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Bioinformatics analysis identifies 
coagulation factor II receptor 
as a potential biomarker 
in stomach adenocarcinoma
Xingwei Wu 1,2, Shengnan Wang 3, Chenci Wang 4, Chengwei Wu 5 & Zhiyong Zhao 1*

Coagulation factor 2 thrombin receptor (F2R), a member of the G protein-coupled receptor family, 
plays an important role in regulating blood clotting through protein hydrolytic cleavage mediated 
receptor activation. However, the underlying biological mechanisms by which F2R affects the 
development of gastric adenocarcinoma are not fully understood. This study aimed to systematically 
analyze the role of F2R in gastric adenocarcinoma. Stomach adenocarcinoma (STAD)-related gene 
microarray data and corresponding clinicopathological information were downloaded from the Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression genes 
(DEGs) associated with F2R were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), gene set enrichment analysis (GSEA), and protein–protein interaction (PPI) 
networks. F2R mRNA expression data were utilized to estimate stromal cell and immune cell scores in 
gastric cancer tissue samples, including stromal score, immune score, and ESTIMATE score, derived 
from single-sample enrichment studies. Analysis of TCGA and GEO databases revealed significantly 
higher F2R expression in STAD tissues compared to normal tissues. Patients with high F2R expression 
had shorter survival times than those with low F2R expression. F2R expression was significantly 
correlated with tumor (T) stage, node (N) stage, histological grade and pathological stage. Enrichment 
analysis of F2R-related genes showed that GO terms were mainly related to circulation-mediated 
human immune response, immunoglobulin, cell recognition and phagocytosis. KEGG analysis 
indicated associations to extracellular matrix (ECM) receptor interactions, neuroactive ligand-receptor 
interactions, the phosphoinositide-3-kinase-protein kinase B/Akt (PI3K-AKT) signaling pathway, 
the Wnt signaling pathway and the transforming growth factor-beta (TGF-β) signaling pathway. 
GSEA revealed connections to DNA replication, the Janus kinase/signal transducers and activators of 
transcription (JAK-STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling 
pathway and oxidative phosphorylation. Drug sensitivity analysis demonstrated positive correlations 
between F2R and several drugs, including BEZ235, CGP-60474, Dasatinib, HG-6-64-1, Aazopanib, 
Rapamycin, Sunitinib and TGX221, while negative correlation with CP724714, FH535, GSK1904529A, 
JNK-9L, LY317615, pyrimidine, rTRAIL and Vinorelbine. Knocking down F2R in GC cell lines resulted in 
slowed proliferation, migration, and invasion. All statistical analyses were performed using R software 
(version 4.2.1) and GraphPad Prism 9.0. p < 0.05 was considered statistically significant. In conclusion, 
this study underscores the significance of F2R as a potential biomarker in gastric adenocarcinoma, 
shedding light on its molecular mechanisms in tumorigenesis. F2R holds promise for aiding in the 
diagnosis, prognosis, and targeted therapy of STAD.
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Abbreviations
F2R	� Coagulation factor II (thrombin) receptor
TCGA​	� The Cancer Genome Atlas database
STAD	� Stomach adenocarcinoma
GSEA	� Gene set enrichment analysis
HR	� Hazard ratio
TNM	� Tumour staging
lnc RNA	� Long noncoding RNA
miRNAs	� MicroRNAs
GO	� Gene Ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
ROC	� Receiver operating characteristic
PPI	� Protein interaction

