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Explainable artificial intelligence 
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prediction using clinical markers
Krishnaraj Chadaga 1*, Srikanth Prabhu 1*, Niranjana Sampathila 2*, Rajagopala Chadaga 3, 
Shashikiran Umakanth 4, Devadas Bhat 2 & Shashi Kumar G S 5

The COVID‑19 influenza emerged and proved to be fatal, causing millions of deaths worldwide. 
Vaccines were eventually discovered, effectively preventing the severe symptoms caused by the 
disease. However, some of the population (elderly and patients with comorbidities) are still vulnerable 
to severe symptoms such as breathlessness and chest pain. Identifying these patients in advance is 
imperative to prevent a bad prognosis. Hence, machine learning and deep learning algorithms have 
been used for early COVID‑19 severity prediction using clinical and laboratory markers. The COVID‑19 
data was collected from two Manipal hospitals after obtaining ethical clearance. Multiple nature‑
inspired feature selection algorithms are used to choose the most crucial markers. A maximum testing 
accuracy of 95% was achieved by the classifiers. The predictions obtained by the classifiers have been 
demystified using five explainable artificial intelligence techniques (XAI). According to XAI, the most 
important markers are c‑reactive protein, basophils, lymphocytes, albumin, D‑Dimer and neutrophils. 
The models could be deployed in various healthcare facilities to predict COVID‑19 severity in advance 
so that appropriate treatments could be provided to mitigate a severe prognosis. The computer aided 
diagnostic method can also aid the healthcare professionals and ease the burden on already suffering 
healthcare infrastructure.

The COVID-19 began in late 2019 and caused a significant uproar  worldwide1. Most patients experienced mild-
moderate symptoms such as cough, cold, myalgia, sore throat, muscle pain, nausea, loss of taste/smell and 
headaches. However, people also developed severe symptoms such as accurate respiratory disorder syndrome 
(ARDS), severe hypoxia and multi-organ failure and succumbed to this deadly  disease2. As of today, the virus is 
still spreading, and new mutations are being created. Cytokine storm manifests in COVID-19 patients, distin-
guished by an enormous release of cytokines such as IL-6 and IL-1. This condition has led to the immune system 
attacking itself and has caused deaths in many Sars-Cov-2  patients3.

The severe symptoms of COVID-19 have decreased after the introduction of  vaccines4. However, some 
COVID-19 patients are still vulnerable to severe  prognoses3. Older patients and people with comorbidities such 
as hypertension, diabetes, cancer etc., are still at risk. It is crucial to identify these patients early so that appropri-
ate medications and treatments can be provided to them to avoid unnecessary casualties. A few drugs have been 
created and shown to prevent the onset of severe COVID-19  symptoms3. These medicines must be administered 
during the illness’s initial stages to be effective.

Artificial Intelligence (AI) applications have been extensively utilized in the healthcare  sector5–7. Diagnostic 
and prognostic models, decision support systems and predictive modelling are being developed to assist health-
care professionals using machine learning (ML). The above technologies are also being used in the fight against 
COVID-198–10. Explainable artificial intelligence (XAI) makes the models more transparent and understandable. 
The reasoning behind a patient prediction can be visually represented using XAI. It has also been utilized in 
various domains such as finance, engineering, pharmacy, medicine and commerce.
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A few markers such as c-reactive protein (CRP), D-Dimer, lactate dehydrogenase (LDH), neutrophil to lym-
phocyte ratio (NLR) and Ferritin are known to change excessively before the actual onset of the severe  symptoms2. 
Machine learning models can be deployed using the markers to predict COVID-19 severity in advance. The early 
detection of patients with poor prognoses and the development of reliable forecasting techniques that are simple 
to use in routine clinical practice are crucial for ensuring the highest level of treatment in clinics.

Several researchers have utilized machine learning to predict COVID-19 severity using hematological param-
eters.  Huyut11 developed an automatic decision support system to predict mild and severe coronavirus patients. 
The dataset consisted of 194 severe and 4010 mild patients. Twenty-nine markers were considered, and the local 
weighted algorithm obtained a maximum accuracy of 97.86%. Wendland et al.12 used classifiers to predict severe 
COVID-19 cases. They were able to predict the severity status with an AUC of 0.918. The most important mark-
ers in this study were CRP and blood sugar levels. A COVID-19 severity prediction model was developed by 
Nguyen et al.13. Two hundred sixty-one patients from Vietnam were considered for this research. The random 
forest obtained a accuracy of 97%. The best prognostic markers were CRP, IL-6, dyspnea, D-Dimer and ferritin. A 
nature-inspired was developed to predict COVID-19  severity14. The study used details of 65,000 patients, which 
consisted of twenty-six features. A variant of the artificial bee colony algorithm was used for feature selection. 
Among all the algorithms, the support vector machine obtained an accuracy of 96%. The model categorized the 
patients into mild, moderate and severe. Laatifi et al.15 used two explainable AI techniques to predict COVID-19 
severity. Eighty-seven patients were considered in this study. Shapley additive values (SHAP) and local inter-
pretable model-agnostic explanations (LIME) were used to make the models understandable. The most critical 
cytokine markers are VEGF-A and IL-7.

COVID-19 vaccines have been successful in preventing severe COVID-19 in most patients. However, a small 
part of the population still experiences severe symptoms. It is of utmost importance to prevent the onset of severe 
prognosis in these patients. The machine learning models can be beneficial in predicting the same.

The above studies show that COVID-19 severity could be predicted effectively using clinical and laboratory 
markers. The main objective of this research is to forecast the severity of a COVID-19 patient. The other con-
tributions are given below:

• Descriptive statistical analysis of the data has been conducted to understand various trends and patterns in 
the data.

• Fourteen feature selection methods including nature-inspired algorithms have been used to choose the most 
important markers.

• Machine learning models including bagging, boosting, voting and stacking have been used to predict COVID-
19 severity. The classifiers have been further compared to with the state-of-the-art deep learning models 
such as deep neural network (DNN), one-dimensional convolutional neural network (1D-CNN) and Long 
short-term memory (LSTM).

