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Temporal patterns of bacterial 
communities in the Billings 
Reservoir system
Marta Angela Marcondes 1, Rodrigo Pessôa 1, Alberto José da Silva Duarte 2, 
Patricia Bianca Clissa 3 & Sabri Saeed Sanabani 4,5*

In this study, high-throughput sequencing of 16S rRNA amplicons and predictive PICRUSt functional 
profiles were used to perform a comprehensive analysis of the temporal bacterial distribution and 
metabolic functions of 19 bimonthly samples collected from July 2019 to January 2020 in the surface 
water of Billings Reservoir, São Paulo. The results revealed that most of the bacterial 16S rRNA gene 
sequences belonged to Cyanobacteria and Proteobacteria, which accounted for more than 58% of the 
total bacterial abundance. Species richness and evenness indices were highest in surface water from 
summer samples (January 2020), followed by winter (July 2019) and spring samples (September and 
November 2019). Results also showed that the highest concentrations of sulfate  (SO4

–2), phosphate 
(P), ammonia  (NH3), and nitrate  (NO3-) were detected in November 2019 and January 2020 compared 
with samples collected in July and September 2019 (P < 0.05). Principal component analysis suggests 
that physicochemical factors such as pH, DO, temperature, and  NH3 are the most important 
environmental factors influencing spatial and temporal variations in the community structure of 
bacterioplankton. At the genus level, 18.3% and 9.9% of OTUs in the July and September 2019 
samples, respectively, were assigned to Planktothrix, while 14.4% and 20% of OTUs in the November 
2019 and January 2020 samples, respectively, were assigned to Microcystis. In addition, PICRUSt 
metabolic analysis revealed increasing enrichment of genes in surface water associated with multiple 
metabolic processes rather than a single regulatory mechanism. This is the first study to examine 
the temporal dynamics of bacterioplankton and its function in Billings Reservoir during the winter, 
spring, and summer seasons. The study provides comprehensive reference information on the effects 
of an artificial habitat on the bacterioplankton community that can be used to interpret the results of 
studies to evaluate and set appropriate treatment targets.

Pollution of water resources remains a critical environmental concern across the globe. In developing countries, 
rapid urbanization, poor urban planning, and inadequate waste management exacerbate water quality deteriora-
tion, leading to increased microbial  concentrations1. Bacterioplankton communities play a vital role in controlling 
energy flow and biogeochemical cycles within aquatic ecosystems. Their dynamics are subject to environmental 
factors such as total  phosphorus2,  pollution3,  pH4, and dissolved oxygen (DO)5. Temporal variations in marine 
bacteria distribution and abundance suggest a seasonal influence on microbial  diversity6. The biogeochemical 
cycling of nutrients by sediment bacteria is essential for maintaining the trophic state of water  bodies7–9.

Understanding bacterioplankton diversity and its response to anthropogenic disturbances is key to detecting 
environmental changes in local ecosystems. Urbanization, for instance, has been linked to alterations in the phys-
icochemical properties of aquatic environments, leading to biodiversity loss and reduced ecological  function10,11. 
Changes in bacterioplankton community structure can significantly impact water quality, particularly due to the 
threat posed by toxin-producing cyanobacteria12–15. The interaction between cyanobacteria and heterotrophic 
bacteria influences the structure of bacterioplankton  communities16, while bacteria serve as indicators of surface 
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water  contamination17. Pathogenic microbes and heavy metals also pose a significant threat to water quality, 
affecting human and animal  health18.

Water properties fluctuate daily, with noticeable temporal and spatial  variations19,20. Therefore, comprehensive 
monitoring of freshwater sources is crucial for maintaining suitable water quality. Reservoirs, which are lim-
nologically a mix between a lake and a river, exhibit pronounced stratification in summer and potential reverse 
stratification in winter, affecting the distribution of chemicals and nutrients in the  water21,22.