Gastric cancer (GC) ranks as one of the most common human cancers globally, standing fifth in terms of inci-
dence and representing the fifth leading cause of cancer-related deaths1. Notably, in East Asia, including China, 
the mortality rate is high2–4. Due to the lack of apparent symptoms in the early stages of GC, many patients are 
diagnosed at advanced stage5,6. STAD is the most common and malignant subtype7. Surgery remains the cor-
nerstone of GC treatment. Despite recent advances in diagnosing and treating STAD, the prognosis for patients 
remains poor due to tumor recurrence and distant metastasis8. STAD is a multifactorial outcome, with com-
plex interactions between Helicobacter pylori (H. pylori) and host vulnerabilities playing a dominant role in its 
development9. Like most cancers, complex interactions between multiple pro- and anticancer signaling pathways 
control the development and progression of GC10–12. Therefore, it is essential to study tumor-associated signal-
ing pathways13. Understanding the molecular mechanisms of STAD tumorigenesis is imperative for identifying 
prognostic markers and new practical therapeutic approaches14. In recent years, mining central genes related 
to STAD from RNA-seq data in the TCGA database has become a prominent area of research. By analyzing the 
central gene of STAD, investigating the competing endogenous RNA (ceRNA) network significantly related to 
the prognosis of GC, and assessing the sensitivity of immune drugs, leveraging the TCGA database holds promise 
for advancing the diagnosis, prognosis and targeted therapy of STAD.

F2R, also known as protease-activated receptor (PAR-1), belongs to the PAR family. The PAR protein fam-
ily is an evolutionary conserved regulator of polarity found asymmetrically in polarized cells. Cross-regula-
tory interactions between PAR proteins and other conserved polarity complexes establish a stable asymmetry 
within cells. These interactions also shape the evolution of PAR protein distribution in response to cues such 
as cytoskeleton transport15,16. Thrombin, matrix metalloproteinase 1 (MMP1), coagulation factor VII, kinase-
releasing enzyme-related peptidase six (KLK6), and MMP2 act as key ligands, binding to F2R and triggering 
its signaling pathways17,18. Previous studies have reported elevated expression of F2R in various cancers such as 
lung adenocarcinoma19,20, glioma21,22, melanoma23, and breast cancer24,25. In these cases, elevated F2R levels are 
closely associated with malignant biological behaviors, including tumor invasion, proliferation, and angiogenesis. 
However, research on F2R in STAD remains limited. This study aimed to investigate the prognostic value and 
potential mechanisms of F2R in STAD.

Nearly 98% of the human transcriptome consists of noncoding RNA (ncRNA), specifically long-stranded non-
coding RNAs (lncRNAs) defined as those exceeding 200 nucleotides26. These molecules exhibit limited or absent 
protein-coding capacity due to the lack of the open reading frame (ORF). However, they exert regulatory control 
over gene expression through various mechanisms, including epigenetic modifications, nuclear translocation, 
gene transcription, and mRNA translation27. A growing number of studies have shown that noncoding RNAs play 
a crucial role in regulating the biological functions of various tumors, including GC. In many tumors, lncRNAs 
function as ceRNAs, which compete with microRNAs (miRNAs) to upregulate the expression of target genes. In 
this intricate mechanism, lncRNAs can alleviate the repression imposed by miRNAs on their target genes, serving 
as miRNA sponges in many tumors and assuming the role of ceRNAs28–30. Specific examples include the lncRNA 
LINC01270/miR-326/EFNA3 axis, which exacerbates GC progression31. Overexpression of HOXC-AS1 acts as a 
sponge for miR-99a-3p, leading to the upregulation of MMP8 and ultimately promoting the GC progression32. 
The KCNQ1OT1/miR-378a-3p/RBMS1 axis is an important prognostic factor and therapeutic target for GC33. 
While these studies suggest the involvement of ceRNA networks in the progression of GC, further investigation 
is needed to understand the ceRNA networks that are significantly associated with the prognosis of GC.

Immunotherapeutic approaches, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T 
cells (CAR-T), have made significant progress in recent years and revolutionized treatment options. Monoclonal 
antibody therapy targeting immune checkpoint proteins PD-1/PD-L1 and CTLA-4 have rapidly progressed, 
showing impressive response rate in various tumors, including RCC, melanoma, lung cancer, GC, and other 
tumors34. The potential of immunotherapy in GC patients has attracted increasing attention35. While ICB therapy 
have demonstrated durable disease control in certain tumor patients, the implementation of multitarget or tar-
geted multicellular therapies, as well as combinations with other treatment modalities, may improve antitumour 
efficacy. Therefore, efforts toward antitumor therapies targeting immune cells still have a considerable journey 
ahead to achieve synergistic effects36. Targeted therapy is a fundamental strategy in the clinical treatment of 
cancer. Identifying potential antitumour agents that could benefit tumor treatment allows for the analysis of 
response among tumor patients in different risk subgroups to antitumour drugs, offering novel insights for 
precision targeted therapy for tumor patients37.

