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Novel hybrid kepler optimization 
algorithm for parameter estimation 
of photovoltaic modules
Reda Mohamed 1, Mohamed Abdel‑Basset 1, Karam M. Sallam 2,3*, Ibrahim M. Hezam 4, 
Ahmad M. Alshamrani 4 & Ibrahim A. Hameed 5*

The parameter identification problem of photovoltaic (PV) models is classified as a complex nonlinear 
optimization problem that cannot be accurately solved by traditional techniques. Therefore, 
metaheuristic algorithms have been recently used to solve this problem due to their potential to 
approximate the optimal solution for several complicated optimization problems. Despite that, 
the existing metaheuristic algorithms still suffer from sluggish convergence rates and stagnation in 
local optima when applied to tackle this problem. Therefore, this study presents a new parameter 
estimation technique, namely HKOA, based on integrating the recently published Kepler optimization 
algorithm (KOA) with the ranking-based update and exploitation improvement mechanisms to 
accurately estimate the unknown parameters of the third-, single-, and double-diode models. The 
former mechanism aims at promoting the KOA’s exploration operator to diminish getting stuck in local 
optima, while the latter mechanism is used to strengthen its exploitation operator to faster converge 
to the approximate solution. Both KOA and HKOA are validated using the RTC France solar cell and 
five PV modules, including Photowatt-PWP201, Ultra 85-P, Ultra 85-P, STP6-120/36, and STM6-
40/36, to show their efficiency and stability. In addition, they are extensively compared to several 
optimization techniques to show their effectiveness. According to the experimental findings, HKOA is 
a strong alternative method for estimating the unknown parameters of PV models because it can yield 
substantially different and superior findings for the third-, single-, and double-diode models.

List of symbols
Iph	� Photocurrent
ID	� Diode current
k	� Boltzmann constant
V 	� Output voltage
Rsh	� Parallel resistance
N	� Population size
d	� Number of dimensions
Ti	� Orbital period of ith planet
Vi	� Velocity of ith planet
Isd , Isd1, Isd2, Isd3	� Reverse saturation current
Rs	� Series resistance
q	� Electron charge
T	� Temperature in kelvin
n, n1, n2, n3	� Ideality factor
N	� Population size
e	� Orbital eccentricity
F	� Gravitational force
Tmax	� The maximum function evaluation
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Abbreviations
PV	� Photovoltaic
KOA	� Kepler optimization algorithm
DDM	� Double diode model
SDM	� Single diode model
TDM	� Triple diode model
RMSE	� Root mean squared error
STP6	� STP6-120/36 module
STM	� STM6-40/36 module
NR	� Newton–Raphson
MPPT	� Maximum power point tracking
MPA	� Marine predators algorithm (MPA)
OF	� Objective function
CR	� Convergence rate
STC	� Standard conditions
Ultra	� Ultra 85-P module
PWP	� Photowatt-PWP201 module
KKC	� Cc module
RUM	� Ranking-based updating method
WRS	� Wilcoxon rank-sum

The demand for energy in various countries is continuously on the rise as a consequence of factors such as 
their expanding industries and rapidly expanding populations1,2. Additionally, fuel depletion and environmental 
pollution are the main drawbacks of traditional fossil fuel resources, which have recently prompted scientists to 
find a new energy source that can save energy without having any negative effects on the environment3. Therefore, 
the scientists thought of alternative renewable energy sources, like wind, geothermal, solar, and hydroelectricity, 
for generating abundant energy without increasing environmental pollution. Among renewable energy sources, 
solar photovoltaic (PV) has recently won significant interest over the previous decades due to several merits like 
low computational cost, low operational expenses, high density of power, and low maintenance3–5. The PV panel 
consists of PV cells related in parallel and series. The manufacturing process and environmental conditions like 
temperature and light intensity influence the panel output3.

There is a significant information gap in the PV module parameters provided by vendors and manufacturers, 
which stands as an obstacle to accurately simulating the PV modules3. An ideal electrical equivalent circuit for 
a solar PV cell would include a diode, a current source, and some resistors3. PV cell models are split into three 
kinds, depending on whether they include two diodes, single diodes, or triple diodes to accurately estimate the 
cell’s I–V curve3. SDM is considered the simplest model because it includes only five unknown parameters; on 
the contrary, DDM includes seven known parameters and is considered more precise than SDM. TDM includes 
nine unidentified parameters and is considered the highest accurate model due to its ability to address the effects 
of grain boundaries and leakage current coefficients3,6. Over the last few decades, estimating those parameters 
has been classified as a complex non-linear optimization problem7–11. This problem has been extensively tackled 
in the literature by either traditional techniques or approximation techniques9. The traditional techniques could 
not accurately solve this problem due to several reasons, like differentiability and convexity, relying substantially 
on the initial solution, and falling easily in local optima12. Therefore, the metaheuristic algorithms also referred 
to as approximation techniques, have been adapted to accurately solve this problem for accurately modeling 
solar PV systems. This interest is due to their ability to accurately solve several complicated problems in a 
reasonable time13–20. For example, Abdel-Basset et al.21 designed a new metaheuristic optimizer, namely the 
nutcracker optimizer, for solving continuous optimization problems. This optimizer was validated using three 
CEC benchmarks and compared to several metaheuristic algorithms. The experimental findings showed its 
effectiveness. In the same study, this optimizer was applied to some engineering design problems and proved 
its effectiveness. In addition, this algorithm was applied to some optimization problems, such as the parameter 
identification of PV22 and Distribution of Fresh Agricultural Products23, and could achieve outstanding outcomes.

In3, the Northern Goshawk Optimization (NGO) algorithm was adapted for extracting the TDM’s unidentified 
parameters. NGO’s performance was investigated using three different PV modules and compared to several 
competing optimizers to show its efficacy. According to the experimental outcomes, NGO could perform better 
than all the others for convergence speed and final accuracy. The tree seed algorithm (TSA) was also applied 
to tackle this problem under the RMSE as an objective function1. This algorithm was validated using the STM 
module and compared to some of the recently-published metaheuristics. The comparison shows its effectiveness 
over the others. In addition, the seagull optimization algorithm (SOA) was hybridized with the memory saving 
to preserve the historical best solution, the cosine function to equilibrium between exploration and exploitation 
operators, and the differential mutation strategy to escape out of local minima24. This hybrid variant of SOA 
was known as HSOA and employed to identify the unknown values of various parameters in SDM and DDM 
for various PV modules.

The war strategy optimization (WSO) algorithm has been recently applied to solve this problem with the aid 
of the NR method to enhance the quality of the obtained solutions25. According to the experimental findings, 
WSO performed better than several metaheuristic algorithms. The Hunger Game search algorithm was combined 
with the Laplacian strategy and Nelder-Mead simplex to present a new variant, abbreviated LNMHGS, which 
could achieve equilibrium between exploration and exploitation operators when applied to identify the unknown 
values of various parameters in three PV models26. In27, the exploitation operator of the teaching–learning-based 
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optimizer was integrated with the exploration operator of the artificial bee colony to design a new optimizer, 
denoted as TLABC. This optimizer was applied to find the unidentified parameters of both DDM and SDM. 
Also, it was compared to several rival algorithms to reveal its effectiveness. The heap-based optimizer was also 
developed to search for the unidentified parameters of three PV models28. In29, chaotic maps were utilized as 
an alternative to the random number that was generated in order to exchange between generating a random 
individual within the search space and updating the current position in accordance with the updating core of 
the SMA. The authors state that the chaotic maps provide SMA with a more effective exploratory pattern. In 
addition, the Nelder-Mead simplex approach was incorporated into SMA in order to enhance its convergence 
speed and achieve better results with fewer function evaluations. CCNMSMA was the abbreviation of this version 
of SMA that was employed to find the unknown parameters of PV models. The generalized normal distribution 
optimizer was enhanced by utilizing two powerful methods, which led to the development of a new optimizer 
known as IGNDO30. This optimizer was utilized in the process of estimating the unknown parameters of TDM. 
In comparison to the results obtained by many other algorithms, it was able to attain remarkable results. However, 
this technique necessitates a somewhat higher level of computing expense. In addition to this, it still has a 
problem with sluggish convergence speed because it takes several function evaluations before it can converge to 
the results that are required. Rawat et al.31 adapted the grey wolf optimizer to identify those unknown parameters. 
Table 1 reviews some recently proposed metaheuristic algorithms for estimating the unknown parameters of 
SDM, DDM, and TDM.

The existing metaheuristic optimization techniques for the parameter estimation problem of PV models 
suffer from at least one of the following drawbacks: Falling into local optima, slow convergence speed, and high 
computational cost. To alleviate these shortcomings, a new optimization technique based on improving the 
Kepler optimization algorithm (KOA) using two effective mechanisms, namely the ranking-based update and 
exploitation improvement mechanisms, for accurately estimating the unknown parameters of the third, single, 
and double-diode models is presented in this study. The KOA’s exploration operator is encouraged by the first 
mechanism to reduce the likelihood of getting stuck in local optima, and its exploitation operator is strengthened 
by the second mechanism to accelerate the convergence to the approximation solution.

Recently, the Kepler optimization algorithm (KOA) was introduced to handle continuous optimization 
problems46. This algorithm was influenced by Kepler’s laws on the motion of planets. These laws demonstrate 
that four variables can influence the path of the planet around the sun. These elements are reflected in a planet’s 
gravitational force, position, mass, and orbital velocity. KOA views each planet as a candidate solution, and 
during a planet’s motion, it may estimate a new solution to the optimization problem. Those planets closest to 
the sun improve the exploitation operator, while the others attempt to explore the search space. To the best of 
our knowledge, this algorithm has not yet been applied to finding the unidentified parameters of DDM, SDM, 
and TDM. Therefore, in this paper, KOA is applied to this problem to reveal its effectiveness. In addition, it is 
combined with two effective mechanisms to design a new strong variant called HKOA with better performance 
to extract the near-optimal values for those parameters more accurately. Both KOA and HKOA are validated 
using six PV modules and contrasted with several state-of-the-art optimizers to reveal their effectiveness. HKOA, 
according to the experimental findings, is a powerful alternative since it is able to achieve outstanding outcomes 
for the utilized PV cells and modules in comparison to all rival optimizers. The key contributions to this study 
are listed below:

•	 Developing the newly proposed KOA for finding the unidentified parameters of DDM, TDM, and SDM.
•	 Hybridizing KOA with two effective mechanisms to design a new better variant, namely HKOA, with a better 

ability to accelerate convergence speed and avoid local optima for estimating those unknown parameters 
with greater precision.