• Five XAI techniques have been used to interpret the predictions such as SHAP, LIME, Eli5, QLattice and 
Anchor.

• Further discussion about crucial COVID-19 prognostic markers from a medical perspective.

The reminder of the paper is structured as follows. Materials and methods are described in “Methods” section. 
Extensive explanation of the results is made in “Results” section. The discussion of the results obtained is made 
in “Discussion” section. The article concludes in “Conclusion” section.

Methods
Description of the dataset
The COVID-19 datasets were obtained from two Hospitals in India: Dr TMA Pai Hospital and Kasturba Medi-
cal College. The Manipal Academy of Higher Education has provided ethical clearance to conduct this research 
(IEC:613/2021). The patients have been completely anonymized in this study. COVID-19 patients who were 
tested between September 2021 and December 2021 have been considered in this study. Only patients above 
eighteen years of age have been included. Records of 899 patients have been utilized to train the machine learn-
ing models. The dataset included 599 non-severe patients and 300 severe patients. All patients whose condition 
deteriorated and required admission to the intensive care unit (ICU) and if the respiratory rate > 30/minute or 
SpO2 < 90% (World Health Organization standards) were grouped as severe  cases16. Thirty-two clinical param-
eters were considered in this study (31—continuous and one categorical). The clinical markers chosen are tabu-
lated in Table 1.

Data pre‑processing
Pre-processing of the dataset is critical in machine learning. Missing values are imputed, categorical attributes 
are encoded, continuous values are scaled, data balancing is performed, and unnecessary attributes are dropped. 
In order to make sure that there are as few missing values as possible, we chose patients who completed the most 
clinical tests when gathering data. A few missing values in the dataset were replaced by their respective median. 
The “gender” attribute (categorical) had no missing values. Descriptive statistical analysis was conducted using 
the open-source statistical software Jamovi. Some statistical parameters utilized are described in Table 2.

Violin plots were used to find interesting patterns in the dataset, as shown in Fig. 1. From the figure, it can 
be seen that the median age was elevated in the severe COVID-19 cohort. Further, markers such as Neutrophils, 
HbA1c and CRP were elevated in severe patients. The lymphocytes and monocytes count decreased in the severe 
COVID-19 cohort.
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The frequency of the “gender” attribute for severe/non-severe COVID-19 patients is described using a bar plot 
in Fig. 2. There were 347 male and 252 female patients in the non-severe cohort. There were 204 male patients 
and 96 female patients in the severe cohort.

In machine learning analysis, categorical values must be encoded since the classifiers do not handle text 
values. Several encoding techniques exist in machine  learning17. In this study, we used the one-hot encoding 
technique to encode the “Gender”  attribute18. This encoding mechanism solves the problem of ordinality, which 
can happen in categorical variables. Data scaling was performed using the standardization  method19. When there 
is a considerable discrepancy in data points, the accuracy decreases. The classifiers also favour parameters with 
higher values, regardless of the units considered. Normalization and standardization are the two approaches 
utilized to scale the datasets in machine learning. Standardization was chosen in this study since they are better 
with outliers. The dataset was then split into training and testing in the ratio (80:20). There was a significant 
imbalance in the dataset. The number of severe COVID-19 cases was almost half compared to non-COVID-19 
cases. The results obtained for the unbalanced data are completely biased since the models favour the major-
ity classes. Hence, we used the oversampling technique called Borderline Synthetic Minority Oversampling 
Technique (SMOTE) to balance the training  dataset20. This algorithm generates new synthetic samples using 
the K-nearest algorithm. The borderline cases are also handled well using the above technique. Under-sampling 
was not preferred in this study since we did not want to lose interesting trends and patterns. Further, the testing 
data was not balanced to protect data integrity.

Fourteen feature selection methods were used to choose the most important markers. Several metaheuristic 
nature-inspired algorithms have been utilized in this study. Feature selection is essential in machine learning 
since the classifiers perform better when removing redundant features. In this article, we have chosen multiple 
nature inspired algorithms. They have several advantages over traditional feature selection techniques. They are 
known for their global optimization, robustness, scalability, parallelism, adaptability, simplicity and stochasticity. 
Table 3 describes the features chosen by each algorithm. Among all the algorithms, the salp swarm optimization 
chose the maximum number of features (18). The whale optimization algorithm, flower pollination algorithm 
and mutual information chose 15 features. The sine cosine algorithm chose the minimum number of features (3). 
The Harris Hawk’s optimization and particle swarm optimization chose six features each. The markers chosen 

Table 1.  Attributes chosen in this study.

Sl. No. Clinical marker Marker description Unit Sl. No. Clinical marker Marker description Unit

1 Patient file number File number of a COVID-19 
patient 18 Creatinine It consists of muscle creatine mg/dL

2 Age Age of a patient in years 19 Sodium Sodium content present in 
the body mmol/L

3 Gender Sex of a patient 20 Potassium Potassium content present in 
the body mmol/L

4 SpO2 Oxygen saturation in the blood % 21 Total Bilirubin (T. Bilirubin)
Direct and indirect bilirubin 
combine to formal total 
bilirubin

mg/dL

5 Pulse The number of heart beats per 
minute 22 Direct Bilirubin (D. Bilirubin) Bilirubin content which could 

be removed from the body mg/dL

6 Respiratory rate Number of breaths taken per 
minute 23 Aspartate aminotransferase 

(AST)
An enzyme produced by the 
liver IU/L

7 Hemoglobin It delivers oxygen to all the 
organs and tissues gram/dL 24 Alanine transaminase (ALT) An enzyme produced by the 

liver IU/L

8 Hematocrit It is the percentage of red blood 
cells in the blood % 25 Alkaline phosphatase (ALP) An enzyme produced by the 

liver IU/L

9 Total white blood cells 
(TWBC)

They are part of the immune 
system. They help in fighting 
infections

103/microliter 26 Total protein It shows how much protein the 
liver is able to make g/dL