São Paulo, the largest urban area in Brazil, faces water stress with an annual water availability of less than 1,700 
m3 per person in the São Paulo Metropolitan Region (SPMR)23. The Billings Reservoir, a significant freshwater 
source for the SPMR, serves multiple functions, including irrigation and flood  control24. Despite its importance, 
the microbial community structure within the Billings Reservoir has been understudied since its construction 
in  194025. Previous studies primarily focused on physicochemical variables and the presence of bacterial strains 
using culture-dependent  methods22,26–29. Recent culture-independent studies conducted by our group revealed a 
higher prokaryotic diversity in Billings Reservoir compared to similar water systems and also a high abundance 
of cyanobacteria24,30. These bacteria are considered the most widespread photosynthetic organisms due to their 
global distribution and their significant ecological presence in nutrient-rich habitats, which often lead to the 
formation of  blooms31. Cyanobacterial blooms are considered harmful to aquatic ecosystems as they are able 
to alter critical ecological parameters such as dissolved oxygen concentration, pH balance and light availability. 
Most species contributing to these blooms are capable of synthesizing cyanotoxins, leading to their classifica-
tion as harmful cyanobacterial  blooms31. The presence of cyanotoxins at Billings Reservoir was also shown by 
additional  studies21,25,32. It is possible that nutrient inputs from agriculture and a rise in water temperature are 
among the triggers of the algal bloom in the reservoir, but this needs to be confirmed by further investigations. 
Without a complete phytoplankton succession series, however, the data are not yet sufficient to reveal the eco-
logical processes of the algal bloom.

Therefore, this study involved bi-monthly sampling to examine the phytoplankton dynamics in the surface 
waters of Billings Reservoir, spanning from June 2019 to January 2020. The study hypothesizes that the Billings 
Reservoir exhibits significant seasonal shifts in phytoplankton composition due to environmental factors, with 
species displaying distinct adaptive responses to optimize survival and dominance in fluctuating conditions. The 
objective is to report on seasonal phytoplankton composition shifts and their adaptive responses to environmen-
tal conditions. The findings from this study offer a preliminary assessment of the unique ecological conditions 
formed by the seasonal activities within the reservoir.

Material and methods
Study area and sampling
Located in southeastern São Paulo, Billings Reservoir is fed by ten main tributaries, namely Rio Grande, Ribeirão 
Pires, Rio Pequeno, Rio Pedra Branca, Rio Taquacetuba, Ribeirão Bororé, Ribeirão Cocaia, Ribeirão Guacuri, 
Córrego Grota Funda, and Córrego Alvarenga. This reservoir is classified in the II class of Resolution 357 
of the Brazilian Environmental Council (CONAMA), pursuant to Decree 10.755/77. The tree-shaped Billings 
Reservoir was built in 1925 during the water crisis as one of the solutions to minimize the impact of the crisis 
on public supply. Billings Reservoir is the largest water storage reservoir in the SPMR. It covers 127  km2 in six 
counties and has a total volume of 1228.7 ×  106  m3 with a water surface area of 10,814.20 ha and a maximum 
depth of 18  m33–35. It includes eight arms (or subregions): Rio Grande, Rio Pequeno, Rio Capivari, Rio Pedra 
Branca, Taquacetuba, Bororé, Cocaia, and Alvarenga. The reservoir’s water quality is poor because the Pinheiro 
River, Brazil’s most polluted aquatic ecosystem, is diverted into the reservoir to increase electricity generation 
(by water pumping) at the Henry Borden Power Plant on the São Paulo  coast27,30,36. Since 1922, however, such 
pumping has been permitted only in the event of a flood in the capital  city30,37. Currently, the reservoir is used as 
a water source, for fishing, navigation, recreation and hydroelectric power  generation38. Approximately 250 ml 
of surface water (10 cm depth) was collected in triplicate at 30 locations approximately 18 km apart along the 
reservoir using a 5-L van spike sampler. Samples were collected in July 2019 (winter month), September 2019 
(spring month), November 2019 (hot spring month), and January 2020 (summer month). At the beginning 
of the study, the geographic coordinates of the collection sites were recorded to ensure that subsequent water 
samples and measurements were taken on water from specific locations. Collected samples were stored in cool 
boxes at 4 °C in the dark and transported to the laboratory, where they were immediately processed as previously 
 described24,30. The number of sites on the reservoir and their locations are shown in Fig. 1.

Physicochemical analysis
Samples collected bimonthly were analyzed on site using a multiparameter water meter (YSI, USA) to determine 
the main physicochemical parameters, namely turbidity, temperature (Temp), dissolved oxygen (DO), and pH. 
Concentrations of nitrate  (NO3-), sulfate  (SO4

2−), phosphate  (PO4
3− (designated here as “P”) and ammonia  (NH3) 

were analyzed from another subsample (250 ml) in the laboratory according to standard procedures (CONAMA 
2005). These physicochemical parameters were frequently used to evaluate the ecological status of the reservoir 
according to the Brazilian standard (Order of the Minister of Environment, 20005).