•	 Assessing both KOA and HKOA using the RTC France solar cell and five PV modules
•	 Comparing both KOA and HKOA to several competitors to reveal their effectiveness.
•	 Based on the experimental findings, HKOA is better than all the compared techniques since it could produce 

significantly different and superior outcomes.

The following sections are structured as: Section "Problem formulation" discusses the PV models’ mathemati-
cal model, Section "Kepler optimization algorithm (KOA)" overviews the classical Kepler optimization algorithm, 
Section "Proposed algorithm" explains the proposed algorithm, Section "Results and discussion" reports and 
discusses the experimental findings, and Section "Conclusions and Future Works" states the Conclusion and 
Future work.

Problem formulation
This paper is presented to identify the unknown parameters of three photovoltaic models, including TDM, DDM, 
and SDM. The mathematical models of those PV models are presented in the rest of this section.

SDM
Figure 1 displays the SDM’s electrical circuit. The output current of SDM can be computed by Kirchhoff ’s Current 
Law (KCL), as defined in the following formula25,27:

where I represents the solar cell’s current, and Iph represents the photocurrent47. Diode current, indicated by the 
symbol ID , can be computed using the following formula25,27:

(1)I = Iph − ID − Ish,
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Year Algorithm OF Modelling Contributions References

2023 Improved moth flame algorithm RMSE SDM; DDM

This study improved the moth flame algorithm 
using local escape operators to enhance its 
exploration operator and population diversity. 
This algorithm could achieve outstanding out-
comes in comparison to some algorithms, but it 
required a huge number of function evaluations, 
up to 125,000

32

2023 Hybrid grey wolf optimization RMSE DDM
This study combined the analytical technique 
and grey wolf algorithm to present a strong vari-
ant for tackling this problem

33

2023 Chaos game optimization algorithm RMSE SDM; DDM; TDM
In this study, the Chaos game optimization is 
combined with the least squares (LS) estimator 
to aid in accelerating the convergence speed and 
achieving better outcomes

34

2023 Squirrel search algorithm RMSE SDM; DDM
This study adapted the squirrel search algorithm 
for estimating the unknown parameters of SDM 
and DDM by minimizing the root mean squared 
error between the measured and estimated data

35

2023 Growth Optimizer RMSE SDM; DDM

The growth optimizer was developed to find 
the unknown parameters for two different PV 
modules, namely KKC and RTC. This algorithm 
consumed a huge number of function evalua-
tions for solving this problem

36

2023 L-SHADE RMSE SDM

In this study, a parameter decomposition 
technique was used to alleviate this problem’s 
complexity. Then, the L-SHADE was applied 
to estimate the unknown values for those 
parameters. This presented technique was called 
the L-SHADE with parameter decomposition 
(L-SHADED). This technique was assessed using 
two different PV modules and compared to 
some competitors to reveal its effectiveness

37

2023 Opposition-Based Initialization Particle Swarm 
Optimization RMSE SDM

In this study, the particle swarm optimization 
was improved using the opposition-based theory 
for better solving the parameter identification 
problem of SDM

38

2023 Chimp optimization algorithm RMSE SDM, DDM, TDM

The Chimp optimization algorithm was 
employed in this study to minimize the RMSE 
between the measured and estimated data for 
finding the optimal values of the unknown 
parameters in three different PV models

39

2023 Harris Hawks optimizer RMSE SDM, DDM, TDM

the Harris Hawks optimization algorithm was 
enhanced by the fractal maps to propose a new 
technique, namely FCHHHO. This technique 
was used to identify the unknown parameters of 
the RTC France solar cell and PWP PV module 
based on SDM, DDM, and TDM

4

2023 Artificial humming bird optimizer RMSE, NR, Lambert W function SDM, DDM
This algorithm was adapted for tackling the 
parameter identification of PV models under 
three different OFs

40

2023 Improved Particle Swarm Optimization RMSE SDM, DDM

Qaraad et al. improved the particle swarm opti-
mization using a local search method to avoid 
stagnation into local minima and quadratic 
interpolation to improve the convergence speed. 
This improved variant was referred to as QPSOL 
and applied to determining the unidentified 
parameters of SDM and DDM

41

2023 Ranking-based artificial gorilla troop optimizer 
(RGTO) RMSE TDM

In this study, the artificial gorilla troop optimizer 
(GTO) was improved using two mechanisms 
to strengthen its search ability to prevent 
stagnation into local minima and accelerate the 
convergence rate. This improved variant was 
called RGTO and applied to solve the parameter 
estimation of TDM and fuel cells

42

2023 Amended reptile search algorithm RMSE SDM, DDM

In this study, the reptile search algorithm 
(RSA) was enhanced by the opposition-based 
theory to avoid falling into local minima and 
accelerate the convergence speed. In addition, 
this improved RSA was incorporated with the 
Cauchy mutation strategy to further improve the 
exploration operator. This improved variant was 
called OBL-RSACM and applied to estimate the 
unknown parameters of SDM, DDM, and TDM

43

Continued
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where Isd represents the reverse saturation current of the diode, V  indicates the output voltage, Rs refers to the 
series resistance, and n is the ideality factor. Vt is estimated by:

where T is a symbol to refer to the temperature (Kelvin), k is a symbol used to refer to the Boltzmann constant, 
and q is a symbol used to stand for the charge of the electron, Ish presented in Eq. (1) is defined by:

where Rsh represents the shunt resistance. The following is a general formula that can be used to calculate I:

In order to accurately find the I-V characteristic of the SDM, It is necessary to determine the unknown values 
of the following parameters: Iph, Isd , n,Rs , andRsh . This estimation process could be represented as an optimiza-
tion problem, and hence the optimization methods could be utilized to solve it.

DDM
DDM was developed to provide a robust substitute for SDM in conditions where the SDM is suboptimal, such as 
in low irradiance environments48. The DDM is depicted in Fig. 2 and is made up of two diodes. The first diode 
serves as a rectifier, while the second compensates for recombination current and solar cell imperfections. The 
mathematical formula that could be used to compute the DDM’s output current is as follows25,27:

where Isd1 is the current through the first diode and Isd2 is the current through the second diode. n1 and n2 are 
the ideality factors. There are seven unknown parameters in this formula: Iph, Isd1, Isd2, Rs, Rsh, n1, and n2, which 
need to be accurately estimated to reliably find the I-V characteristic of the DDM.

(2)ID = Isd

(

exp

(

V + I ∗ Rs

n ∗ Vt

)

− 1

)

,

(3)Vt =
k ∗ T

q
,

(4)Ish =
V + I ∗ Rs

Rsh
,

(5)I = Iph − Isd

(

exp

(

q ∗ (V + I ∗ Rs)

n ∗ k ∗ T

)

− 1

)

−
V + I ∗ Rs

Rsh
.

(6)I = Iph − Isd1

(

exp

(

V + I ∗ Rs

n1 ∗ Vt

)

− 1

)

− Isd2

(

exp

(

V + I ∗ Rs

n2 ∗ Vt

)

− 1

)

−
V + I ∗ Rs

Rsh
,

Table 1.   Some metaheuristic algorithms proposed recently for the parameter estimation of PV models.

Year Algorithm OF Modelling Contributions References

2023 Eight metaheuristic algorithms RMSE SDM

Sharma et al. studied the performance of eight 
metaheuristic algorithms for solving the param-
eter identification problem of four PV modules 
and cells. The experimental findings show that 
the coot-bird optimization technique is the best 
for the RTC France solar cell and the LSM20 PV 
module, while the wild horse optimizer could 
be the best for the SS2018 and Solarex MSX-60 
PV modules

44

2023 Improved cheetah optimizer (ICO) RMSE SDM, DDM
Memon proposed a new optimization technique, 
namely ICO, based on improving the cheetah 
optimizer for accurately solving this problem

45

I
ph

I
D

D

Rs

R
sh

I
sh

+

-

V

I

Figure 1.   The equivalent circuit diagram for SDM.
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TDM
As illustrated in Fig. 3, a photocurrent source, Iph , a shunt resistor Rsh , three parallel diodes, and a series resistance 
Rs make up the TDM. The TDM’s output current could be estimated by:

where Isd3 is the current through the third diode, and a3 represents the third diode’s ideality factor. The TDM’s 
mathematical model has seven unknown parameters that need to be accurately estimated to maximize the 
performance of the solar cell. These parameters are namely Iph, Isd1, Isd2, Isd3,Rs ,Rsh, a1, a2, anda3 . From above, it 
is clear that various PV models have different numbers of parameters, where SDM has five parameters, DDM has 
seven, and TDM has nine. The characteristics of each model are different, and hence the optimization algorithm 
that could find the near-optimal parameter for a model is not necessarily able to have the same performance for 
the other models. Therefore, in this study, we strive to design an alternative optimization technique with strong 
exploration and exploitation operators for estimating those unknown parameters for three PV models.

Kepler optimization algorithm (KOA)
Recently, a new metaheuristic-based technique, namely the Kepler optimization algorithm (KOA), was presented 
to tackle continuous optimization problems. This algorithm was inspired by Kepler’s laws of planetary motion. 
These laws have shown that four factors could control the path of the planet around the sun. These factors are 
represented in the gravitational force, position, mass, and orbital velocity of a planet. KOA considers each 
planet as a candidate solution, and during the motion of a planet, it could estimate a new solution for the 
optimization problem. Those planets near the sun maximize the exploitation capabilities, while the others 
enhance the exploration capabilities. In brief, analogous to the other metaheuristic algorithms, KOA is based 
on two operators: exploitation and exploration. The KOA’s flowchart is depicted in Fig. 4. The KOA’s mathematical 
model is discussed in detail next.

