted due to scale invariance properties. Future 
studies should fit real structural and temporal data to our opinion model to further validate our results in dif-
ferent contexts. Although all those mechanisms contribute to opinion dynamics and can be actively exploited to 
manipulate opinions, our study suggests that more attention must be given to reshaping the underlying structure 
of online social networks to promote a multi-partisan society. Burstiness in social media communication may 
induce opinion diversity by creating local spots of consensus. Such diversity may be boosted by increasing social 
redundancy via social triangles strengthening online social relations.

Data availability
All data generated or analysed during this study are included in this published article.
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