DNA extraction, library preparation, and sequencing
DNA was extracted from approximately 600 µl of each concentrated water sample by centrifugation of the 
surface water samples as detailed in our recently published  study24. The PowerSoil DNA isolation kit (Mobio 
Laboratories Inc., Carlsbad, CA, USA) was used according to the manufacturer’s protocol. DNA quality was 
checked by 1% (w/v) agarose gel electrophoresis, and the amount was determined using a Qubit 2.0 fluorometer 
(Life Technologies: Carlsbad, CA, USA). The extracted DNA was stored at -20 °C until further processing. PCR 
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of the V3-V4 variable region of the 16S rRNA gene was performed using the Bakt_341F/Bakt_805R39, as previ-
ously  described40. The amplicons of all samples were purified using a PCR clean-up kit (D4014, Zymo research) 
and then used as DNA template for a second round of PCR to index the DNA and prepare libraries as described 
 previously41,42. The purified indexed libraries were pooled in equimolar amounts, diluted to four nM, and finally 
loaded onto an Illumina MiSeq cartridge for paired-end 300 sequencing.

Data analysis pipeline and statistical analysis
Processing raw reads started with quality check and filtering of low quality (< Q25) reads by Trimmomatic ver. 
0.3243. After QC pass, paired-end sequence data were merged together using fastq_mergepairs command of 
VSEARCH version 2.13.444 with default parameters. Primers were then trimmed with the alignment algorithm 
of Myers and  Miller45 at a similarity cut off of 0.8. Non-specific amplicons that do not encode 16S rRNA were 
detected by  nhmmer46 in HMMER software package ver. 3.2.1 with hmm profiles. Unique reads were extracted 
and redundant reads were clustered with the unique reads by derep_fulllength command of  VSEARCH44. 
The EzBioCloud 16S rRNA  database47 was used for taxonomic assignment using usearch_global command of 
 VSEARCH44 followed by more precise pairwise  alignment45. Chimeric reads were filtered on reads with < 97% 
similarity by reference based chimeric detection using UCHIME  algorithm48 and the non-chimeric 16S rRNA 
database from EzBioCloud. After chimeric filtering, reads that are not identified to the species level (with < 97% 
similarity) in the EzBioCloud database were compiled and cluster_fast  command44 was used to perform de-novo 
clustering to generate additional OTUs. Following chimeric filtering, reads that could not be identified to the 
species level (with < 97% similarity) in the EzBioCloud database were compiled, and the cluster_fast  command44 
was used to perform de novo clustering to generate additional OTUs. Finally, OTUs with single reads (singletons) 
are omitted from further analysis. The secondary analysis which includes diversity calculation and biomarker 
discovery was conducted by in-house programs of Chunlab, Inc (Seoul, South Korea). The alpha diversity indices 
 (ACE49,  Chao150,  Jackknife51,  Shannon52,  NPShannon53,  Simpson52 and Phylogenetic  diversity54), rarefaction 
 curves55, rank abundance  curves56 are estimated. To visualize the sample differences, beta diversity distances were 
calculated by Jensen–Shannon  algorithm57. PERMANOVA test was used to determine significant differences in 
beta diversity. With functional profiles that are predicted by  LEfSe58 and Kruskal–Wallis H  Test59). All analytics 
mentioned above were performed in EzBioCloud 16S-based Microbiome Taxonomic Profiling (MTP), which is a 
ChunLab’s bioinformatics cloud platform that automatically process the uploaded fastq data which are converted 
to MTP data unit. An MTP represents single metagenomic or microbiome sample.

Figure 1.  Map showing sampling site locations in the Billings Reservoir in São Paulo. The map was generated 
using QGIS 3.22.0 (Redlands, CA, USA).
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Comparison of differences between water samples was performed using the one-way analysis of variance test 
(ANOVA). Samples with significant differences were subjected to the Turkey post-hoc test to determine which of 
the variables were statistically significant. To determine the causes of bacterial community dominance, principal 
component analysis (PCA) in Past4.07b software was used to examine the correlation between bacterial com-
munities and environmental variables.

The map was created using ArcGIS software, version 10.2, licensed (ESRI, Redlands, California, USA). The 
administrative shapefiles used to create the map were obtained from the open-access domain of DataGEO: http:// 
datag eo. ambie nte. sp. gov. br/. To display the study sites on the map, Global Positioning System (GPS) coordinates 
for the study sites were converted to shapefiles that were combined with the administrative shapefiles for the sites.