10 Neutrophil They belong to the white blood 
cells category % 27 Albumin A protein made by the liver g/dL

11 Lymphocyte They belong to the white blood 
cells category % 28 HbA1c Average blood sugar level in 

the last two to three months %

12 Neutrophil to lymphocyte 
ration (NLR)

Number of neutrophils to the 
number of lymphocytes % 29 C reactive protein (CRP)

A protein produced by the 
liver. Elevated levels of CRP 
indicate an infection

mg/L

13 Monocyte They belong to the white blood 
cells category % 30 D-Dimer A protein which is formed 

when the blood clot dissolves μg/mL

14 Eosinophil They belong to the white blood 
cells category % 31 Ferritin It indicates iron content in 

the body μg/L

15 Platelet Platelets help in forming blood 
clots thousand/μL 32 Lactate dehydrogenase (LDH) It is an enzyme which helps is 

storing energy U/L

16 Basophil They belong to the white blood 
cells category % 33 Label Non-Severe/Severe

17 Urea It consists of dietary protein 
and tissue protein mg/dL
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Label
Number of 
instances

Marker 
mean

Marker 
median

Standard 
deviation

Inter 
quartile 
range

Minimum 
value

Maximum 
value

25th 
percentile

50th 
percentile

75th 
percentile

Age
Non-severe 599 47.35 48 19.3877 30 18 99 32 48 62

Severe 300 59.102 61 15.5633 21 18 92 49 61 70

SpO2
Non-severe 599 96.828 97 1.8738 2 88 100 96 97 98

Severe 300 90.764 94 10.0901 7 35 100 90 94 97

PR(Pulse)
Non-severe 599 85.964 85 14.4364 18 22 150 76 85 94

Severe 300 91.61 90 17.614 20 18 185 80 90 100

Respiratory 
rate

Non-severe 599 20.783 20 1.6421 2 12 30 20 20 22

Severe 300 23.441 22 5.0726 3 13 52 21 22 24

Hb (Hemo-
globin)

Non-severe 599 13.179 13.1 1.8338 2.3 3.7 17.4 12.2 13.1 14.5

Severe 300 12.493 12.7 2.248 2.8 4.5 18.7 11.2 12.7 14

PCV% 
(Hematocrit)