Bioinformatic analysis of sequencing data from the TCGA database enables the identification of gene regula-
tory pathways and disease networks. In this study, we compared differentially expressed genes in patients using 
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STAD samples from the TCGA database. The expression profiles of these genes were correlated with patients’ 
clinical data. The RNA expression analysis data included 375 tumor samples and 32 nontumor samples. To 
further explore the potential biological functions of F2R in STAD, bioinformatics tools were employed to vali-
date molecular mechanisms through GSEA and GO/KEGG enrichment analysis. We systematically screened 
miRNAs and lncRNAs upstream of F2R, constructing a ceRNA network. This network was investigated for its 
potential regulatory role in STAD development. In this study, we investigated the prognostic value of F2R in 
GC and comprehensively evaluated its potential value. Our findings contribute to the identification of novel 
prognostic biomarkers and provide insights into potential molecular mechanisms that influence GC prognosis. 
Finally, in vitro and in vivo experiments were performed to validate the expression and function of F2R in GC.

Results
F2R expression in STAD
Our dataset, comprising 375 patients with STAD, was obtained from TCGA and included both clinical informa-
tion and gene expression data. Various clinical characteristics, such as gender, age, histological grade, pathological 
grade, T stage, N stage, M stage and vital status, were collected (Table S1). The Perl programming language was 
used to match gene expression data with clinical information, eliminating samples of unknown or incomplete 
clinical data. The patient data were categorized into high and low F2R expression groups based on the median 
level of F2R gene expression. Table 1 provides a comprehensive overview of the differences in clinical data of GC 
patients in different F2R expression groups. Furthermore, the analysis of F2R expression across different tumor 
types using the UCSC Xena database revealed increased F2R expression in various tumors, including cholangio-
carcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), rectum adenocarcinoma 
(READ), and STAD (Fig. 1A). Notably, based on TCGA data, F2R expression was significantly higher in STAD 
tissues compared to normal tissues (p = 2.158e−15) (Fig. 1B). Consistent with these findings, analysis of three 
GEO datasets demonstrated higher F2R expression in the STAD group (Fig. 1C–E).

Association between F2R gene expression and clinical characteristics in STAD patients
Kaplan–Meier survival curves revealed that patients with elevated F2R expression exhibited shorter survival 
times compared to those with low F2R expression (p = 0.029) (Fig. 2A). The relationship between F2R gene 
expression and clinicopathological variables in GC patients was further explored using the Wilcoxon signed-
rank test and logistic regression analysis. F2R mRNA expression was examined across patient groups categorized 
by age, gender, clinical grade, T stage, N stage, and M stage of the patients. The findings indicated a significant 
association between F2R overexpression and T stage (T2, T3, T4, and T1; p = 0.0014, 0.00016, 3.4e−05), N stage 
(N0 and N3; p = 0.026), histological grade (G1 and G3; p = 8.731e−06), and pathological stage (stage I and stage 
III; p = 3.485e−04). Notably, F2R gene expression was independent of clinical factors, including age, sex, and M 
stage (Fig. 2B). Patients with GC were stratified into two groups based on F2R expression levels, and clinically 
relevant thermography was employed to analyze patients’ variables and the high/low expression of F2R. The 
results revealed a statistically significant correlation between patients’ grade stage and F2R expression (p < 0.05) 
(Fig. 2C). The diagnostic value of F2R mRNA expression for predicting patient survival at 1, 3, and 5 years 
was assessed using ROC curves, yielding areas under the curve (AUCs) of 0.585, 0.547, and 0.758, respectively 
(Fig. 2D). Furthermore, univariate logistic regression analysis explored the relationship between F2R gene expres-
sion and the clinicopathological characteristics in GC patients. The results highlighted a significant association 
between high F2R gene expression and histological grade, pathological stage, T stage, and race. However, no 
significant differences were observed between F2R gene expression and other clinicopathological variables, 
including age, sex, N stage, M stage, tumor status and residual tumor (Table 2).