Results
Variation of water physicochemical properties
To obtain information on the diversity and composition of the bacterioplankton community in the surface waters 
of Billings Reservoir, 30 sites along the reservoir were sampled bimonthly. Significant variations in physicochemi-
cal parameters were observed during the study period (Fig. 2). For example, the average water depth or level of 
the reservoir decreased from 7.74 m in July and September (winter season) to 5.47 m in November 2019 and to 
5.89 m in January 2020 (dry season), as shown in Fig. 3. In addition, the highest median temperature of 26.85 °C 
was observed in January (range 21.9–29.20 °C). The lowest and highest water temperatures were recorded at 
sites B14 (minimum of 20.90 °C in July 2019 and maximum of 27.70 °C in January 2020) and B18 (minimum of 
19.90 °C in September 2019 and maximum of 27.10 °C in January 2020). No significant differences in DO were 
observed over time (Fig. 3). Site B06 showed the greatest variation at DO with the highest value of 9.4 mg/L in 
November 2019 and the lowest of 1.7 mg/L in September 2019 (Fig. 2). As shown in Fig. 3, pH was constant 
at most sites in July 2019, November 2019, and January 2020. A significant decrease in pH was observed for 
samples collected in September 2019. The same figure shows the greatest variation in pH in November 2019 
(median 7.8; range 6–8.6) and January 2020 (median 7.9; range 6.45–8.6). The greatest variation in pH within 
the same site was observed at B26 (minimum of 6 in November 2019 and maximum of 8.3 in January 2020), 
B12 (minimum of 6.5 in September 2019 and maximum of 8.2 in November 2019), and B16 (minimum of 6.8 
in September and maximum of 8.63 in July) (Fig. 2). Water turbidity varied over time, which was particularly 
evident in samples collected in January 2020 compared to samples collected in July 2019, namely B15, B12, and 
B09 (Figs. 2 and 3). The highest concentrations of  SO4

2−, P,  NH4+ –N, and  NO3− were detected in November 
2019 and January 2020 (Fig. 4).

Figure 2.  Seasonal variation of physicochemical properties of surface water samples from different sites of 
Billings reservoir during the study period (July 2019–January 2020).

http://datageo.ambiente.sp.gov.br/
http://datageo.ambiente.sp.gov.br/
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The measured physicochemical water parameters were ordinated in a PCA (Fig. S1). Our interpretation on 
loading was considered significant if was greater than 0.40 or less than − 0.40 60. In the July 2019 PCA, the first 
two principal components (PCs) accounted for 44.5% of the variability in the data set, with pH and DO along 
PC1 and water temperature and  NH4+ –N along PC2 showing strong positive associations with water quality 
(Fig. S1a). However, it is important to consider that the increase in pH may be influenced by cyanobacterial 
blooms, which are known to elevate pH levels as a result of CO2 uptake during photosynthesis. Thus, the role 
of pH as a response variable rather than an explanatory one in the context of cyanobacterial abundance must 
be carefully considered when interpreting these PCA results. PC1 and PC2 explained 50.6% of the variability in 
the data set in the September 2019 samples, and phosphate concentrations and turbidity were most strongly and 
positively associated with PC1 (Fig. S1b). Along PC2, sulfate concentrations had a much greater loading than 
the eight other variables in this component. Analysis of PC1 and PC2 in the November 2019 samples explained 
51.2% of the variance. As shown in Fig. S1c, PC1 showed a strong positive correlation with phosphate, sulfate, 
and turbidity, while PC2 was strongly associated with water depth. Individual loading analysis of the January 
2020 samples showed that PC1 and PC2 explained 53.6% of the variability in the data set. Sulfate and nitrate 
concentrations were most strongly associated with PC1 and pH and phosphate concentrations were most strongly 
associated with PC2 (Fig. S1d). PC1 scores of water turbidity and nutrient variables followed similar patterns in 
bi-monthly samples collected from September 2019 to January 2020. DO Concentrations radiated in opposite 
directions, indicating a strong negative correlation of these variables. Algae were observed floating on the surface 
of the reservoir at some locations during the January 2020 sampling.

Sequencing depth and diversity analysis
Of the 30 sites, 76 site-matched water samples (19 × 4 bimonthly samples) were successfully amplified and 
sequenced from surface layers and submitted for 16S rRNA analysis. Up to 100,000 MPS reads from each sam-
ple were uploaded, quality controlled, and profiled using the EzBioCloud tool. Trimming-based quality con-
trol removed 142,347 low-quality amplicons from all samples. The taxonomic approach detected and removed 
243,108 and 1,629,579 non-target and chimera amplicons, respectively. The total quality assessment and trimming 
steps resulted in 4 945 059 valid reads from all samples considered for further analysis. On average, each sample 
or MTP was represented by 65,066 ± 7,604 valid reads. The average length of these reads was approximately 435 
(± 17.22) nucleotides, with average minimum and maximum lengths of 409 (± 2.2) and 455 (± 2.3) nucleotides, 
respectively. Of the valid reads, 3,489,504 (70.6%) sequences were identified at the species level with a similarity 