Step 1: Initialization step
The KOA, in the beginning, distributes N planets within the search space, where each planet is comprised of 

d dimensions. The formula that is used to distribute the planets is mathematically formulated as follows:

where Xi refers to the ith planet; Xj
i,low and Xj

i,up are the search limits of the jth dimension, respectively. r is a 
number selected randomly in the range (0, 1). In addition, KOA has some parameters, like the orbital eccentric-
ity ( e ) and orbital period (T), that need to be initialized before starting the optimization process. The orbital 
eccentricity ( e ) could be initialized by:

(7)

I = Iph − Isd1

(

exp

(

V + I∗Rs

Vt ∗ n1

)

− 1

)

− Isd2

(

exp

(
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Vt ∗ n2

)

− 1

)

− Isd3

(

exp

(

V + I∗Rs

Vt ∗ n3

)

− 1

)

−
V + I ∗ Rs

Rsh
,

(8)X
j
i = X

j
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X
j
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j
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)

,

{

i = 1, 2, . . . ,N
j = 1, 2, . . . , d

,
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Figure 2.   The equivalent circuit diagram for DDM.
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Figure 3.   The equivalent circuit diagram for TDM.
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Finally, T for each it h planet could be initialized by:

where rn is a number selected randomly according to the normal distribution.
Step 2: Defining F
The planets’ motions around the Sun are governed by gravity, which is considered the fundamental force in 

the universe. The gravity of each planet varies in accordance with its mass. It’s important to note that a planet’s 
speed is affected by the Sun’s gravity. When a planet is closer to the Sun, its orbital speed increases, and when it 
is farther away, the speed decreases. The universal law of gravity, which specifies the strength of the pull between 
the Sun −→X S and any planet −→X i , could be defined as follows:

where ε contains a small value to avoid division by zero, r1 is a variable including values generated randomly 
between 0 and 1. Msandmi denote the normalized values of the mass of both XSandXi , respectively; the mass 

(9)ei = r, i = 1, . . . ,N

(10)Ti = |rn|, i = 1, . . . ,N ,

(11)Fg i(t) = ei × µ(t)×
Ms ×mi

R
2
i + ε

+ r1,

Initialize N solutions, 
orbital eccentricities, and 
orbital periods

Evaluate objective values 
for initial population.

Determine global best ( ) 
solution as the Sun

Calculate the Euclidian 
distance between the Sun and 
all the objects 

Calculate the gravitational 
force between the Sun and 
all the objects

Calculate the velocity of all 
the objects

Generate two random numbers 
 between 0 and 1

Update the current solution 
using Eq. (30)

Update the current solution 
using Eq. (31)

Applying Eq. (35)

Updating the best-so-far 
solution ( )

YesNo

Yes

Return the best-so-far 
solution ( )

No

Start

Figure 4.   KOA’s Flowchart.
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Ms and mi of both XSandXi are respectively computed according to Eqs. (14) and (15); µ is a fixed value to rep-
resent the universal gravitational constant;ei indicates the eccentricity of a planet’s orbit; and Ri represents the 
normalized value of the Euclidian distance between Xi and XS . The Euclidian distance between Xi and XS could 
be computed by:

where r2 is a number chosen at random in the range (0, 1). Ms represents the mass of XS , and mi represents the 
mass of Xi . µ(t) is defined by:

where γ is a fixed value; µ0 includes an initial value; and t  and Tmax represent the current function evaluation 
and the maximum function evaluations, respectively.

Step 3: Calculating an object’s velocity
A planet’s speed is calculated by its distance from the Sun. In other words, a planet’s velocity rises as it draws 

nearer to the Sun and diminishes as it moves farther away. When a planet or other object approaches the Sun, 
the Sun’s gravity is much stronger, so the planet attempts to accelerate in order to avoid being pulled in. In46, this 
behavior is simulated using the following mathematical model:
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−

1

ai(t) + ε
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1
2

,

(22)M = (r3 × (1− r4)+ r4),

(23)
−→
U =

{

0
−→r5 ≤

−→r6
1 Else

,

(24)F =

{

1 if r4 ≤ 0.5

−1 Else

(25)ℓ̈ =

(

1−
−→
U
)

×
−→
M× L

(26)−→
M =

(
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(

1−−→r5
)

+
−→r5

)

,
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−→
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{

0
−→r5 ≤ r4

1 Else
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where −→Vi (t) stands for the ith object’s velocity, r3 and r4 are two numbers selected at random in the range (0, 1); 
and −→r5  and −→r6  refer to two vectors, including decimal numbers selected at random in the interval (0, 1). −→X a 
and −→X b are two solutions picked randomly at random from the current solutions; Msandmi refer to the mass of 
−→
X Sand

−→
X i , respectively; and ai is the semimajor axis of the ith object’s elliptical orbit. F  includes either 1 or − 1, 

selected at random, to change the search direction. ai is defined by:

Step 4: Escaping from the local optimum
Most objects in the solar system rotate on their axes and orbit anticlockwise around the Sun; however, there 

are a few exceptions. This behavior is exploited by KOA in order to break out of local optimal zones by switching 
the search direction at regular intervals with the help of a flag F. This gives the agents a better chance of efficiently 
searching the entire space.

Step 5: Updating objects’ positions
The planets travel in their elliptical orbits around the Sun. Those planets get closer to the Sun for a while and 

then away from it during rotation. KOA simulates this behavior in two stages: exploration and exploitation. The 
exploration operator is simulated in KOA when the Planets are far from the Sun, while the exploitation operator 
is achieved when the planets are closer to the Sun. In KOA, this behavior is mathematically defined as follows:

Equation (30) simulates the Sun’s gravitational force on the planets, where this equation uses an additional 
step size based on calculating the distance between the Sun and the current planet multiplied by the gravitational 
force of the Sun to assist KOA in exploring the regions surrounding the best-so-far solution and finding better 
solutions in fewer function evaluations. According to46, when a planet is distant from the Sun, its velocity will 
often represent the exploration operator of KOA. However, the Sun’s gravitational pull affects this velocity, allow-
ing the current planet to marginally exploit regions near the best solution. Meanwhile, as a planet gets closer 
to the Sun, its velocity skyrockets, allowing it to escape the Sun’s gravitational pull. If the best-so-far solution, 
referred to as the sun, is local minima, velocity represents local optimal avoidance, and the Sun’s gravitational 
pull is the exploitation operator to aid KOA in assaulting the best-so-far solution to find better solutions. Increas-
ing the eccentricity of a planet’s orbit increases the strength of the gravitational pull between the planet and the 
sun when a planet approaches the point closest to the sun. On the contrary, when the planet gets away from the 
sun, the gravitational pull is gradually weakened. When the eccentricity approaches 0, the gravitational pull is 
minimized because the orbit will be gradually converted from an elliptical shape into a circle shape, and hence 
all the points on this orbit might approximately have the same gravitational force. More details for this step are 
presented in the original reference for KOA46.

Step 6: Updating distance with the Sun
In an additional effort to improve the KOA’s search capabilities, the natural variation in the distance to the 

Sun and planets over time was simulated. When planets are closer to the Sun, the exploitation operator is acti-
vated to enhance the convergence rate, whereas when the Sun is distant, the exploration operator is activated 
to diminish getting stuck in local optima. This principle is imitated using the controlling parameter h , which 
varies progressively over time. If this parameter is large, the exploration operator is used to broaden the distance 
between the planets’ orbits and the Sun; otherwise, the exploitation operator is utilized to maximize the reward 
from regions surrounding the best-to-date solution. This principle’s mathematical model could be defined by:

where r is a number selected randomly in the range (0, 1), while η is defined as follows:

where a2 represents a cyclic controlling parameter and could be defined as follows:

where TC represents the number of cycles, and % is the modulo operator.
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{
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1 Else

,
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.
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,

(33)η = (a2 − 1)× r4 + 1,
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)
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Step 7: Elitism
This step enacts an elitist strategy to guarantee that planets and the Sun are always in the local-best positions 

obtained even now, as defined in the following mathematical formula:

Proposed algorithm
The accurate estimation of PV parameters is essential for precise modeling, assessment, and control of PV sys-
tems. By knowing the near-optimal values of the PV parameters, the performance, efficiency, and reliability of 
PV systems at different operating conditions can be significantly optimized49,50. Some of the practical benefits 
that can be obtained from the proper estimation of PV parameters are as follows49,51:

•	 Improved design and sizing of PV systems, such as selecting the optimal number and configuration of PV 
modules, batteries, inverters, etc.

•	 Improved MPPT algorithms, which can modify the PV system’s operating point to extract the highest power 
output under any given scenario.

•	 Improved fault diagnosis and detection of PV systems, such as identifying and pinpointing the sources of 
power losses, degradation, or damage in PV modules or components.

•	 More accurate prediction and simulation of the PV system behavior, such as estimating the energy yield, 
environmental impact, power quality, etc.

Therefore, this paper designs a new optimization technique based on integrating the recently presented KOA 
with two effective mechanisms for accurate estimation of PV parameters for precise modeling, assessment, and 
control of PV systems. Those mechanisms are used to enhance the exploration and exploitation capabilities of 
KOA for accurately solving this complicated optimization problem. Generally, in this section, the different steps 
of KOA, which are represented in initialization, evaluation, ranking-based update mechanism, exploitation 
improvement mechanism, and KOA’s pseudocode, are extensively described.

Initialization
Before starting the optimization process, the proposed algorithm creates N solutions with nine, five, or seven 
unknown parameters according to the tackled PV model. These solutions are then initialized at random within 
the search boundary of each parameter, as described in Eq. (8). The search limit of each unidentified parameter 
is described in Table 2. These initialized solutions are evaluated according to the objective function discussed 
later to compute the quality of each solution and extract the solution with the lowest objective value to represent 
the best-to-date solution.