Non-severe 599 38.801 39 5.5506 6.9 9 50 36 39 42.9

Severe 300 37.306 37.8 6.9346 8.075 11.9 92 33.625 37.8 41.7

TWBC
Non-severe 599 5.587 5.3 2.0146 2.2 0.8 14.1 4.3 5.3 6.5

Severe 300 9.858 8.1 6.485 6.7 0.2 46.8 5.6 8.1 12.3

Neutrophil
Non-severe 599 61.563 62 11.5501 15 25 95 55 62 70

Severe 300 78.954 80 11.5686 16.425 10.64 98 71.575 80 88

Lymphocyte
Non-severe 599 27.331 26 11.0344 13 2.1 91 20 26 33

Severe 300 12.578 10.65 8.6193 10.875 1.1 60 6.125 10.65 17

NLR
Non-severe 599 2.599 2 2.9444 2 1 34 1 2 3

Severe 300 11.102 7 12.2208 9 1 87 4 7 13

Monocyte
Non-severe 599 9.605 9 3.6886 5 0.8 21 7 9 12

Severe 300 6.795 6.45 3.4439 4.9 0.2 18.1 4.1 6.45 9

Eosinophil
Non-severe 599 1.157 0.5 1.8009 1.3 0 13.9 0.1 0.5 1.4

Severe 300 0.457 0.2 0.9674 0.2 0 9 0.1 0.2 0.3

Platelet
Non-severe 599 236.392 223 86.1237 98 67 602 180 223 278

Severe 300 249.096 225 114.9165 115.75 50 920 180.25 225 296

Basophil
Non-severe 599 0.433 0.4 0.3403 0.2 0 4 0.3 0.4 0.5

Severe 300 0.256 0.2 0.2336 0.1 0 2.6 0.2 0.2 0.3

Urea
Non-severe 599 23.152 21 13.1015 10 6 118 16 21 26

Severe 300 44.262 32 41.2207 28 3 243 21 32 49

Creatinine
Non-severe 599 0.874 0.8 0.3435 0.3 0.3 4.7 0.7 0.8 1

Severe 300 1.414 0.905 1.7923 0.5975 0.2 17.7 0.702 0.905 1.3

Sodium
Non-severe 599 137.262 138 4.5147 5 111 148 135 138 140

Severe 300 134.617 135 5.7938 7 111 167 131 135 138

Potassium
Non-severe 599 4.122 4.1 0.4673 0.6 2.9 5.7 3.8 4.1 4.4

Severe 300 4.31 4.2 0.7323 0.875 2.1 8 3.8 4.2 4.675

T. Bilirubin
Non-severe 599 0.468 0.4 0.2421 0.3 0.1 1.6 0.3 0.4 0.6

Severe 300 0.755 0.595 0.9477 0.4 0.146 11 0.4 0.595 0.8

D.Bilirubin
Non-severe 599 0.191 0.2 0.0985 0.1 0.07 0.7 0.1 0.2 0.2

Severe 300 0.4 0.24 0.7963 0.2 0.04 12 0.17 0.24 0.37

AST
Non-severe 599 35.282 29 22.9893 20 5 229 22 29 42

Severe 300 62.552 47.5 52.5474 42.75 4.8 411 31 47.5 73.75

ALT
Non-severe 599 32.291 25 23.9823 22 5 180 17 25 39

Severe 300 50.791 37 56.2449 33.75 3.5 659 22.25 37 56

ALP
Non-severe 599 78.867 77 26.7934 28 17 200 62 77 90

Severe 300 100.853 85.5 57.4287 45.5 5 418 66.25 85.5 111.75

Protein
Non-severe 599 7.163 7.2 0.4714 0.1 4.2 8.5 7.1 7.2 7.2

Severe 300 6.752 6.9 0.7361 0.5 3.2 12.4 6.5 6.9 7

Albumin
Non-severe 599 4.267 4.3 0.3869 0.1 3 7 4.2 4.3 4.3

Severe 300 3.631 3.7 0.5154 0.5 1.02 5.3 3.4 3.7 3.9

HbA1c
Non-severe 599 6.12 5.6 1.5407 1 4 14 5.2 5.6 6.2

Severe 300 7.165 6.6 1.9296 2.1 4.3 18.2 5.9 6.6 8

CRP
Non-severe 599 16.847 7 27.8004 17 0.3 223 2 7 19

Severe 300 96.345 78 78.7297 97 0.47 350 37 78 134

Continued
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by the feature selection techniques are also described in Fig. 3. CRP was the most chosen feature since thirteen 
algorithms have included it. This was followed by neutrophils, NLR and AST, which were chosen 10, 9 and 8 
times, respectively. The marker platelets were not chosen by any algorithm.

Machine learning concepts
Machine learning is a form of artificial intelligence that enables software programs to forecast predictive outcomes 
using past information as input. Several ML classifiers have been used in this study, such as random forest, deci-
sion tree, logistic regression, K nearest neighbors, catboost, adaboost, xgboost, lightgbm, stacking and voting 
algorithms. Stacking combines the result of multiple baseline  models35. The stacking architecture consists of a 
classifier incorporating the initial model’s predictions. Aggregation of the models are performed based on their 
weights, improving the model’s accuracy. The meta-learner becomes a crucial factor in stacking. Logistic regres-
sion was the meta-learner used in this research. The stacking architecture is described in Fig. 4.

A voting classifier gathers training data from a large ensemble of classifiers, and predictions are made accord-
ing to the class with the highest probability. It uses the concept of majority  voting36. The voting algorithm is of 
two types: Hard-voting and soft-voting. The maximum number of votes is considered in hard-voting irrespective 
of the  weights37. “Average probability” predicts the outcome of soft-voting38. The voting architecture is described 
in Fig. 5.

Further, the data was subjected to a fivefold cross validation technique. Here, various subsets of data are 
trained to validate the model efficiency. The input data is divided into five equal groups. Four groups are used 
for training, while the fifth group is used for testing using various permutations and combinations in cross-
validation. Hyperparameter tuning was performed to choose the best parameters using the grid search method. 
The performance of a classifier depends upon the hyperparameters chosen. Grid search automates the hyperpa-
rameter tuning and provides the best values as output.

We have chosen several classification and loss metrics to evaluate the models in this study. These include 
precision, recall, accuracy, F1-score, area under curve (AUC), average precision (AP), Mathew’s correlation, 
log loss, Jaccard score and hamming loss. Emphasis has been given to precision and recall since they focus on 
false-positive and false-negative cases.

In this research, three state-of-the-art deep learning models have been tested. They are DNN, 1D-CNN and 
LSTM. A DNN consists of multiple input, hidden and output  layers39. The essential function of a deep neural 
network is to take input, process them through more sophisticated computations, and predict results. CNNs are 
primarily used for image classification. However, 1D-CNN models have also been highly influential in classifying 
tabular  data40. LSTMs are highly used in sequence prediction  problems41. Three types of gates are considered 
in LSTM: input gate, output gate, and forget gate. LSTMs have proven to be highly efficient in handling time 
series data.

After training and testing the ML and DL models, five XAI techniques have been used to demystify the pre-
dictions. The results obtianed by the XAI techniques are in the form of graphs and tables, which can be easily 
understood by the ML users. The entire process-flow of this study is described in Fig. 6.

Ethical approval
Ethical clearance has been obtained to collect patient data from Manipal Academy of Higher Education ethics 
committee with id IEC: 613/2021. The need for informed consent was waived by the ethics committee/Institu-
tional Review Board of Manipal Academy of Higher Education, because of the retrospective nature of the study. 
All methods were carried out in accordance with relevant guidelines and regulations.

Results
Model testing
In this research, multiple machine learning and deep learning classifiers have been trained and tested to predict 
COVID-19 severity. The precision obtained by the models for various feature selection techniques is tabulated in 
Table 4. We emphasized the stacking and voting classifiers since they combine multiple models. From the table, 
it can be seen that the stacked model obtained the maximum precision of 94% after using mutual information. 
The soft-voting and hard-voting obtained a precision of 94% each. The bat algorithm performed well too. The 
stack, hard-voting and soft-voting classifier obtained a precision of 91%, 91% and 90%, respectively. The flower 
pollination algorithm was also efficient. The stack, hard-voting and soft-voting obtained a precision of 87%, 
86% and 84%, respectively. The precision obtained for the stack, hard-voting and soft-voting after using the Jaya 
algorithm was 87%, 90% and 89%, respectively.

Label
Number of 
instances

Marker 
mean

Marker 
median

Standard 
deviation

Inter 
quartile 
range

Minimum 
value

Maximum 
value

25th 
percentile

50th 
percentile

75th 
percentile

D-Dimer
Non-severe 599 0.383 0.2 0.6899 0.19 0.1 9.12 0.16 0.2 0.35

Severe 300 1.82 0.8 2.271 1.5475 0.1 14 0.453 0.8 2

Ferritin
Non-severe 599 301.776 197 330.1534 273 1.6 2000 89 197 362

Severe 300 830.517 718 594.9111 774.25 10.43 2000 347 718 1121.25

Table 2.  Descriptive statistical parameters for the COVID-19 dataset.
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The recall obtained by the models for all the feature selection techniques is described in Table 5. Mutual 
information was the best feature selection method. The recall obtained by the stack, hard-voting and soft-voting 
algorithms were 93%, 95% and 94%, respectively. The bat algorithm was the next best-performing model. The 
recall obtained by the stack, hard-voting and soft-voting models were 90%, 93% and 91%, respectively. The flower 
pollination algorithm performed well too. The recall obtained by the stack, hard-voting and soft-voting models 
were 86%, 90% and 90%, respectively. The recall obtained by the stack, hard-voting and soft-voting classifiers 
after using the Jaya algorithm was 87%, 91% and 90%, respectively. For further analysis, the best four feature 

Figure 1.  Violin plots for some of the markers. (a) Age (b) Neutrophil (c) Lymphocyte (d) HbA1c (e) CRP (f) 
Monocyte.
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selection techniques were considered. They are mutual information, bat algorithm, flower pollination algorithm 
and Jaya algorithm.