Development of a prognostic model integrating F2R expression and clinical factors
Univariate regression analysis unveiled that F2R gene expression was a high-risk factor for GC (HR 1.367; con-
fidence interval, 1.110–1.683; p = 0.003) (Fig. 3A). In the subsequent multivariate analysis, F2R mRNA expres-
sion emerged as an independent risk factor for overall survival in GC patients (HR 1.294; confidence interval, 
1.028–1.628; p = 0.028) (Fig. 3B). Both univariate and multifactorial Cox regression analyses consistently identi-
fied F2R gene expression as a high-risk factor for STAD (Table 3). Utilizing F2R expression and other clinical 
parameters, we developed a prediction model for overall survival prediction, integrating F2R as a biomarker for 
GC. A nomogram was established to visually represent this prediction model (Fig. 3C). A calibration curve evalu-
ated the performance of the nomogram for F2R expression versus 1-year, 3-year, and 5-year survivals (Fig. 3D).

Construction of the lncRNA–miRNA–mRNA ceRNA regulatory network
Following the ceRNA hypothesis, where miRNAs negatively modulate gene expression by targeting mRNA, 
and lncRNAs can indirectly regulate this process by binding to these miRNAs, we aimed to establish a ceRNA 
network targeting F2R using bioinformatic methods. Using miRNA target prediction screening in the starBase 
database, 56 miRNAs associated with F2R were identified (Fig. 4A). A correlation table between F2R and these 
miRNAs is provided in Table S2, revealing strong negative correlations for hsa-miR-144-5p and hsa-miR-486-5p. 
These two miRNAs were chosen for further investigation due to their negative correlation with F2R expression 
and lower expression in GC tissues compared to normal tissues (Fig. 4B,C). Further details on the expression of 
other miRNAs in STAD and their correlation with F2R are presented in Supplementary Fig. S1A,B. To identify 
lncRNAs potentially interacting with hsa-miR-144-5p and hsa-miR-486-5p, the starBase database was utilized 
for further analysis. The detailed correlations between these miRNAs and lincRNA are presented in Tables S3 and 
S4. Based on these findings, a ceRNA regulatory network was constructed using Cytoscape software (Fig. 4D,E). 
We identified upstream lncRNAs that exhibited a negative correlation with the expression of hsa-miR-144-5p and 
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hsa-miR-486-5p, while demonstrating a positive correlation with F2R expression. Specifically, lncRNA-FTX was 
found to regulate F2R expression in GC cells through the hsa-miR-144-5p/F2R axis, while lncZEB1-AS1 regulated 
F2R expression through the hsa-miR-486-5p/F2R axis, thereby modulating F2R expression in GC cells. Moreover, 
the expression levels of lncRNA FTX and lncZEB1-AS1 were significantly elevated in GC tissues compared to 
adjacent normal tissues (Fig. 4F–H). This upregulation suggests that these lncRNAs may be potential biomarkers 
for GC diagnosis or prognosis.

Enrichment analyses of F2R‑related through GSEA, GO, and KEGG
Genes highly associated with F2R were screened in GC using differential expression analysis. The identified 
DEGs were then classified into two groups based on high or low expression of F2R (Fig. 5A). Eleven genes with 
significant differential expression were further characterized. PDGFRB, A2M, LRRC32, F2RL2, LTBP2, and 
PCDH18 exhibited a positive correlation with F2R expression. EFNA3, DCXR, SNORD104, NME1, and SLC25A10 
showed a negative correlation with F2R expression (Fig. 5B). To delve deep into the relationships between F2R 
and these genes, a comprehensive correlation analysis was conducted (Table S5). Supplementary Figure S2A–R 
provide detailed information on the correlation between F2R expression and these identified DEGs. To under-
stand the functional relevance of the identified F2R-associated genes, GO and KEGG pathway analyses were 

Table 1.   STAD patient characteristics in the TCGA database. Significant values are in bold.