Objective function (OF)
Finding the unknown parameter values that produce the smallest disparity between the measured and simulated 
current data is a primary goal when solving the PV models’ parameter identification. Therefore, the RMSE metric 
between measured and current data is utilized as an OF to determine the quality of the parameters obtained by 
each solution in the hope of finding the near-optimal solution, which could minimize RMSE as small as possible. 
The OF’s mathematical formula is as follows:

where I and Im stand for the estimated current and the measured current, respectively. M refers to the number 
of measured data points. 

−→
X i contains the values of the unidentified parameters obtained by the ith solution. For 

each solution in the population, the estimated current I
(

Ve ,
−→
X i

)

 is computed by the Newton–Raphson method 
for each set of experimentally-measured points52.

(35)
−→
X i,new(t + 1) =

{

−→
X i(t + 1), if f (

−→
X i(t + 1) ≤ f (

−→
X i(t))

−→
X i(t), Else

.

(36)RMSE = f
(

−→
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)

=

√

√

√

√

1

M
∗

M
∑
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(

Im − I
(

Ve ,
−→
X i

))2
,

Table 2.   Search limit for each unidentified parameter.

Iph(A) Isdi(A), i ∈ 1 : 3 Rs(�) Rsh(�) n1 n2 n3

X
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i,up

1.1ISC 10µA 0.5 500 2 2 2

X
j
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0.9ISC 1nA 0 0 1 1.2 1.4
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Ranking‑based update mechanism (RUM)
In53, a new mechanism called RUM was proposed to weed out the solutions that could not achieve better 
solutions in a number of successive iterations, and replace them with new solutions generated using some of the 
updating schemes. Those schemes must be designed in a manner that aids in covering the regions intractable to 
a metaheuristic algorithm. The main disadvantage of this mechanism is that no specific updating scheme could 
be used to generate new solutions. Although this is considered a disadvantage, it is also considered an advantage 
at the same time because it gives the researchers more flexibility in finding the most relevant schemes that could 
enhance performance. In53, the author employed an updating scheme that aimed to speed up convergence to the 
best-to-date solution by shifting the less-beneficial solutions to the region between the best solution obtained yet 
and the current position. This was done in the hope that a better solution could be found in this region. However, 
this scheme might lead to falling into local optima when handling the problem considered in this study, which needs 
strong exploratory patterns to be accurately solved. Therefore, in this study, a new updating mechanism is designed 
to help enhance the convergence speed in addition to diminishing stagnation in local optima. This mechanism is 
based on two folds. The first fold is based on borrowing the fish aggregating devices (FADs) from MPA to promote 
the exploration operator. FADs, according to54, are mathematically represented in the following formula:

where −→X r1 and −→X r2 are two individuals chosen at random from the current individuals, r2 is the numerical value 
selected randomly in (0, 1), FADs was set to 0.2 in MPA, but here is generated randomly between 0 and 1 to avoid 
parameter tuning burden, ⊗ is element-wise multiplication operator, 

−→
U  is a binary vector used to determine 

whether each dimension in the current solution is updated or not, and CF is an adaptive controlling parameter, 
which is regenerated in each generation by:

The second fold is based on designing updating schemes capable of further exploring the search space for 
reaching promising regions, which might contain the desired solution. Those updating schemes were based on 
the levy flight and normal distribution to give variety in the generated step sizes for covering the search space as 
much as possible. The second fold is mathematically formulated as follows:

where RL is a numerical value generated according to the levy flight. The tradeoff between the first and second 
fold within our proposed algorithm is achieved at random, as defined in the following equation:

Before starting the optimization process, a variable is generated for each solution to contain the number of 
successive times it could not achieve a better solution. In the case that the variable of a solution contains a number 
greater than the threshold value, this solution will be replaced with a new solution generated under Eq. (40).

Exploitation improvement strategy
The method discussed in the previous section is integrated into KOA to further improve its exploration pat-
tern, but its exploitation operator still needs further improvement to achieve better solutions in lower function 
evaluations. Therefore, in this paper, an additional improvement strategy, namely the exploitation improvement 
strategy, is proposed to relate the updating process of the current solution with the best solution achieved yet 
for searching for a better solution as quickly as possible. This strategy’s mathematical model is presented in the 
following formula:

where r1 is a number selected at random in (0, 1), and −→U1 is a binary vector assigned with 1 and 0 according to a 
convergence rate (CR) factor estimated in the experiments section to prevent premature convergence that might 
be caused by the first state in the previous equation. In brief, −→U1 is mathematically defined as follows:
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where −→R  is a vector including numbers generated at random between 0 and 1. Finally, this strategy and RUM 
are integrated with the classical KOA in an effective manner to enhance its search potential. In a more sense, the 
classical KOA is extensively applied at the beginning of the optimization process for covering all the possible 
regions within the search space that might involve the desired solution. In addition, to further improve the KOA’s 
exploration operator, the RUM is applied to replace the solutions of KOA that could not achieve better solutions 
for RK successive iterations. With increasing the current function evaluation, HKOA increases the probability 
of the exploitation improvement strategy to extensively exploit the regions around the best solution achieved 
yet for finding the required solution. This optimization procedure is repeated until the termination criterion is 
met. In brief, the pseudocode of HKOA is listed in Algorithm 1.

Algorithm 1.   Pseudo-code of HKOA.
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Results and discussion
This section is presented to assess the HKOA performance for the parameter identification of three PV models 
for a solar cell called RTC France and five PV modules, including Ultra, PWP, STP6, KKC, and STM. All those 
PV modules are based on three different PV models: SDM, DDM, and TDM, to investigate the accuracy of the 
proposed HKOA for estimating the unknown parameters for them. Those PV modules are used in our experi-
ments due to their wide use in the literature and their different characteristics that aid in discovering the stability 
of the newly proposed algorithms55,56. Those characteristics at STC are the number of cells connected in series 
in PV modules ( Ns ), the open-circuit current–voltage ( Voc ), the maximum output current ( Im ), the maximum 
output power ( Pm ), the short-circuit current point ( ISC ), the maximum output voltage ( Vm ), the short-circuit 
current–temperature factor(ki ), and the temperature coefficient of open-circuit voltage ( kv ) and are set in our 
experiments as reported in Table 2 57.

In our conducted experiments, HKOA was executed 30 independent times on each module to remedy its 
stochastic nature, and its outcomes are analyzed in terms of several performance metrics, such as standard 
deviation (SD), best RMSE, average (Avg) RMSE, and Worst RMSE. In addition, the convergence curve is used 
in the comparison to disclose the convergence speed of each algorithm; the Wilcoxon rank-sum test is used to 
show the difference between each pair of algorithms; and the computational cost is used to compute the time 
consumed by each algorithm until completing the optimization process. To reveal the HKOA’s effectiveness, its 
values for various performance metrics were contrasted with three different categories of optimizers: the first 
category includes some recently-published metaheuristic techniques, such as pelican optimization algorithm 
(POA)58, gorilla troops optimizer (GTO)59, dandelion optimizer (DO)60, and classical KOA46; the second cat-
egory includes two high-performing optimization techniques, such as particle swarm optimization (PSO)61 and 
LSHADE_cnEpSin (cnEpSin)62; the last category includes some of the high-performing optimization techniques 
proposed recently for tackling the parameter estimation problem of PV models, including ranking-based whale 
optimization algorithm (RWOA)55, interior search algorithm (ISA)63, and spider wasp optimizer (SWO)64. The 
controlling parameters of those rival optimizers were set as suggested in the cited paper, except for Tmax and N , 
which are set to 25,000 and 25, respectively, to guarantee a fair comparison. The search limit of each unidenti-
fied parameter in various PV models is set as stated in Table 3. Ultimately, the experiments in this section were 
conducted on a computer that possessed the following attributes: 32GB RAM, 2.40GHz Intel(R) Core(TM) 
i7-4700MQ processor, 64-bit Windows 10 Professional. All algorithms are implemented in MATLAB R2019a.

Table 3.   Characteristics of the RTC France solar cell and PV modules.

Characteristics KKC PWP RTC​ STP Ultra STM

Pm[W] 200 11.5 0.31 102 85 25.5

Vm[V ] 26.3 12.649 0.459 14.93 17.2 16.98

Im[A] 7.61 0.912 0.6755 6.83 4.95 1.5

Voc[V ] 32.9 16.7785 0.5736 19.21 22.2 21.02

ISC [A] 8.21 1.0317 0.7605 7.48 5.45 1.663

Ns 54 36 1 36 36 36

Ki 0.0318 0.0008 0.000387 0.00065 0.0008 − 0.00065

Kv − 0.123 − 0.0725 − 0.003739 − 0.003466 − 0.0725 − 0.00346

Table 4.   Comparison among algorithms using RTC France cell under SDM. Bold font represents the best 
outcomes.

Best-obtained parameters RMSE

P valueIph(A) Isd(µA) Rs(�) Rsh(�) n Best Worst Avg SD

HKOA 0.7608 3.107E-07 0.0365 52.8898 1.4773 7.73006E-04 7.73006E-04 7.73006E-04 4.04037E-17

PSO 0.7608 3.107E-07 0.0365 52.8898 1.4773 7.73006E-04 7.36945E-02 2.51591E-02 3.49069E-02 5.57E-07

KOA 0.7603 7.155E-07 0.0327 83.4305 1.5660 1.56653E-03 3.69726E-03 2.45608E-03 5.57207E-04 3.02E-11

RWOA 0.7606 6.282E-07 0.0334 79.0325 1.5513 1.37972E-03 7.36945E-02 2.87527E-02 3.47952E-02 3.00E-11

POA 0.7624 1.498E-06 0.0287 62.0875 1.6544 3.25924E-03 8.78483E-03 6.56213E-03 1.48056E-03 3.02E-11

DO 0.7607 5.819E-07 0.0337 68.7958 1.5430 1.27482E-03 7.36945E-02 8.33639E-03 1.26479E-02 3.02E-11

GTO 0.7608 3.101E-07 0.0366 52.8539 1.4771 7.73012E-04 1.48373E-03 1.04463E-03 2.20310E-04 3.02E-11

SWO 0.7608 3.107E-07 0.0365 52.8898 1.4773 7.73006E-04 7.73006E-04 7.73006E-04 4.76558E-16 0.976411

ISA 0.7606 3.369E-07 0.0362 56.2926 1.4854 7.89315E-04 7.36945E-02 3.75144E-02 3.67999E-02 2.70E-11

cnEpSin 0.7608 3.107E-07 0.0365 52.8898 1.4773 7.73006E-04 6.86335E-03 2.39681E-03 1.89506E-03 3.65E-08
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RTC France solar cell
The unknown parameters of DDM, TDM, and SDM based on the RTC France solar cell are estimated in this 
section using HKOA to disclose its effectiveness. Information on current and voltage was collected from a 
commercial silicon RTC France solar cell of 57 mm diameter and operating at a temperature of 33 °C 64.