Figure 3.  Boxplot showing variation of physicochemical parameters (average water depth, temperature, 
dissolved oxygen (DO), pH, and turbidity) of surface water samples from different sites of Billings reservoir 
during the study period (July 2019–January 2020).
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cutoff of 97%. The average of Good’s coverage estimator for OTUs in all MTPs was 99.6 (± 0.22), indicating that 
the diversity of bacterioplankton in all MTPs was adequately covered by the generated sequences. The number 
of observed OTUs determined in the water samples of the January 20 samples was higher than that of the Sep-
tember 19 samples (Bonferroni-corrected p = 0.049). When analyzing alpha diversity using the diversity indices 
ACE, Chao 1, Jackknife, NPShannon, or Simpson, we found no significant differences among the four sample 
groups (p > 0.05) (Fig. 5). For beta diversity, PERMANOVA analysis revealed significant differences in bacterio-
plankton structure between sampling period (Fig. 6a). Pairwise comparisons revealed significant differences in 
beta diversity between July 2019 samples compared to all other sampling sites (p < 0.001) and between Sep 2019 
and Jan 2020 (p = 0.019) (Fig. 6b).

Bacterial community identification at phylum and genus levels
Sequences from all data sets of the four sample groups could be assigned to 48 phyla. The overall composition of 
bacterioplankton at the phylum level of all surface samples is shown in Fig. S2. Among these groups, cyanobac-
teria were the phyla with the most assigned sequences, averaging 31.75%. Other dominant bacterial phyla were 
Proteobacteria (26.5%), Actinobacteria (15.5%), Bacteroidetes (12.25%), Verrucomicrobia (6%), Planctomycetes 
(3%), and Chlorobi (1.25%) (Fig. 7). At the genus level, 18.3% and 9.9% of OTUs in the July and September 2019 
samples, respectively, were assigned to the genus Planktothrix, while 14.4% and 20% of OTUs in the November 
2019 and January 2020 samples, respectively, were assigned to the genus Microcystis within the family Chroo-
coccaceae. The distribution of the 10 most frequently detected bacterioplankton genera in all samples analyzed 
at four time points is shown in Fig. 8. The relative abundance of cyanobacteria generally increased from July to 
September (26.7%) and increased in the following months to > 35% in November and January (Wilcoxon rank 

Figure 4.  Boxplot showing variation of physicochemical parameters (sulfate  (SO4
–2), phosphate (P), ammonia 

 (NH3), and nitrate  (NO3)) of surface water samples from different sites of Billings reservoir during the study 
period (July 2019–January 2020).
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Figure 5.  Alpha diversity indices comparing the four sample groups. No significant differences were found 
between the groups.

Figure 6.  Beta diversity computed by a principal coordinate analysis (PCoA) and PERMANOVA test and b 
pairwise comparisons of the bacterioplankton communities in the surface water of Billings reservoir during the 
study period (July 2019–January 2020).

Figure 7.  Phylum level composition of bacterioplankton communities within the surface water of billings 
reservoir during the study period (July 2019–January 2020).



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2062  | https://doi.org/10.1038/s41598-024-52432-6

www.nature.com/scientificreports/

Figure 8.  The distribution of the 10 most frequently detected bacterioplankton genera in all samples analyzed 
at four time points.

Figure 9.  Boxplot showing the phylum relative abundance of the most abundant taxa of (A) Cyanobacteria, 
(B) Proteobacteria, (C) Actinobacteria, and (D) Bacteroidetes in four sample groups. Box borders represent the 
first and third quartiles, and the central lines represent the medians.
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sum test, p < 0.05) (Fig. 9A). It is noteworthy that the different sampling sites showed different trends in the rela-
tive abundance of cyanobacteria. For example, in July, the lowest concentration of cyanobacteria was detected 
in sample B04, while the highest concentration was measured in sample B12 (Fig. S2). This scenario was also 
observed in January, when sample B04 had the lowest concentration of cyanobacteria. Strong concentrations of 
cyanobacteria were observed in all samples collected in November, with their relative abundance exceeding > 50% 
in sample B15 and > 20% as the lowest concentration in sample B29. A greater amount of Proteobacteria was 
observed in September 2019 than in January 20 (Wilcoxon rank sum test, p < 0.05) (Fig. 9B). At the same time, 
the relative abundance of Actinobacteria in the July 2019 samples was remarkably higher than the relative abun-
dances calculated at other sampling times (Fig. 9C). In addition, the relative abundance of Bacteroidetes was 
significantly lower in the July 19 samples than in September 19 and November 19 (Fig. 9D). The abundance of the 
remaining bacterial phyla, including Verrucomicrobia, Planctomycetes, and Chlorobi, did not differ significantly 
in the bi-monthly samples.