Characteristic Low expression of F2R High expression of F2R p

n 188 187

T-stage, n (%) 0.038

 T1 14 (3.81%) 5 (1.36%)

 T2 42 (11.44%) 38 (10.35%)

 T3 87 (23.71%) 81 (22.07%)

 T4 43 (12.11%) 57 (15.53%)

N-stage, n (%) 0.048

 N0 63 (17.65%) 48 (13.45%)

 N1 48 (13.45%) 49 (13.73%)

 N2 36 (10.08%) 39 (10.92%)

 N3 31 (8.68%) 43 (12.04%)

M-stage, n (%) 0.847

 M0 165 (46.48%) 165 (46.48%)

 M1 13 (3.67%) 12 (3.38%)

Pathologic stage, n (%) 0.076

 I 34 (9.58%) 19 (5.35%)

 II 57 (16.06%) 54 (15.21%)

 III 65 (18.31%) 85 (23.94%)

 IV 22 (6.20%) 19 (5.35%)

Histological grade, n (%) 0.006

 G1 5 (1.37%) 5 (1.37%)

 G2 82 (22.40%) 55 (15.03%)

 G3 96 (26.23%) 123 (33.61%)

Gender, n (%) 0.969

 Female 67 (17.87%) 67 (17.87%)

 Male 121 (32.27%) 120 (32.00%)

Age, n (%) 0.81

 ≤ 70 120 (32.35%) 119 (32.08%)

 > 70 68 (18.33%) 64 (17.25%)

Tumour status (%) 0.324

 With tumor 43 (13.35%) 34 (10.56%)

 Tumor free 121 (37.58%) 124 (39.43%)

Residual tumour, n (%) 0.9

 R0 152 (46.20%) 146 (44.38%)

 R1 6 (1.82%) 9 (2.74%)

 R2 10 (3.04%) 6 (1.82%)

OS event, n (%) 0.381

 Live 147 (39.20%) 153 (40.80%)

 Death 41 (10.93%) 34 (9.07%)
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conducted. GO analysis revealed that F2R-related genes were primarily enriched in functional categories related 
to immune response and cell communication (Fig. 5C–D). Notably, these genes showed significant enrichment 
for terms such as “completion of the activation of the classical pathway”, “circulating-mediated human immune 
response”, “immunoglobulins”, “and “cell recognition”, suggesting potential roles in antibody-mediated immu-
nity and cell–cell interactions. KEGG pathway analysis provided further insights, highlighting enrichment in 
various signaling pathways crucial for cell–cell communication and regulation. Genes associated with F2R were 
significantly enriched in pathways such as ECM receptor interactions, neuroactive ligand-receptor interactions, 
protein differentiation and uptake, cytokine-cyclin receptor interactions, the PI3K-Akt signaling pathway, the 
cAMP signaling pathway, the Wnt signaling pathway, the cGMP-dependent protein kinase (cGMP/PKG) signal-
ing pathway, and the TGF-β signaling pathway (Fig. 5E,F). To explore the potential regulatory mechanisms of 
the F2R gene in GC, GSEA was performed using data from the TCGA database. The results showed associations 
of F2R mRNA expression with DNA replication, Huntington’s disease, the JAK-STAT signaling pathway, the 
MAPK signaling pathway, and oxidative phosphorylation (Fig. 5G, Table S6). In addition, GSEA suggested pos-
sible involvement of F2R in the progression of GC and its association with the mammalian target of rapamycin 
(mTOR), p53 and T-cell receptor signaling pathways (Supplementary Fig. S3A–G). The PPI network also identi-
fied genes associated with F2R (Fig. 5H).

Correlation between F2R and immune cell infiltration
Tumor mutational burden (TMB) plays a pivotal role in tumorigenesis and progression. We investigated the 
correlation between TMB and F2R expression in STAD and explored the connection between F2R expression 
and mutations in STAD. Our findings indicated a significant correlation between increased F2R expression 
in STAD and decreased TMB (Fig. 6A). Furthermore, STAD patients were stratified into low and high F2R 
expression groups based on their F2R expression levels. Analysis of stromal and immune cell infiltration in 
these groups revealed significant differences in StromalScore, Immunoscore, and estimated core scores, with 
higher scores observed in the high F2R expression group (Fig. 6B). Stromal score refers to the number of stromal 
cells in the tumor tissue, immune score refers to the number of immune cells in the tumor tissue, and estimate 
score refers to the purity of the tumor. To analyze the association between F2R and immune cell infiltration, 
we calculated the correlation between F2R and 22 immune cells using CIBERSORT. The results highlighted 
variations in the abundance of immune cell subtypes between low and high F2R expression groups. Notably, 
CD4 cell memory activation, dendritic cell quiescence, eosinophils, M2 macrophages, and M1 macrophages 
exhibited increased abundance in the F2R high expression group, while natural killer (NK) cells were activated 
in the F2R low expression group (Fig. 6C). Analysis of the linear relationship between F2R and immunological 
checkpoint genes showed that F2R had a positive regulatory relationship with immunological checkpoint genes 