A.	 Single-Diode model

Table 4 reports the results of various performance metrics after each optimizer was run 30 times on the 
SDM-based RTC France. This table shows that HKOA is comparable to SWO and better than the others for 
all performance metrics. The WRS test is also utilized to show that there is a difference between the HKOA’s 
findings and those of the other algorithms. For each pair of algorithms, the WRS test provides a number called 
a p-value, which indicates whether there is a difference between each pair of algorithms or not. The p-value of 
HKOA against each algorithm is reported in Table 4, which shows that HKOA is substantially different from all 
competitors except SWO. Since HKOA is competitive with SWO in terms of the majority of performance metrics 
and the WRS test, an additional performance indicator called the convergence curve is used to disclose the 
HKOA’s ability to reach the near-optimal solution faster than the others. This indicator for each algorithm within 
the whole optimization process is computed and reported in Fig. 5a. Inspecting this figure reveals that HKOA 
is the best algorithm, where it could reach the smallest RMSE after 10,000, while SWO, which is considered 
the second-best algorithm, needs around 15,000 to reach the smallest RMSE. This superiority is due to the 
exploitation improvement mechanism that aids in exploiting the regions around the best-so-far solution, thereby 
aiding in accelerating the convergence speed of HKOA in comparison to KOA and all compared algorithms. 
Additionally, P–V and I-V curves based on the best parameters obtained by HKOA are depicted in Fig. 5b,c 
to show the consistency between the estimated and measured current. Those figures show that the unknown 
parameters estimated by HKOA could reach current and power that are highly consistent with the measured.

B.	 Double-Diode model

After each method has been executed thirty times on the DDM-based RTC France, various performance 
indicators are calculated and provided in Table 5. This table shows that HKOA achieves the highest ranking, 

Figure 5.   Comparison among algorithms under RTC France cell based on SDM.

Table 5.   Comparison between HKOA and its competitors using RTC France cell under DDM. Bold font 
represents the best outcomes.

Best-obtained parameters RMSE

p-valueIph(A) Isd1(A) Isd2(A) Rs(�) Rsh(�) n1 n2 Best Worst Avg SD

HKOA 0.761 8.66E-08 2.16E-06 0.038 58.356 1.373 2.000 7.326E-04 7.730E-04 7.473E-04 1.232E-05

PSO 0.761 9.42E-08 1.31E-06 0.038 56.724 1.382 1.893 7.383E-04 6.944E-02 8.506E-03 2.068E-02 5.00E-09

KOA 0.760 2.54E-07 7.77E-07 0.036 66.412 1.466 1.906 9.392E-04 3.059E-03 1.984E-03 5.335E-04 3.02E-11

RWOA 0.761 7.14E-08 2.42E-06 0.038 59.502 1.358 2.000 7.338E-04 6.944E-02 1.951E-02 3.063E-02 6.47E-08

POA 0.761 1.60E-07 1.49E-06 0.037 63.298 1.423 2.000 7.869E-04 7.756E-03 3.159E-03 1.846E-03 3.02E-11

DO 0.760 4.37E-09 4.99E-06 0.041 125.281 1.170 2.000 1.140E-03 6.944E-02 1.389E-02 2.529E-02 3.02E-11

GTO 0.761 2.37E-07 4.35E-07 0.036 55.888 1.457 1.868 7.712E-04 5.842E-03 2.763E-03 1.291E-03 3.34E-11

SWO 0.761 9.98E-08 1.89E-06 0.038 57.607 1.384 1.990 7.336E-04 6.944E-02 3.046E-03 1.254E-02 2.50E-03

ISA 0.761 1.95E-07 9.37E-07 0.037 55.147 1.438 2.000 7.490E-04 6.944E-02 2.188E-02 3.167E-02 9.85E-11

cnEpSin 0.761 1.84E-07 1.02E-06 0.037 55.093 1.433 1.999 7.468E-04 6.467E-03 1.305E-03 1.418E-03 4.94E-05
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followed by cnEpSin in second place, while ISA is considered the worst-performing algorithm. The p-value, which 
is also included in this table, demonstrates that there is a substantial difference between the outcomes of HKOA 
and those of its competitors. Also, Fig. 6a depicts the convergence rate for each algorithm to further demonstrate 
the HKOA’s superiority. From this figure, HKOA could achieve the smallest RMSE after around 10,000 function 
evaluations, while the compared algorithms until completing the maximum number of function evaluations 
could not reach a smaller RMSE value than that achieved by HKOA. Therefore, HKOA is considered faster and 
better than all the compared algorithms when applied to estimate the unknown parameters of the DDM-based 
RTC France solar cell. Figure 6b,c show that the P–V and I-V estimated by the parameters of HKOA are highly 
consistent with the measured data.

Figure 6.   Comparison among algorithms under RTC France cell based on DDM.

Table 6.   Comparison among algorithms using RTC France cell under TDM. Bold font represents the best 
outcomes.

Best-obtained parameters RMSE

P valueIph(A) Isd1(A) Isd2(A) Isd3(A) Rs(�) Rsh(�) n1 n2 n3 Best Worst Avg SD

HKOA 0.760 2.0E-09 1.0E-07 2.0E-06 0.038 61.021 61.02 1.32 1.39 7.511E-04 7.87E-04 7.64E-04 9.9E-06

PSO 0.760 9.2E-08 3.8E-07 1.6E-06 0.038 60.977 60.98 1.38 1.98 7.514E-04 2.87E-03 1.24E-03 6.6E-04 2.E-05

KOA 0.759 3.0E-07 2.6E-07 3.7E-07 0.037 131.380 131.38 1.89 1.47 1.701E-03 4.59E-03 3.06E-03 7.9E-04 3.E-11

RWOA 0.761 7.5E-08 2.4E-06 1.0E-09 0.038 62.624 62.62 1.36 2.00 7.518E-04 9.99E-04 8.29E-04 7.3E-05 7.E-06

POA 0.761 9.3E-09 9.7E-07 1.5E-07 0.039 59.736 59.74 1.23 1.71 7.793E-04 5.71E-03 2.47E-03 1.0E-03 4.E-11

DO 0.760 1.0E-09 5.4E-06 3.5E-09 0.043 149.038 149.04 1.09 2.00 1.284E-03 5.47E-03 3.32E-03 1.1E-03 3.E-11

GTO 0.760 8.4E-07 1.4E-07 1.0E-09 0.037 58.256 58.26 1.86 1.42 7.641E-04 4.43E-03 1.46E-03 8.0E-04 3.E-10

SWO 0.760 7.1E-08 2.4E-06 8.9E-09 0.038 62.608 62.61 1.36 2.00 7.520E-04 1.19E-03 7.91E-04 7.7E-05 2.E-04

ISA 0.760 1.7E-06 1.6E-09 1.2E-07 0.038 61.218 61.22 2.00 1.94 7.666E-04 2.78E-03 1.41E-03 5.5E-04 1.E-10

cnEpSin 0.760 2.3E-07 1.6E-09 2.4E-07 0.037 55.865 55.87 1.79 2.00 7.801E-04 5.62E-03 3.11E-03 1.4E-03 4.E-11

Figure 7.   Comparison among algorithms under RTC France cell based on TDM.
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B.	 Triple-Diode model

In this section, HKOA is applied to identify nine unknown parameters of TDM based on RTC France to further 
reveal its performance. Table 6 shows the outcomes obtained by various algorithms for this case. This table shows 
that HKOA is the best-performing algorithm, SWO is the second-best algorithm, and DO is the worst. This table 
also includes the p-value between HKOA and each rival optimizer; this value indicates that HKOA results are 
different from those of all other algorithms. The convergence curve for each algorithm is illustrated in Fig. 7a 
to further illustrate HKOA’s superiority. According to this figure, HKOA was able to obtain the lowest RMSE 
after about 10,000 function evaluations, meanwhile, all rival algorithms were unable to acquire a lower RMSE 
value than HKOA up until they finished the maximum number of function evaluations. As a result, when used 
to estimate the unknown parameters of the TDM-based RTC France solar cell, HKOA is thought to be quicker 
and more accurate than all of the compared algorithms. In addition, Fig. 7b,c are presented to show consistency 
between the I-V and P–V curves estimated by HKOA against the measured curves. Those figures show that the 
estimated data is highly identical to the measured data.

PWP module
In this section, the HKOA’s performance is investigated to identify the unknown parameters of three PV models 
under a well-known PV module, namely the PWP module.