In addition to the predominant phyla in Billings Reservoir, there were approximately 3.98% unclassified OTUs 
in the surface water, indicating as yet unidentified bacterial populations. The detailed distribution of these new 
bacteria by location and date of collection is shown in Fig. S3.

We then investigated the relationships between physicochemical variables and bacterial composition of the 
seven major phyla. Analysis of the July 2019 samples showed that the abundance of cyanobacteria was positively 
related to water depth and turbidity, and that Proteobacteria and Bacteroidetes were strongly related to tempera-
ture and nitrate levels, respectively (Fig. 10A). The abundance of Proteobacteria was most strongly and positively 
associated with PC1, explaining 27% of the variance in this component. Along PC2, the concentrations of DO, 
the relative abundances of Planctomycetes and Verrucomicrobia had a much greater loading than the 13 other 
variables in this component. Analysis of PC1 and PC2 in the September 2019 samples explained 49.5% of the 
variance. PCA showed that the abundance of Actinobacteria, Planctomycetes, and Verrucomicrobia was most posi-
tively associated with pH and temperature (Fig. 10B) and that taxa belonging to Proteobacteria and Bacteroidetes 
had the strongest loadings on PC1. The first two principal components of the Nov-2019 samples explained 45.3% 
of the variability in the data set, with P concentrations most strongly and positively associated with PC1 and 
Proteobacteria abundance negatively associated with PC2. Figure 10C shows that Proteobacteria, Bacteroidetes, 
and Cyanobacteria were positively associated with nitrate concentration in water, while Actinobacteria were 
related to pH. The abundance of Planctomycetes and Verrucomicrobia was related to the concentrations of DO. 
Finally, PC1 and PC2 of Jan-2020 samples explained 53.6% of the variance, and the individual variable loadings 
showed that temperature and pH were the variables most positively associated with PC1, while Proteobacteria 
and Verrucomicrobia were negatively associated with PC1 and PC2, respectively. The PCA shown in Fig. 10D 
indicated that Actinobacteria and Verrucomicrobia were associated with the concentrations of DO and water 
depth, and that the abundance of Planctomycetes was affected by temperature and pH.

Figure 10.  Principal component analysis (PCA) of the distribution of the 7 most abundant phyla (highlighted 
in color) relative to nine environmental variables in sample groups collected in A July 2019, B November 2019, 
and D January 2020. Samples are written in blue and indicated by a black dot.
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Taxonomic biomarker discovery and functional analysis
LEfSe analysis was performed on bimonthly samples using KEGG orthology (KO) of metabolic functions pre-
dicted by PICRUSt to assess taxonomic biomarkers. The Kruskal–Wallis method was used to examine grouped 
data with a significance of 0.05, and the statistically differentially distributed KO Ids were used for LDA model 
analysis, with relative frequency of significance assessed by an LDA threshold of 2.0. A total of 32 genera and 41 
species were significantly more abundant in all paired comparisons between sampling dates (p value (FDR) < 0.05, 
LDA effect size ≥ 3.0) (Table  S1). Cytophagaceae (GU454944_g species) and Planktophila were among the bacteria 
whose relative abundances differed significantly (Fig. 11A and B). For example, the September 19 and November 
19 samples were characterized by a preponderance of Cytophagaceae (LDA score 4.37, p value (FDR) = 0.00036), 
while the July 19 bacteriome was characterized by a preponderance of Planktophila compared to the other 
sampling dates (LDA score 3.98, p value (FDR) = 0.004). LEfSe analysis also showed that Planctomycetes were 
significantly less abundant in the January 20 samples compared to the other sampling dates (LDA score 3.92, p 
value (FDR) < 0.0001) (Fig. 11C). The analysis also showed that the Microcystis aeruginosa cyanobacteria group 
was significantly more abundant in the January 20 samples (Fig. 11d Microcystis aeruginosa cyanobacteria group), 
while C. Planktothrix_uc species were detected significantly more often in the July 19 samples (Fig. 11C and E. 
Planktothrix_uc).

Analysis of the potential functions of the metagenomes between collection dates yielded a total of 5575 sig-
nificant KO Ids for all paired comparisons between collection dates (p value (FDR) ≤ 0.05) (Table  S2). Metabolic 
pathways (ko01100) was the most abundant functional gene category, followed by biosynthesis of secondary 
metabolites (ko01110), microbial metabolism in different environments (ko01120), two-component system 
(ko02020), ABC transporters (ko02010), biosynthesis of cofactors (ko01240), and carbon metabolism (ko01200).