Figure 1.   The expression level of F2R in STAD samples was significantly increased. (A) The expression of F2R 
in different tumor tissues in the UCSC-xena database, and the expression of F2R in STAD increased. (B) The 
expression of F2R in STAD based on the TCGA data set increased. (C–E) Elevated F2R expression in STAD 
based on GEO datasets GSE19826, GSE65801 and GSE103236.
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(Fig. 6D,E). Further exploration of the correlation between F2R and immune-related genes demonstrated its 
involvement in the immune cell infiltration of GC. Specifically, CD4+ cell memory-activated, M1 macrophages, 
M2 macrophages, eosinophils, and resting dendritic cells showed positive correlations with F2R, whereas NK 
cell activation displayed a negative correlation (Fig. 6F,G). A comprehensive analysis of F2R and immune cell 
gene markers revealed a significant positive correlation between F2R and the expression of 21 immune response 
markers across various immune cell types (Table S7). A linear plot of the correlation between F2R and immune 
cell genes is shown in Supplementary Fig. S4. The collective evidence suggested that F2R plays a crucial role in 
immune regulation and infiltration within GC tissues.

Figure 2.   The expression of F2R is related to the prognosis and clinicopathological characteristics of patients 
with STAD. (A) Based on the TCGA data set, the total survival time of STAD patients with high F2R expression 
was significantly shorter than that of STAD patients with low F2R expression. (B) F2R expression was positively 
correlated with the clinical Histological grade, Pathological stage, T stage and N stage, but not with age, gender 
and M stage. (C) Clinical-related thermal imaging analysis in patients with STAD with high and low expression 
of F2R. (D) The survival work characteristic curve of patients with STAD showed that F2R had a good predictive 
value for 5-year survival (AUC = 0.758).
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Relationship between F2R expression and immune cell infiltration in GC tissues
To substantiate the regulatory role of F2R in immune cell infiltration within GC tissues, our analysis of F2R and 
immune cell gene markers revealed a significant positive correlation with the expression of six immune response 
markers on B cells, CD4+ T cells, CD8+ T cells, M2 macrophages, neutrophils and dendritic cells (Fig. 7A–F). 
Additionally, we examined the association between F2R gene copy number and immune cells, and the results 
are shown in Supplementary Fig. S5A–E. The analysis consistently demonstrated a positive correlation between 

Table 2.   F2R expression correlated with clinical pathological characteristics (logistic regression). Categorical 
dependent variable, greater or less than the median expression level. T topography distribution, N lymph node 
metastasis, M distant metastasis. Significant values are in bold.

Characteristics Total (N) Odds ratio (OR) p value

Age (> 60 vs. ≤ 60 years) 371 0.720 (0.465–1.113) 0.141

Gender (female vs male) 375 0.992 (0.650–1.514) 0.969

Histological grade (G1 & G2 vs G3 & G4) 366 1.858 (1.2189–2.846) 0.004

Pathological stage (stage II & stage III & stage IV vs stage I) 352 1.979 (1.091–3.684) 0.027

T stage (T2 & T3 & T4 vs T1) 367 2.932 (1.096–9.231) 0.043

M stage (M1 & M0) 355 0.923 (0.404–2.094) 0.847

N stage (N1 & N2 & N3 vs N0) 357 1.471 (0.938–2.317) 0.094

Race (White & Black or African American & Native Hawaiian or Other Pacific Islander vs 
Asian) 381 1.898 (1.122–3.258) 0.018