A.	 Single-Diode model

After each algorithm was executed 30 times on the SDM-based PWP, the results of various performance 
metrics are shown in Table 7. Based on this data, it is clear that HKOA is superior to all the other optimizers for 
the majority of the performance metrics. To further demonstrate that the HKOA’s outcomes are distinct from 
those of its competitors, we employ the WRS test. Table 7 reports the p-value of the WRS test between HKOA 
and each rival algorithm. This value demonstrates that, except for SWO, HKOA is substantially different from 
its competitors. In addition, the convergence curve is presented in Fig. 8a to show how HKOA gets closer to the 

Table 7.   Comparison among algorithms using PWP under SDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

P valueIph(A) Isd(µA) Rs(�) Rsh(�) n Best Worst Avg SD

HKOA 1.0324 2.497E-06 0.0345 20.7868 1.3166 2.03999E-03 2.03999E-03 2.03999E-03 1.713E-17

PSO 1.0324 2.497E-06 0.0345 20.7867 1.3166 2.03999E-03 9.51542E-02 4.25039E-02 4.683E-02 5.70E-08

KOA 1.0314 4.181E-06 0.0328 25.8651 1.3713 2.41293E-03 4.75281E-03 3.49481E-03 6.109E-04 3.02E-11

RWOA 1.0311 3.821E-06 0.0331 27.1097 1.3612 2.24311E-03 9.51542E-02 5.53996E-02 4.624E-02 2.86E-11

POA 1.0286 5.607E-06 0.0319 53.4566 1.4038 2.80005E-03 1.35118E-02 6.38457E-03 2.462E-03 3.02E-11

DO 1.0326 5.264E-06 0.0317 25.0082 1.3972 2.78688E-03 9.51542E-02 3.57308E-02 4.279E-02 3.02E-11

GTO 1.0324 2.509E-06 0.0344 20.8080 1.3171 2.04005E-03 3.07165E-03 2.28062E-03 2.993E-04 3.02E-11

SWO 1.0324 2.497E-06 0.0345 20.7867 1.3166 2.03999E-03 4.65638E-03 2.12721E-03 4.777E-04 4.25E-01

ISA 1.0317 2.752E-06 0.0342 22.5303 1.3266 2.05467E-03 9.51542E-02 5.81411E-02 4.611E-02 2.25E-11

cnEpSin 1.0324 2.497E-06 0.0345 20.7867 1.3166 2.03999E-03 6.89645E-03 4.22208E-03 1.606E-03 8.14E-11

Figure 8.   Comparison among algorithms under PWP module based on SDM.
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best-to-date solution in less time. This figure shows that after fewer than 10,000 function evaluations, HKOA was 
able to obtain the lowest RMSE. In contrast, some competing algorithms, such as GTO and SWO, at the end of 
the optimization process could approximate slightly the smallest RMSE value obtained by HKOA. Thus, HKOA 
is considered to be the best when used to estimate the unknown parameters of the SDM-based PWP module. 
In addition, Fig. 8b,c depict I-V and P–V curves using the best parameters obtained by HKOA, demonstrating 
consistency between the measured and calculated current.

Table 8.   Comparison between HKOA and its competitors using PWP under DDM. Bold font represents the 
best outcomes.

Best-obtained parameters RMSE

P valueIph(A) Isd1(A) Isd2(A) Rs(�) Rsh(�) n1 n2 Best Worst Avg SD

HKOA 1.032 4.32E-07 2.06E-06 0.034 20.787 1.317 1.317 2.040E-03 2.185E-03 2.050E-03 2.816E-05

PSO 1.032 1.35E-08 2.94E-06 0.035 21.493 1.069 1.346 2.086E-03 9.391E-02 6.351E-02 4.373E-02 5.94E-11

KOA 1.030 1.74E-06 4.39E-06 0.035 27.667 1.289 1.714 2.364E-03 8.158E-02 6.628E-03 1.432E-02 3.02E-11

RWOA 1.032 8.00E-09 2.52E-06 0.034 20.935 1.292 1.318 2.040E-03 9.390E-02 2.678E-02 4.117E-02 9.76E-10

POA 1.032 2.08E-06 4.21E-06 0.035 21.200 1.301 1.932 2.097E-03 9.390E-02 1.270E-02 2.756E-02 3.34E-11

DO 1.035 1.00E-09 1.53E-06 0.036 15.441 1.030 1.271 2.334E-03 9.391E-02 2.902E-02 3.985E-02 3.02E-11

GTO 1.032 1.20E-06 1.54E-06 0.034 21.652 1.299 1.356 2.050E-03 5.057E-03 2.665E-03 6.855E-04 1.61E-10

SWO 1.032 1.00E-09 2.50E-06 0.034 20.787 1.312 1.317 2.040E-03 9.390E-02 1.744E-02 3.478E-02 2.13E-05

ISA 1.032 1.74E-06 4.83E-06 0.035 21.271 1.286 1.826 2.124E-03 9.390E-02 8.173E-02 3.157E-02 3.69E-11

cnEpSin 1.032 6.12E-07 1.91E-06 0.034 20.946 1.293 1.327 2.042E-03 3.726E-03 2.610E-03 4.493E-04 3.16E-10

Figure 9.   Comparison among algorithms under PWP module based on DDM.

Table 9.   Comparison among algorithms using PWP under TDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

P valueIph(A) Isd1(A) Isd2(A) Isd3(A) Rs(�) Rsh(�) n1 n2 n3 Best Worst Avg SD

HKOA 1.032 2.3E-06 3.2E-07 1.0E-09 0.034 22.16 1.32 1.32 1.40 2.051E-03 2.14E-03 2.06E-03 2.1E-05

PSO 1.032 1.0E-09 2.6E-06 1.9E-08 0.034 22.17 1.65 1.32 1.40 2.051E-03 3.58E-03 2.68E-03 5.2E-04 2.4E-09

KOA 1.028 4.4E-06 3.6E-06 1.5E-07 0.033 61.32 1.98 1.36 1.65 2.817E-03 3.60E-03 3.16E-03 2.1E-04 3.0E-11

RWOA 1.032 1.0E-09 2.6E-06 1.1E-09 0.034 22.29 1.34 1.32 2.00 2.051E-03 2.67E-03 2.23E-03 1.9E-04 4.6E-09

POA 1.032 5.8E-07 2.9E-06 1.0E-09 0.034 23.14 1.98 1.33 1.40 2.079E-03 4.20E-03 3.22E-03 4.4E-04 5.0E-11

DO 1.030 3.0E-06 8.3E-06 1.3E-07 0.033 36.00 1.34 2.00 1.91 2.413E-03 4.30E-03 3.42E-03 4.0E-04 3.0E-11

GTO 1.032 1.0E-09 2.8E-06 1.7E-08 0.034 22.74 1.81 1.33 1.46 2.072E-03 3.27E-03 2.40E-03 3.2E-04 1.6E-10

SWO 1.032 9.9E-07 1.6E-06 1.0E-09 0.034 22.16 1.32 1.32 1.71 2.051E-03 3.35E-03 2.17E-03 2.9E-04 1.0E-04

ISA 1.031 1.0E-09 2.7E-06 1.6E-09 0.034 23.41 1.66 1.32 1.65 2.079E-03 4.06E-03 3.01E-03 5.4E-04 5.0E-11

cnEpSin 1.032 1.8E-06 2.9E-06 1.2E-09 0.033 25.03 1.31 1.50 1.60 2.275E-03 2.92E-03 2.66E-03 1.5E-04 3.0E-11
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B.	 Double-Diode model

After each method has been executed thirty times on the PWP based on DDM, various performance metrics 
are computed and displayed in Table 8. Inspecting this table shows that HKOA is the best, followed by cnEpSin 
in second place, and ISA is the algorithm with the worst performance. This table also includes the p-value, 
which demonstrates that there is a difference between the outcomes of HKOA and those of its competitors. The 
convergence curve shown in Fig. 9a further illustrates the superiority of HKOA. In a more general sense, this 
figure shows that HKOA had a convergence speed competitive with that of GTO until reaching the function 
evaluation of 15,000. Afterwards, HKOA could converge faster and achieve an RMSE lower than all the compared 
algorithms. As a result, HKOA is regarded as the best method for estimating the unknown parameters of the 
DDM-based PWP module. The I-V and P–V estimated by the HKOA parameters are highly consistent with the 
measured data, as shown in Fig. 9b,c.

C.	 Triple-Diode model

In this section, HKOA is utilized to estimate nine unidentified TDM parameters based on the PWP module in 
order to disclose more about its performance. Table 9 demonstrates the results acquired by various algorithms 
in this scenario. Based on this table, HKOA is the algorithm with the greatest performance, followed by SWO 
in second place and DO in last place. This table also includes the p-value between HKOA and each algorithm 
compared; this value indicates that the results of HKOA are distinct from those of all other algorithms. Figure 10a 
depicts the convergence curves for each algorithm to further demonstrate HKOA’s superiority. This figure shows 
that after around 12,000 function evaluations, HKOA was able to obtain the lowest RMSE. In contrast, all com-
peting algorithms were unable to obtain a lower RMSE value than HKOA even after completing the maximum 
number of function evaluations. Thus, HKOA is considered to be faster and more accurate than all of the ana-
lyzed algorithms when used to estimate the unknown parameters of the TDM-based PWP module. Moreover, 
Fig. 10b,c are provided to illustrate the consistency between the I-V and P–V curves estimated by HKOA and 
the measured curves. These figures demonstrate that the anticipated and measured data are extremely similar.

Figure 10.   Comparison among algorithms under PWP module based on TDM.

Table 10.   Comparison among algorithms using STM under SDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

P valueIph(A) Isd(µA) Rs(�) Rsh(�) n Best Worst Avg SD

HKOA 1.6639 1.741E-06 0.0043 15.9315 1.5205 1.72192E-03 1.72192E-03 1.72192E-03 1.343E-17

PSO 1.6639 1.741E-06 0.0043 15.9315 1.5205 1.72192E-03 7.94295E-02 2.00613E-02 3.333E-02 6.72E-04

KOA 1.6627 2.644E-06 0.0028 18.2166 1.5678 1.99127E-03 3.78867E-03 2.98202E-03 4.465E-04 3.02E-11

RWOA 1.6625 3.101E-06 0.0023 19.5064 1.5867 2.19221E-03 7.94295E-02 1.05987E-02 2.335E-02 3.01E-11

POA 1.6593 5.932E-06 0.0000 31.2816 1.6682 3.49928E-03 1.34661E-02 9.68315E-03 4.174E-03 3.02E-11

DO 1.6644 1.316E-06 0.0052 14.8391 1.4902 1.83915E-03 7.94295E-02 1.20001E-02 1.329E-02 3.02E-11

GTO 1.6639 1.741E-06 0.0043 15.9311 1.5205 1.72192E-03 8.32547E-03 2.96518E-03 1.988E-03 3.02E-11

SWO 1.6639 1.741E-06 0.0043 15.9315 1.5205 1.72192E-03 3.16298E-03 1.88775E-03 3.513E-04 1.89E-04

ISA 1.6638 1.984E-06 0.0038 16.4010 1.5349 1.75164E-03 7.94295E-02 5.37547E-02 3.693E-02 2.94E-11

cnEpSin 1.6639 1.741E-06 0.0043 15.9315 1.5205 1.72192E-03 7.47877E-03 2.82568E-03 1.600E-03 1.43E-05
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STM6‑40 module
This section investigates the efficacy of HKOA for identifying the unknown parameters of three PV models under 
a well-known PV module called the STM module.