The classification and the loss metrics are tabulated in Table 6. Mutual information performed the best among 
the four methods. The accuracy obtained for the stack, hard-voting and soft-voting classifiers were 90%, 95% 
and 94%, respectively. The bat algorithm was able to obtain excellent results too. The accuracies obtained by 
the stacking, hard-voting and soft-voting classifiers were 92%, 95% and 91%. The flower pollination algorithm 
performed relatively well. The accuracy obtained by the stacking, hard-voting and soft-voting classifiers were 
87%, 85% and 86%. The accuracies obtained by the stack, hard-voting and soft-voting for the Jaya algorithm 
were 89%, 89% and 89%, respectively.

The ROC curves for the stacked model for the four feature selection methods are depicted in Fig. 7. The AUC 
was maximum for the mutual information algorithm with 0.96. The precision-recall curves for the stacked clas-
sifiers for the four feature selection methods are described in Fig. 8. The stacked model obtained a maximum 
average precision of 0,98 after being trained on features chosen by mutual information.

Further, the results obtained by the machine learning models were compared with the deep learning models. 
DNN, 1D-CNN and LSTM were the classifiers used in this study. The model architecture of the deep neural 
networks is described in Fig. 9. For the DNN, five layers were considered. The number of neurons used was 30, 

Figure 2.  Frequency distribution of the gender attribute.

Table 3.  Feature selection using several algorithms.

Sl.no Feature selection method used Number of features chosen Features chosen

1 Whale Optimization (WO)21 15 Age, SpO2, Pulse, Respiratory rate, Hemoglobin, Haemtocrit, Neutrophil, NLR, Creatinine, 
Sodium, Potassium, ALT, Albumin, HbA1c and CRP

2 Sine Cosine Algorithm (SCA)22 3 Gender, Basophil and Albumin

3 Salp Swarm Optimization (SSO)23 18 SpO2, Pulse, Respiratory rate, Hematocrit, Neutrophil, NLR, Monocyte, Basophil, Urea, Sodium, 
Potassium, T. Bilirubin, AST, ALT, ALP, CRP, D-Dimer and Ferritin

4 Particle Swarm Optimization (PSO)24 6 Neutrophil, Potassium, T. Bilirubin, AST, ALT and CRP

5 Jaya Algorithm (JA)25 11 Age, SpO2, Hemoglobin, Hematocrit, Neutrophil, Lymphocyte, Basophil, ALT, ALP, HbA1c and 
CRP

6 Harris Hawks Optimization (HHO)26 6 SpO2, Hemoglobin, TWBC, NLR, Basophil and CRP

7 Grey Wolf Optimizer (GWO)27 10 Age, TWBC, Lymphocyte, Monocyte, Creatinine, Sodium, D. Bilirubin, AST, Protein and CRP

8 Genetic Algorithm (GA)28 9 SpO2, Lymphocyte, NLR, Eosinophil, Potassium, AST, ALT, CRP and D-Dimer

9 Flower Pollination Algorithm (FPO)29 15 Hemoglobin, Hematocrit, Neutrophil, Lymphocyte, NLR, Monocyte, Eosinophil, Basophil, Potas-
sium, T. Bilirubin, AST, ALT, ALP, CRP and Ferritin

10 Firefly Algorithm (FA)30 14 Age, SpO2, Pulse, Respiratory rate, Neutrophil, Lymphocyte, Eosinophil, Urea, Sodium, Potassium, 
AST, HbA1c, CRP and Ferritin

11 Differential Evolution (DE)31 10 Respiratory rate, Hemoglobin, TWBC, Neutrophil, NLR, Eosinophil, Creatinine, ALP, HbA1c and 
CRP

12 Cuckoo Search Algorithm (CSA)32 10 Gender, TWBC, Neutrophil, NLR, Monocyte, Sodium, AST, ALT, ALP and CRP

13 Bat Algorithm (BA)33 9 TWBC, Neutrophil, Lymphocyte, NLR, Basophil, AST, Protein, HbA1c and CRP

14 Mutual Information (MI)34 15 Albumin, NLR, Protein, CRP, D-Dimer, SpO2, Lymphocyte, LDH, Basophil, Eosinophil, Urea, 
Neutrophil, Respiratory rate and HbA1c
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11, 7, 4 and 1. “Relu” was the activation function used for the input and hidden layers. The “sigmoid” activation 
function was used for the output layer. “Adam” was the optimizer, and “binary cross entropy” was the loss func-
tion used. A learning rate of 0.0001 was utilized, and the batch size was set to 10. The neural network was run 
for 750 epochs to establish reliable results.

Figure 3.  Markers chosen by the feature selection methods.

Figure 4.  Stacking methodology used in this research.
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For the 1D-CNN, we included layers such as conv1D, max pooling, drop out and flatten layers. The loss func-
tion was “binary cross entropy”, and “Adam” was the optimizer. The number of epochs and batch size were set 
to 10 each. A learning rate of 0.001 was utilized, and “leaky relu” was the activation function used for the input 
and hidden layers. “sigmoid” was the activation function used for the output layer.

The LSTM used four layers consisting of 150, 75, 50 and 1 neurons, respectively. The loss function used was 
“binary cross-entropy, and the optimizer was “Adam”. The batch size was set to 32.