Discussion
In this study, we examined the spatiotemporal changes in bacteriological and physicochemical parameters over 
the course of a year in 19 bi-monthly surface water samples collected from Billings Reservoir. Genome sequenc-
ing of the 16 s rRNA gene was generated using the Illumina MiSeq platform and used to analyze variance in 
bacterial community structure.

Variation in physicochemical parameters
The characteristics of the surface water from Billings Reservoir showed seasonal differences in physicochemical 
composition. For example, as expected, water surface temperature, an important abiotic factor affecting aquatic 
microbial communities, was on average 4.70 °C warmer during the summer months than during the winter 
months. A temperature fluctuation of this magnitude can greatly accelerate the growth rates of cyanobacteria 
and mesophilic  bacteria61–63. Seasonal changes in temperature have also been reported as the principal factor 
driving alterations of the bacterial populations in freshwater Lake  Taihu64 and in Pearl River Estuary  sediments65. 
In addition to temperature fluctuations, we have found that the amount of nutrients in the reservoir changes 
with the seasons. This may have affected not only the bacterioplankton  communities66,67 but also led to seasonal 
responses in the fish  communities68. Our results are consistent with a previous study by Mankiewicz et al.69 
who described the dynamics of Microcystis in the summer of five consecutive years at Sulejów Reservoir and 
concluded that optimal nutrient concentrations, high water retention, and temperature were the main causes of 
the prevalence of Cyanobacteria producing toxic microcystins. In other studies, the availability of nitrogen, not 
phosphate, was considered one of the most important factors in the dominance of toxic over nontoxic Microcystis 
populations, usually caused by gradual anthropogenic  eutrophication70,71. In contrast, DO, which often affects 
bacterial communities in aquatic  ecosystems72, does not vary significantly over the course of the year, so it was 
not considered to affect bacterioplankton communities in Billings surface water. Consistent with our results on 
the water surface from Billings reservoir, Pierangeli et al.73 recently found that DO and groundwater pH showed 

Figure 11.  Linear discriminant analysis effect size (LEfSe) of the five most affected eukaryotic phytoplankton 
bacteria with an LDA score higher than 2.0 and P values less than 0.05 in all sample groups.
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no statistical differences among sampling sites. According to our results, the water was neutral, with a relatively 
large increase in pH in September, the month of transition from the dry winter to the hot rainy season. All 
surface water samples collected from the reservoir, regardless of season, had an average pH of 7.6 and a range of 
6.0 to 8.86, which is within the pH range determined by WHO for most natural waters. The higher pH than the 
upper limit of 8.5 could be due to abundant rainfalls which promotes leaching and dissolution of  salts74 or to 
algal growth, which could be promoted by increased CO2 consumption during  photosynthesis75. Our results also 
showed that the water level in the reservoir was lowest during the summer season due to increasing temperatures, 
increasing evaporation, and increased demand for human consumption. Many studies have shown that water 
depth affects the physicochemical composition of the water as well as the release of nutrients from the sediment 
and favors the growth of certain  bacteria76–79.

Bacterioplankton dynamics and community structure
As expected, the results showed that seasonal variations dominate the spatial patterns of bacterioplankton com-
munities in the reservoir, as evidenced by the diversity indices and community composition. In particular, 
summer showed higher diversity indices and different bacterioplankton community composition than the other 
seasons. These differences in abundance could have been caused by significant seasonal variations in temperature 
and the availability of inorganic nutrients such as nitrogen in the reservoir.