A.	 Single-Diode model

Table 10 displays the findings of used performance metrics after each algorithm was run 30 times on the SDM-
based STM. This table demonstrates that HKOA is better than all the competing optimizers. We use the WRS 
test to further show that the results obtained by the HKOA are unique in comparison to the other algorithms. 
In Table 10, the p-value that the WRS test calculated when comparing HKOA to its competitors. This value 
shows that HKOA is significantly different from the other methods statistically. Additionally, the convergence 

Figure 11.   Comparison among algorithms under STM module based on SDM.

Table 11.   Comparison among algorithms using STM under DDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

P valueIph(A) Isd1(A) Isd2(A) Rs(�) Rsh(�) n1 n2 Best Worst Avg SD

HKOA 1.664 4.31E-09 4.30E-06 0.007 17.407 1.105 1.703 1.676E-03 2.795E-03 1.735E-03 2.004E-04

PSO 1.664 1.00E-09 4.28E-06 0.008 17.696 1.028 1.699 1.678E-03 7.484E-02 1.199E-02 2.510E-02 2.39E-04

KOA 1.663 8.81E-07 4.07E-06 0.003 18.851 1.478 1.814 2.062E-03 3.014E-02 4.651E-03 5.421E-03 7.39E-11

RWOA 1.664 1.00E-09 3.76E-06 0.008 17.245 1.031 1.675 1.677E-03 3.238E-03 1.806E-03 3.039E-04 6.95E-01

POA 1.666 1.04E-09 1.68E-06 0.004 14.039 1.297 1.517 1.978E-03 7.603E-03 4.759E-03 1.622E-03 4.98E-11

DO 1.665 1.09E-09 1.64E-06 0.006 14.937 1.091 1.531 1.799E-03 1.304E-02 6.516E-03 2.788E-03 4.08E-11

GTO 1.664 1.37E-06 1.59E-06 0.004 16.120 1.498 1.974 1.715E-03 1.061E-02 2.810E-03 1.576E-03 2.37E-10

SWO 1.664 2.87E-07 4.92E-06 0.005 16.814 1.372 1.835 1.692E-03 7.484E-02 4.371E-03 1.333E-02 5.61E-05

ISA 1.664 4.61E-07 2.54E-06 0.005 16.290 1.419 1.720 1.705E-03 7.484E-02 5.300E-02 3.393E-02 1.43E-10

cnEpSin 1.664 2.20E-09 3.68E-06 0.007 17.188 1.074 1.670 1.676E-03 5.869E-03 3.093E-03 1.206E-03 7.69E-08

Figure 12.   Comparison among algorithms under STM module based on DDM.
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curve is shown in Fig. 11a. This figure demonstrates that HKOA was able to attain the lowest RMSE after fewer 
than 10,000 function evaluations. Conversely, after completing the optimization process, some rival algorithms, 
including SWO, might be able to roughly match the least RMSE that HKOA was able to acquire. Therefore, 
HKOA is thought to be the optimum alternative for estimating the unknown parameters of the SDM-based STM 
module. I–V and P–V curves are shown in Fig. 11b,c using the best parameters found by HKOA, illustrating the 
similarity between the estimated and observed current.

B.	 Double-Diode model

Table 11 summarizes the results of 30 times of each algorithm on the DDM-based STM in terms of a variety of 
performance measures. Based on these results, it appears that HKOA is the most effective algorithm, with RWOA 
coming in second and ISA coming in last. There is a statistically significant difference between HKOA and its 
competitors’ outcomes, as illustrated by the p-value that is also reported in this table. Figure 12a depicts the con-
vergence curve of each algorithm, further illustrating the HKOA’s superiority. Broadly speaking, this figure shows 
that, after around 5,000 function evaluations, HKOA was able to achieve the lowest RMSE. On the other hand, 
after approximately 22,000 function evaluations, RWOA can roughly equal the lowest RMSE that HKOA was 
able to obtain. Consequently, HKOA is the best option for predicting the DDM-based STM module’s unknown 
parameters. Figure 12b,c display the similarity between the measured data and the data estimated by HKOA.

C.	 Triple-Diode model

In this section, HKOA estimates nine unidentified TDM parameters based on the STM module to reveal its 
performance. Table 12 shows algorithm outcomes in this circumstance. HKOA performs best, followed by SWO, 
while DO is the worst. The p-value between HKOA and the rival algorithms shows that its results are distinct. 
Figure 13a shows each algorithm’s convergence curves to show HKOA’s supremacy. This figure, in general, indi-
cates that HKOA was able to obtain the lowest RMSE following about 12,000 function evaluations. Conversely, 
following about 17,000 function evaluations, RWOA can roughly match the lowest RMSE that HKOA managed 
to achieve. For estimating the unknown characteristics of the TDM-based STM module, HKOA is therefore 
the most effective algorithm. Figure 13b,c illustrate that the HKOA-estimated I-V and P–V curves match the 
measured curves.

Table 12.   Comparison among algorithms using STM under TDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

p valueIph(A) Isd1(A) Isd2(A) Isd3(A) Rs(�) Rsh(�) n1 n2 n3 Best Worst Avg SD

HKOA 1.663 2.4E-06 2.5E-08 3.9E-06 0.007 18.51 1.74 1.20 1.84 1.702E-03 1.75E-03 1.73E-03 1.5E-05

PSO 1.663 2.6E-08 7.4E-06 4.3E-07 0.006 18.17 1.24 1.95 1.46 1.708E-03 5.05E-03 2.66E-03 1.2E-03 7.E-07

KOA 1.662 1.4E-06 1.8E-07 3.8E-06 0.004 19.01 1.50 1.90 1.98 2.022E-03 4.70E-03 3.74E-03 6.7E-04 3.E-11

RWOA 1.663 1.0E-09 4.9E-07 5.6E-06 0.008 18.78 1.03 1.50 1.84 1.706E-03 1.92E-03 1.79E-03 8.2E-05 4.E-03

POA 1.663 6.1E-07 5.8E-08 2.4E-06 0.004 16.31 1.45 1.56 1.73 2.188E-03 5.29E-03 4.09E-03 1.1E-03 3.E-11

DO 1.663 1.3E-08 2.0E-06 2.8E-09 0.004 17.11 1.58 1.54 1.48 1.769E-03 1.22E-02 4.76E-03 2.2E-03 3.E-11

GTO 1.663 1.0E-09 4.7E-06 1.5E-07 0.007 18.33 1.04 1.76 1.41 1.705E-03 2.89E-03 1.88E-03 2.8E-04 5.E-06

SWO 1.663 2.5E-07 9.8E-06 3.4E-08 0.006 18.34 1.35 2.00 1.56 1.707E-03 3.32E-03 1.80E-03 2.9E-04 5.E-02

ISA 1.663 1.0E-09 8.2E-07 5.2E-06 0.005 17.47 1.99 1.45 2.00 1.726E-03 4.71E-03 2.38E-03 6.4E-04 2.E-10

cnEpSin 1.663 7.9E-06 6.3E-08 4.4E-07 0.005 17.94 2.00 2.00 1.40 1.713E-03 3.91E-03 2.67E-03 7.0E-04 8.E-08

Figure 13.   Comparison among algorithms under STM module based on TDM.
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Kyocera KC200GT module
Due to the high accuracy of TDM over both DDM and SDM, in this section and the next two sections, we will 
further focus on observing the performance of HKOA for estimating its nine known parameters under three 
different PV modules. After 30 independent trials for each algorithm on the TDM-based KKC, a number of 
performance indicators are estimated and reported in Table 13. This table illustrates that HKOA ranks first, 
RWOA is the second best, and POA is the worst algorithm. This table also provides the p-value that compares 
HKOA’s findings to those of each algorithm; this value demonstrates that HKOA’s results are unique from those 
of all other algorithms. Figure 14a illustrates the convergence curves for each algorithm to further affirm HKOA’s 
supremacy; this figure illustrates HKOA’s superiority. In addition, Fig. 14b,c are presented to demonstrate that 
the I-V and P–V curves estimated by HKOA and the measured curves are consistent with one another.

Table 13.   Comparison among algorithms using KKC under TDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

Iph(A) Isd1(A) Isd2(A) Isd3(A) Rs(�) Rsh(�) n1 n2 n3 Best Worst Avg SD p-value

HKOA 8.201 1.0E-09 1.0E-09 1.0E-09 0.005 2.64 1.05 2.00 2.00 2.821E-02 6.84E-02 3.73E-02 1.2E-02

PSO 8.161 1.0E-09 1.2E-07 2.2E-08 0.005 3.66 1.05 1.98 1.53 3.085E-02 8.40E-02 4.90E-02 1.2E-02 8.E-06

KOA 8.143 4.6E-07 2.9E-07 4.8E-07 0.003 451.24 1.96 1.39 1.98 7.051E-02 1.08E-01 8.99E-02 7.2E-03 3.E-11

RWOA 8.201 1.0E-09 1.0E-09 1.0E-09 0.005 2.64 1.05 2.00 2.00 2.821E-02 6.84E-02 4.25E-02 1.1E-02 6.E-03

POA 8.132 1.0E-09 4.5E-06 2.4E-07 0.004 167.88 1.06 1.93 1.58 5.079E-02 1.01E-01 7.67E-02 1.4E-02 2.E-10

DO 8.104 2.3E-09 4.9E-09 1.9E-06 0.004 356.71 1.09 1.80 1.86 4.410E-02 1.04E-01 7.32E-02 1.9E-02 9.E-10

GTO 8.193 1.0E-09 1.0E-08 5.4E-08 0.005 2.86 1.05 2.00 2.00 2.848E-02 7.85E-02 5.85E-02 1.2E-02 7.E-08

SWO 8.192 1.8E-09 7.4E-08 2.3E-08 0.004 2.94 1.07 1.98 1.97 2.979E-02 6.84E-02 5.21E-02 1.3E-02 2.E-06

ISA 8.210 1.0E-09 1.0E-09 1.0E-09 0.005 2.51 1.05 1.61 1.40 2.842E-02 7.60E-02 5.80E-02 1.2E-02 1.E-07

cnEpSin 8.185 4.7E-09 1.2E-08 8.9E-08 0.004 3.96 1.13 1.82 1.43 4.307E-02 1.04E-01 7.67E-02 1.3E-02 2.E-10

Figure 14.   Comparison among algorithms under KKC based on TDM.