All three models were split into training and testing in the ratio of 80:20. The results obtained by the deep 
learning models are described in Table 7. Among the three, DNN performed the best, with an accuracy of 89%. 

Figure 5.  Voting methodology used in this research.

Figure 6.  Machine learning methodology used in this research.
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1D-CNN and LSTM obtained accuracies of 85% and 83%, respectively. The accuracy and loss curves for the 
models are depicted in Fig. 10. From the figure, the results obtained by the models are reliable and not overfitting.

Explainable artificial intelligence
In this study, five XAI methods: SHAP, LIME, QLattice, Eli5 and Anchor have been used to make the models 
more interpretable. We chose the stacked model for interpretation since they obtained good results and are 
generally reliable. Deep learning classifiers were not considered since many explainers do not support deep 
learning algorithms today. Further, machine learning algorithms performed better than deep learning models 
in this study. This is normal in artificial intelligence applications since deep learning models perform better only 
with comprehensive data.

SHAP is a widely used XAI technique that makes global and local  interpretations42. SHAP uses game and 
probability theory to understand the impact of each attribute. The global interpretation of the models is explained 
using beeswarm plots as described in Fig. 11. A hyperplane separates the non-severe (left) and severe classes 
(right). Red indicates a higher value, and blue indicates a lower value. The markers are also arranged based on 
their importance (The best feature remains at the top). The figure shows that the most important markers are 
basophils, CRP, LDH, lymphocytes, albumin, protein and ferritin. CRP, LDH and Ferritin levels increased in 
severe COVID-19 patients. Basophils, lymphocytes, albumin and protein levels decreased in severe COVID-19 
patients.

Local interpretations can be explained using the SHAP force plot, as shown in Fig. 12. Figure 12a,c indicate 
a non-severe prognosis. It can be seen that markers such as lymphocytes, SPO2, basophils and CRP are pushing 
the predictions towards a non-severe prognosis. Figure 12b,d indicate a severe COVID-19 prognosis. Markers 
such as CRP, AST, basophils and lymphocytes push the predictions towards severe COVID-19.

LIME is another explainer used to make local  interpretations43. It uses a model-agnostic approach (It works 
for most ML models). It uses a ridge regression model and kernels such as Gaussian and RBF to explain the 
predictions. The LIME interpretations are depicted pictorially in Fig. 13. Figure 13a,b predict a severe prognosis, 
and Fig. 13c,d indicate a non-severe prognosis. The attributes are also arranged based on the descending order of 
their importance. The figure shows that the most important markers are albumin, D-Dimer, LDH, CRP, basophils, 
protein, AST, SPO2 and lymphocytes.

Table 4.  Precision obtained by the classifiers for various feature selection methods (In %).

Algorithm WO SCA PSO JA HHO GWO GA FPO FA DE CSA BA MI

Random forest 84 84 81 87 91 82 86 89 82 83 82 92 91

Logistic regression 81 75 78 81 82 79 81 84 83 81 80 83 83

Decision Tree 77 81 73 87 79 78 84 78 77 75 72 86 84

KNN 75 81 75 77 77 82 78 78 78 78 76 78 77

Adaboost 81 86 75 87 90 82 85 87 81 83 82 89 93

Catboost 86 86 76 88 92 82 86 88 82 86 82 90 94

Lightgbm 86 83 79 88 90 84 83 88 82 84 82 90 93

Xgboost 84 85 82 89 92 84 86 86 82 85 85 91 95

Stacking 86 82 80 87 80 83 84 87 84 86 83 91 92

Hard-voting 87 83 79 90 84 83 87 86 83 78 86 91 94

Soft-voting 89 82 79 89 84 83 87 84 83 78 86 90 94

Table 5.  Recall obtained by the classifiers for various feature selection methods (In %).

Algorithm WO SCA PSO JA HHO GWO GA FPO FA DE CSA BA MI

Random forest 86 86 84 89 91 84 89 88 86 85 83 92 94

Logistic regression 84 78 82 86 87 82 85 85 87 84 84 86 88

Decision Tree 79 83 77 89 84 83 85 78 81 77 74 88 85

KNN 74 84 79 80 79 79 82 77 81 79 77 79 79

Adaboost 79 88 76 89 92 85 89 87 86 84 84 91 94

Catboost 87 89 80 91 94 85 90 88 86 88 83 91 96

Lightgbm 86 86 81 91 91 85 86 87 85 84 82 90 94

Xgboost 84 87 84 91 93 85 87 86 86 85 85 90 95

Stacking 84 83 81 87 81 85 86 86 87 85 82 90 93

Hard-voting 88 85 82 91 86 86 85 90 84 80 88 93 95

Soft-voting 87 83 81 90 86 86 85 90 84 80 87 91 94



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1783  | https://doi.org/10.1038/s41598-024-52428-2

www.nature.com/scientificreports/

Eli5 is yet another method to demystify  predictions44. It is a python package and is highly used with tree-based 
classifiers. Figure 14 depicts Eli5 predictions, and according to it, the most essential attributes are albumin, urea, 
lymphocytes, CRP, NLR, and basophils count. This explainer considers the “bias” (error rate).

Abzu developed the QLattice  explainer45. It uses quantum computing and symbolic regression to explain 
the predictions. QLattice trains the models to understand the variation in data. The input attributes are called 
registers. A collection of registers is termed a QGraph. Every QGraph has a set of nodes (registers) and activation 

Table 6.  Classification and loss metrics for the best four selection methods (In %).