The phytoplankton of Billings Reservoir showed that the cyanobacteria group quantitatively dominated the 
community structure, especially in summer. These results are consistent with those of other studies in Carpina 
Reservoir (Pernambuco, Brazil)80, Lake Tanganyika (Central Africa)81, Lake Victoria (Kenya)82, Dongping Lake 
(China)83, and Nui Coc Reservoir (Vietnam)84. The significant abundance of cyanobacteria in all seasons reported 
in this study suggests that these strains have the ability to adapt to the changing environmental circumstances of 
reservoirs. The fact that the cyanobacteria dominated in summer and could reach higher concentrations than the 
cyanobacteria that dominated in spring and winter indicates greater eutrophication. The increase in cyanobac-
teria can have both positive and negative ecological implications. On the one hand, they contribute to primary 
production and are a fundamental component of the aquatic food  web85. On the other hand, some cyanobacteria 
can produce toxins that are harmful to aquatic life and human health, leading to issues when they become overly 
abundant. Our findings suggest that the proliferation of cyanobacteria in the Billings Reservoir can be traced 
to a confluence of environmental and ecological variables. These blue-green algae are remarkably adaptable to 
a spectrum of aquatic habitats due to their photosynthetic nature, enabling them to flourish under diverse light 
conditions and nutrient availabilities, thus outcompeting other species in numerous ecosystems. Notably, the 
study highlighted a surge in key nutrients such as sulfate, phosphate, ammonium nitrogen, and nitrate nitrogen 
during November 2019 and January 2020, which cyanobacteria efficiently utilize, particularly phosphate, to thrive 
in eutrophic  conditions86. Moreover, the optimal median water temperature of 26.85 °C recorded in January 
bolsters their metabolic activities, accelerating growth and proliferation. Additionally, the reduction in water 
depth during the dry season presumably enhances light penetration, a boon for the photosynthesis-dependent 
cyanobacteria79. The consistent dissolved oxygen (DO) levels observed by the study imply that oxygen availability 
was not a constraining factor, and the photosynthetic activity of cyanobacteria could have contributed to main-
taining these stable DO  concentrations87. The proliferation of cyanobacteria leads to the frequent occurrence of 
algal  blooms88. During algal blooms, cyanobacteria release various low molecular weight compounds such as 
glucose, organic acids, amino acids, and sugar alcohols, benefiting bacteria in the  phycosphere89. Additionally, 
the proliferation and decomposition of algae not only elevate the pH of water but also promote microbial growth, 
resulting in an increased presence of certain microbial groups in eutrophic  waters90. However, it is crucial to 
acknowledge that the abundance of cyanobacteria in inland waters, including the observed higher concentrations 
in the reservoir during summer, is primarily attributed to nutrient loading from agricultural fertilizers, particu-
larly phosphorus, in the catchment area. The decomposition of harmful algal blooms can also release toxins 
and negatively impact microbial species  diversity91. Acknowledging the predominant role of fertilizer-driven 
eutrophication in cyanobacterial dominance is essential for a comprehensive understanding of these  blooms92. In 
our study, Planktothrix was the numerically dominant bacterial genus in the reservoir in the July and September 
2019 samples, while Microcystis was the most abundant bacterial species detected in the November and January 
2020 samples. Changes in cyanobacterial community structure may be influenced in large part by nutrients in 
aquatic ecosystems. For example, abundances of Synechococcus and Cyanobium in East Fork Lake and Delaware 
Lake were comparable to those in other oligotrophic freshwater  lakes93,94. According to a study of cyanobacteria 
in Lake Erie, Synechococcus and Cyanobium were absent for the previous two decades but have since become the 
dominant taxa as a result of the transition from eutrophic to oligo-mesotrophic  conditions95. On the other hand, 
Planktothrix has been identified as a bacterial biomarker for lakes that are either eutrophic or  hypertrophic80. 
Recently, Zhang et al.96 found that Planktothrix may live symbiotically with antibiotic-resistant bacteria and 
secrete antifungal chemicals to promote the emergence and spread of these bacteria. Thus, the detection of 
Planktothrix in the reservoir has far-reaching human health implications beyond conventional cyanotoxin risks.

The second most abundant phylum in the reservoir was Proteobacteria. This phylum was indicated as the 
most abundant phylum in sediments or soils because of its ability to adapt to a variety of toxic conditions and its 
involvement in organic matter degradation and metabolic processes in lake  sediments97.

The overall function of the microbial population in surface water of the Billings reservoir increased as 
eutrophication progressed. Eutrophication had the greatest impact on metabolic functions such as biosynthesis 
of secondary metabolites and microbial metabolism in different environments. This finding is in agreement with 
the results of Wan et al.98, who studied the diversity of the bacterioplankton population in Lake Nanhu before 
and after dredging and identified several metabolic pathways.
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Conclusions
The MPA data obtained in this study provide a detailed description of seasonal changes in the taxonomic com-
position and quantitative ratios of various bacterial groups in the surface waters of Billings Reservoir. The most 
abundant OTUs belong to the phyla cyanobacteria and proteobacteria, which constitute a major proportion of 
each community; then follow the phyla Actinobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Chlo-
robi. Bacterial communities found in surface waters during the winter season are dominated by Planktothrix, in 
contrast to those found during the summer season, which are dominated by Microcystis, which may be explained 
by seasonal physical and chemical factors. On the other hand, the seasonal variations in the physico-chemical 
properties of the surface water of the reservoir create new conditions according to which the concentrations of 
the various bacterial groups change.

Data availability
The sequencing data generated during the current study are available in the Zenodo repository (DOI https:// doi. 
org/https:// doi. org/ 10. 5281/ zenodo. 82980 73).
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