Table 14.   Comparison among algorithms using Ultra under TDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

p-valueIph(A) Isd1(A) Isd2(A) Isd3(A) Rs(�) Rsh(�) n1 n2 n3 Best Worst Avg SD

HKOA 5.226 1.7E-06 1.0E-05 1.0E-05 0.011 3.99 1.43 1.72 1.92 2.427E-03 2.55E-03 2.48E-03 3.3E-05

PSO 5.226 1.0E-05 7.6E-06 4.2E-06 0.011 3.95 1.85 1.96 1.49 2.446E-03 1.73E-02 5.57E-03 4.7E-03 1.E-05

KOA 5.215 6.4E-06 7.8E-08 8.1E-06 0.011 4.73 1.72 1.60 1.56 5.152E-03 1.51E-02 9.13E-03 2.5E-03 3.E-11

RWOA 5.227 1.8E-06 1.0E-05 1.0E-05 0.011 3.91 1.42 1.79 1.84 2.459E-03 5.92E-03 2.96E-03 7.4E-04 4.E-07

POA 5.219 6.3E-06 2.4E-06 1.8E-06 0.011 4.23 1.59 1.82 1.46 5.163E-03 2.17E-02 1.43E-02 4.6E-03 3.E-11

DO 5.220 8.0E-06 8.8E-06 3.7E-08 0.011 4.43 1.55 1.82 1.74 3.197E-03 3.25E-02 1.16E-02 8.4E-03 3.E-11

GTO 5.226 1.4E-06 6.9E-06 1.0E-05 0.011 3.91 1.44 1.61 1.93 2.463E-03 3.78E-03 2.64E-03 2.9E-04 2.E-05

SWO 5.226 7.1E-06 9.9E-06 1.3E-06 0.011 3.94 1.69 1.79 1.41 2.438E-03 3.45E-03 2.52E-03 1.8E-04 6.E-01

ISA 5.226 4.3E-06 6.3E-07 6.5E-06 0.011 3.86 1.53 1.76 1.62 2.544E-03 1.79E-02 6.69E-03 4.2E-03 3.E-11

cnEpSin 5.229 1.1E-06 9.9E-08 9.2E-06 0.011 3.64 1.94 1.80 1.56 2.684E-03 9.06E-03 5.69E-03 2.0E-03 3.E-11
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Ultra 85‑P module
To further study the HKOA’s performance over TDM, in this section, an additional PV module called Ultra 85-P 
is utilized. The findings obtained by various algorithms over this module are displayed in Table 14. The algorithm 
with the best performance, according to this table, is HKOA, followed by SWO, and POA is the worst. This table 
also contains the p-value between HKOA and each rival optimizer; this value indicates that HKOA’s results are 
distinct from those of all other algorithms. Figure 15a depicts the convergence curves for each algorithm to 
further illustrate HKOA’s superiority; this figure shows HKOA’s superiority. In addition, Fig. 15b,c illustrate the 
similarity between the I–V and P–V curves estimated by HKOA and the measured curves.

Figure 15.   Comparison among algorithms under Ultra 85-P based on TDM.

Table 15.   Comparison among algorithms using STP under TDM. Bold font represents the best outcomes.

Best-obtained parameters RMSE

p-valueIph(A) Isd1(A) Isd2(A) Isd3(A) Rs(�) Rsh(�) n1 n2 n3 Best Worst Avg SD

HKOA 7.476 1.0E-09 1.9E-06 1.0E-09 0.005 15.14 1.24 1.24 2.00 1.380E-02 1.39E-02 1.38E-02 2.3E-05

PSO 7.476 2.2E-08 1.9E-06 5.6E-08 0.005 15.22 1.15 1.25 1.92 1.381E-02 1.55E-02 1.42E-02 4.0E-04 1.E-10

KOA 7.463 1.4E-06 5.3E-06 2.5E-06 0.005 55.80 1.22 1.94 1.59 1.426E-02 1.86E-02 1.54E-02 1.1E-03 3.E-11

RWOA 7.480 1.9E-06 1.1E-09 1.0E-09 0.005 12.84 1.24 2.00 1.40 1.382E-02 1.55E-02 1.45E-02 5.8E-04 9.E-11

POA 7.459 5.1E-09 2.2E-06 1.2E-06 0.005 475.82 1.46 1.25 1.94 1.426E-02 1.91E-02 1.55E-02 1.1E-03 3.E-11

DO 7.468 6.1E-08 9.8E-07 6.9E-06 0.005 41.78 1.99 1.20 1.61 1.430E-02 3.00E-02 1.75E-02 3.2E-03 3.E-11

GTO 7.476 9.9E-09 1.9E-06 1.3E-09 0.005 15.31 1.92 1.24 1.96 1.380E-02 1.49E-02 1.40E-02 2.9E-04 1.E-09

SWO 7.476 1.9E-06 4.6E-08 1.0E-09 0.005 15.14 1.24 1.24 2.00 1.380E-02 1.50E-02 1.39E-02 2.2E-04 1.E-04

ISA 7.476 1.9E-06 1.9E-08 2.3E-07 0.005 15.44 1.24 1.99 1.64 1.381E-02 2.71E-02 1.48E-02 2.5E-03 9.E-11

cnEpSin 7.467 4.5E-09 2.0E-06 2.1E-06 0.005 34.04 1.26 1.25 1.94 1.422E-02 1.78E-02 1.49E-02 7.1E-04 3.E-11

Figure 16.   Comparison among algorithms under STP based on TDM.
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STP module
Finally, in this section, the STP module is utilized to further study the HKOA’s performance over TDM. Table 15 
displays the results acquired by various algorithms on this module. According to this table, the algorithm with 
the greatest performance is HKOA, followed by SWO, while DO is classified as the worst algorithm. This table 
also includes the p-value between HKOA and each algorithm compared; this value indicates that HKOA’s results 
are distinct from all other algorithms. Figure 16a illustrates the convergence curves for each algorithm to further 
demonstrate HKOA’s superiority; this figure demonstrates HKOA’s superiority. Moreover, Fig. 16b,c depict the 
similarity between the I-V and P–V curves estimated by HKOA and the measured curves.

Computational cost
After clarifying the HKOA’s effectiveness in the former sections, it is time to show its efficiency under the 
computational cost consumed from the beginning of the optimization process to the end. Therefore, the average 
computational costs for each algorithm within 30 independent times on various PV modules based on TDM are 

a) RTC France b) PWP module               c) STM module 
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Figure 17.   Comparison between HKOA and its competitors in terms of computational cost over TDM.
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Figure 18.   HKOA’s parameter tuning.
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computed and reported in Fig. 17. According to this figure, the computational cost for all algorithms is nearly 
competitive, except for DO, which consumes nearly a third of the computational cost of the others. Despite that, 
DO could not be considered a strong alternative for extracting the unknown parameters of various PV models 
because it has weak performance compared to HKOA. In general, since HKOA could achieve outstanding 
outcomes in a reasonable time, it is considered a strong alternative for tackling the parameter estimation problem 
of PV models.

HKOA’s sensitivity analysis
Accurate determination of the best values for the newly proposed controlling parameters, namely RK and CR, is 
an essential step to maximize the performance of HKOA when applied to dealing with parameter estimation of 
the PV models. Therefore, extensive experiments were performed on a variety of PV models under a wide range 
of values, and the results of those experiments are summarized and presented in Fig. 18. Observing this figure 
illustrates that the HKOA performance is significantly enhanced when RK and CR are 4 and 0.2, respectively. 
The classical KOA’s parameters are all set according to what is recommended in46. In brief, HKOA’s parameters 
are listed in Table 16.

Conclusions and future works
This paper introduces a new technique for approximating the unidentified parameters of three PV models, 
namely TDM, DDM, and SDM. This technique is called a hybrid KOA and is based on integrating the recently 
proposed KOA with two effective mechanisms, namely the ranking-based update and exploitation improvement 
mechanisms, to enhance its exploration and exploitation capabilities for accurately solving this complex opti-
mization problem. The first mechanism is used to promote the KOA’s exploration operator to diminish getting 
stuck in local optima, while the second mechanism promotes the exploitation operator to fulfill a better solu-
tion in smaller function evaluations. Both KOA and HKOA are verified using the RTC France solar cell and five 
PV modules, and their effectiveness is determined by comparing them to eight rival algorithms. Experimental 
findings indicate that HKOA is the most effective method for parameter estimation of TDM, DDM, and SDM 
since it could produce significantly different and superior results for various tackled PV modules. Although the 
proposed HKOA could achieve outstanding outcomes for this problem, it still suffers from some shortcomings, 
such as the parameter tuning problem and a slightly high computational cost, which might affect its performance 
when applied to other real applications. Therefore, in the future, we will design new search mechanisms based 
on chaotic maps or opposition-based theory to improve the performance of KOA in terms of reducing the 
additional control parameters and minimizing high computational requirements. In addition, our future work 
will investigate the performance of HKOA for several other optimization problems like estimating the unknown 
parameters of fuel cells, image denoising, image segmentation, image registration, image enhancement, image 
fusion, and feature selection.

Data availabilty
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.
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