Algorithm Accuracy F1-score AUC AP MCC Log loss Jaccard score Hamming loss

Mutual Information

 Random forest 91 90 0.97 0.98 0.80 3.19 0.86 0.09

 Logistic regression 87 87 0.93 90.96 0.73 4.47 0.80 0.12

 Decision Tree 87 87 0.9 0.9 0.73 4.34 0.81 0.12

 KNN 78 77 0.77 0.79 0.53 7.54 0.69 0.21

 Adaboost 89 89 0.96 0.98 0.77 3.70 0.83 0.10

 Catboost 91 91 0.97 0.98 0.81 3.07 0.86 0.08

 Lightgbm 90 89 0.97 0.98 0.78 3.45 0.85 0.1

 Xgboost 91 91 0.97 0.98 0.81 3.07 0.86 0.08

 Stacking 90 89 0.96 0.98 0.78 3.58 0.84 0.10

 Hard-Voting 95 95 0.98 0.96 0.89 1.66 0.93 0.04

 Soft-Voting 94 94 0.98 0.99 0.87 1.918 0.92 0.88

Bat Algorithm

 Random forest 90 89 0.95 0.97 0.77 3.45 0.86 0.1

 Logistic regression 80 78 0.92 0.96 0.60 7.03 0.71 0.20

 Decision Tree 87 85 0.92 0.95 0.71 4.47 0.82 0.12

 KNN 77 76 0.79 0.85 0.53 7.00 0.695 0.22

 Adaboost 88 87 0.95 0.97 0.73 4.09 0.83 0.11

 Catboost 90 88 0.95 0.92 0.76 3.58 0.85 0.10

 Lightgbm 92 91 0.95 0.97 0.81 2.81 0.88 0.08

 Xgboost 92 91 0.95 0.98 0.81 2.68 0.89 0.07

 Stacking 92 91 0.95 0.97 0.81 2.8 0.88 0.08

 Hard-Voting 93 92 0.97 0.94 0.84 2.55 0.88 0.07

 Soft-Voting 91 90 0.97 0.98 0.81 3.07 0.86 0.08

Flower Pollination Algorithm

 Random forest 87 86 0.95 0.97 0.73 4.47 0.81 0.12

 Logistic regression 83 83 0.92 0.95 0.67 5.88 0.74 0.17

 Decision Tree 83 82 0.9 0.94 0.65 6.01 0.74 0.17

 KNN 77 76 0.77 0.8 0.51 6.05 0.67 0.23

 Adaboost 84 84 0.93 0.96 0.67 5.32 0.77 0.15

 Catboost 88 87 0.95 0.97 0.75 4.22 0.81 0.12

 Lightgbm 89 88 0.95 0.97 0.76 3.83 0.83 0.11

 Xgboost 86 85 0.94 0.96 0.69 4.98 0.78 0.144

 Stacking 87 87 0.94 0.97 0.75 4.34 0.81 0.12

 Hard-Voting 85 84 0.93 0.87 0.68 5.11 0.79 0.14

 Soft-Voting 86 84 0.93 0.96 0.69 4.98 0.80 0.14

Jaya Algorithm

 Random forest 89 87 0.94 0.97 0.75 3.83 0.84 0.11

 Logistic regression 80 78 0.92 0.96 0.60 7.05 0.71 0.20

 Decision Tree 85 83 0.9 0.94 0.66 5.11 0.80 0.14

 KNN 74 72 0.82 0.89 0.97 9.08 0.65 0.26

 Adaboost 89 87 0.95 0.97 0.73 3.96 0.84 0.11

 Catboost 89 87 0.94 0.97 0.74 3.96 0.84 0.11

 Lightgbm 90 88 0.94 0.97 0.77 3.45 0.865 0.1

 Xgboost 90 88 0.95 0.97 0.75 3.58 0.86 0.10

 Stacking 89 88 0.94 0.97 0.75 3.70 0.855 0.10

 Hard-Voting 89 88 0.95 0.89 0.76 3.96 0.82 0.1148

 Soft-Voting 89 89 0.96 0.97 0.77 3.70 0.83 0.10
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functions. Activation functions such as add, multiply, log, sine, tanh and Gaussian are generally used. The 
QGraphs are described in Fig. 15. It can be seen that the most important markers are lymphocytes, CRP and 
D-Dimer.

Anchor is an XAI technique that uses rules and  conditions46. The strength of an anchor is measured using its 
precision and coverage. Precision defines the accuracy of the anchor. Coverage determines how many instances 
utilize the same conditions. The anchors for non-severe and severe cases are described in Table 8. The most 
important markers are basophils, albumin, lymphocytes, CRP, D-Dimer, neutrophils, protein and NLR.

Five XAI techniques have been utilized and their findings are similar. The most important markers that can 
predict a patient’s severity are CRP, lymphocytes, basophils, albumin, D-Dimer, NLR, and neutrophils.

Discussion
This research used multiple machine learning algorithms to predict severe COVID-19 cases in advance so that 
appropriate treatments could be provided for vulnerable patients. To demystify the predictions, five heterog-
enous XAI techniques were used. Doctors and medical professionals can easily understand the variation in the 
markers provided by the explainers. This decision support system can be setup in various medical facilities to 
aid healthcare workers. In developing countries, this application can be used to make judicious use of essential 
medical assets such as ICU beds, ventilators and medicines. The models can also be utilized to present a second 
opinion to the doctors.

Fourteen feature selection methods were utilized and we chose the best four for further analysis. They are 
mutual information, bat algorithm, flower pollination algorithm and Jaya algorithm. A maximum accuracy of 
95% was obtained by the mutual information algorithm. The F1-score, AUC and AP were 94%, 0.98 and 0.99. 
When the bat algorithm was utilized, a 93% accuracy was obtained. The F1-score, AUC and AP were 92%, 0.97 
and 0.94. When the flower pollination algorithm was used, an accuracy of 89% was obtained. The F1-score, 
AUC and AP were 88%, 0.95 and 0.97. When the Jaya algorithm was utilized, a 90% accuracy was obtained. 
The F1-score, AUC and AP were 88%, 0.95 and 0.97. Most machine learning models performed relatively well.

Several markers showed variation between the two cohorts. Among all, CRP was chosen by all the XAI tech-
niques. CRP levels increased in severe COVID-19 patients in this  study47. Lymphocyte levels decreased in severe 

Figure 7.  ROC curves for the stacked models. (a) MI (b) BA (c) FPA (d) JA.
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COVID-19 patients. Lymphopenia has been commonly recorded in patients when their conditions  deteriorate48. 
This research also observed Basopenia in severe COVID-19  patients49. Low serum albumin has been associated 
with severe COVID-1950. This marker variation was also observed in this study. D-Dimer has already been an 
important marker in predicting COVID-1951. Elevated D-Dimer levels were found in the severe COVID-19 
cohort. NLR is a vital marker which has already been utilized to diagnose and predict severity in patients. NLR 
levels elevates in severe COVID-19  patients52. The same trend has been observed in this research. Spo2 levels 
decreased rapidly in the severe COVID-19 cohort. Lower oxygen levels can seriously threaten COVID-19 patients 
since it causes  hypoxia53. Age was also observed to be an important factor in predicting COVID-19 severity. 
Older patients were more vulnerable to experiencing severe  symptoms54. The above markers can be monitored 
carefully to prevent a fatal prognosis.

Various machine researches have been conducted to predict the severity of COVID-19. Raman et al.55 used 
machine learning to predict COVID-19 severity during hospital admission. Patient data was collected from the 
University of Texas. The random forest obtained a sensitivity of 72% and a specificity of 78%. Their model could 
predict the severity within six hours of hospital admission. Ershadi et al.56 used image and clinical data to predict 
COVID-19 severity. A fuzzy-based classifier was developed to forecast severe cases. Two datasets were used, and 
the accuracies obtained for them were 92% and 90%, respectively. Chest X-ray images and clinical data were 
used to predict COVID-19 severity in another  research57. 930 COVID-19 patients from Italy were considered 
for this research, and the stacking classifier achieved an accuracy of 89.03%. The most important markers were 
LDH, CRP, age, WBC and SpO2. Bello et al.58 used clinical markers and omics to predict COVID-19 severity. 
The model obtained an accuracy of 91.6%. The most important markers were LDH, albumin, creatinine, lym-
phocytes, neutrophils and potassium.

However, no articles that use five different XAI techniques to predict COVID-19 severity exist. Explainers 
such as Anchor, QLattice and Eli5 have been rarely used in medical machine learning. There are some limita-
tions in our study too. The data collected was from a single geographical territory (India). Multiple datasets 
from different sources must be considered to make the classifiers more reliable. This research made exclusive 
use of supervised learning. Unsupervised learning and reinforcement learning algorithms were not considered. 
Graphical processing units (GPU) increase computational speed while training. However, they were not used in 
this study. We had divided the dataset into training and testing and had performed cross validation. However, we 
could not test the data on real-time patients as our study was retrospective. Prospective study can be conducted 

Figure 8.  ROC curves for the stacked models. (a) MI (b) BA (c) FPA (d) JA.
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Figure 9.  Architecture of the deep learning models. (a) DNN (b) 1D-CNN (C) LSTM.

Table 7.  Classification and loss metrics obtained by the deep learning models.

Algorithm Accuracy Precision Recall F1-score AUC Hamming loss Jaccard score MCC Log loss

DNN 89 88 87 88 97 0.11 0.83 0.75 3.96

1D-CNN 85 83 84 83 94 0.15 0.79 0.66 5.18

LSTM 83 79 81 80 88 0.17 0.77 0.60 5.88
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in the future to test real patients’ prognosis. Our machine learning models could also be used for other diseases 
and public health  issues59–65.

Conclusions
XAI is a part of machine learning, generally used to demystify the predictions made by the classifiers. In this 
study, we used several supervised learning algorithms and XAI techniques to predict the COVID-19 severity in 
advance. The patients vulnerable to severe COVID-19 symptoms can be identified early, and appropriate treat-
ments can be provided to save them. Various patterns and trends in the clinical markers were observed using 
descriptive statistics in the initial part of this research. Multiple feature selection techniques, including nature-
inspired algorithms, were utilized to select the most crucial parameters. Several algorithms, such as bagging, 
boosting, stacking, voting and state-of-art deep learning, were used to make accurate predictions. The mutual 
information algorithm proved to be the most efficient feature selection technique obtaining a maximum accuracy 
of 95%. Five heterogeneous XAI algorithms such as, SHAP, LIME, QLattice, Eli5 and Anchor, have been used to 
understand the classification predictions. According to them, the most essential marker was CRP. Other mark-
ers such as D-Dimer, lymphocytes, neutrophils, albumin and basophils were also crucial. The classifiers can be 
utilized as a decision support system in various hospitals for prediction. The models can be used to predict the 
COVID-19 severity in advance. It can also aid the medical professionals and can offer them a second opinion. 
The algorithms can also be used for a rapid diagnosis too.

In the future, cloud-based models can be deployed. They can easily store both the data and code more effi-
ciently. High-end GPUs can be utilized to train deep learning algorithms. Other diagnostic methods, such as 
rapid antigen tests, chest X-rays and genome sequencing, can be combined suitably. Prognosis can be predicted 
for various COVID-19 variants. Electronic health records from multiple hospitals across various countries can 
be combined before training the models. Other deep learning techniques such as fuzzy ensembling techniques 
could be utilized.

Figure 10.  Accuracy and loss curves obtained by the deep learning classifiers. (a) Accuracy curve for DNN (b) 
Accuracy curve for 1D-CNN (C) Accuracy curve for LSTM (d) Loss curve for DNN (e) Loss curve for 1D-CNN 
(f) Loss curve for LSTM.
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Figure 11.  Global SHAP interpretation using beeswarm plots. (a) MI (b) BA (c) FPO (d) JA.
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Figure 12.  Local SHAP interpretation using force plots. (a) MI (b) BA (c) FPO (d) JA.
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Figure 13.  Model explainablity using LIME. (a) MI (b) BA (c) FPO (d) JA.

Figure 14.  Model explainablity using Eli5. (a) MI (b) BA (c) FPO (d) JA.
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Figure 15.  Model explainablity using QLattice. (a) MI (b) BA (c) FPO (d) JA.
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