Tumour status (with tumour vs tumour free) 381 0.735 (0.437–1.227) 0.241

Residual tumour (R1 & R2 vs R0) 387 0.938 (0.443–1.973) 0.864

Figure 3.   Clinical significance of F2R gene expression in the prognosis of STAD. (A) Univariate analysis 
showed that the expression levels of stage, age and F2R were independent predictors of survival time in patients 
with STAD. (B) Multivariate analysis showed that F2R expression was a reliable prognostic factor for patients 
with STAD. (C) A nomogram integrating F2R and other prognostic factors of STAD based on TCGA data. (D) 
The calibration curve of the nomogram.
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F2R and these immune cell types. Further investigating the relationship between F2R and immune checkpoints, 
we obtained consistent positive correlations between F2R expression and the immune checkpoints CD274, pro-
grammed cell death protein 1 (PD1), and cytotoxic T-lymphocyte associated protein 4 (CTLA4). These findings 
were validated by analyzing correlations using the TIMER and GEPIA databases (Fig. 7G–L). The relationship 
between F2R and other immune checkpoints is shown in Supplementary Fig. S6A,B.

Correlation between F2R gene methylation status and prognosis in STAD patients
The prognostic significance of DNA methylation levels within the F2R gene and CpG islands was assessed using 
the MetSurv tool. The analysis identified 19 methylated CpG islands (cg20417024, cg24702798, cg26997028, 
cg14714391, cg26594335, cg12524168, cg03043127 and cg19735421) exhibiting elevated DNA methylation levels 
(Fig. 8). In addition, the methylation levels of 14 CpG islands (cg02047489, cg11627632, cg03666316, cg04528371, 
cg13436055, cg14773260, cg20030243, cg24678700, cg03043127, cg19735421, cg26594335, cg11591325, 
cg20417124, cg24702798) were found to be associated with prognosis of GC (Table S8). Of particular interest, 
elevated methylation levels in these 14 CpG islands, especially in cg03666316 and cg13436055, were correlated 
with poorer overall survival outcomes in STAD patients compared to those with lower CpG methylation levels 
of F2R.

Correlation analysis between risk group and drug sensitivity
Genes associated with sensitivity and resistance to anticancer drugs have been extensively studied. In this inves-
tigation, we examined drug sensitivity within two risk groups, exploring the relationship between risk scores 
and IC50 values for various drugs potentially used to treat GC with high F2R expression. The prediction of the 
relationship between the F2R gene and chemical compound sensitivity was conducted using pRRophetic software. 
Our findings revealed that F2R was positively associated with BEZ235, CGP-60474, Dasatinib, HG-6-64-1, Pazo-
panib, Rapamycin, Sunitinib, and TGX221, while negatively associated with CP724714, FH535, GSK1904529A, 
JNK-9L LY317615, pyrimethamine, rTRAIL, and Vinorelbine (Fig. 9A,B).

The sensitivity of the F2R gene to commonly used antitumour drugs was investigated using the CellMiner 
database. The relationship between gene expression and drug sensitivity was calculated, revealing a significant 
association of F2R expression with the sensitivity of 14 drugs (Fig. 10). Among them, F2R was positively associ-
ated with Simvastatin, Staurosporine and Procarbazine and negatively associated with Dexrazoxane, Fulvestrant 
and SR16157. Notably, some of these drugs, exhibiting sensitivity to F2R expression level, have yet to undergo 
extensive medical testing. Their potential as promising candidates for future therapeutic interventions warrants 
further exploration.

The potential of predicting immunotherapy efficacy based on F2R levels in tumors
To investigate the potential of utilizing F2R level as a predictive biomarker for immunotherapy efficacy in STAD, 
we conducted a comprehensive investigation leveraging established immunotherapy biomarkers’ predictive capa-
bilities. Our investigation focused on evaluating F2R’s role in shaping the immunotherapeutic response in STAD. 
We examined the relationship between high and low expressions of F2R and immune scores during anti-PD1 and 
anti-CTLA4 treatment. Our results indicated no significant difference between the low and high F2R expression 
groups receiving anti-PD1 treatment. However, when subjected to anti-CTLA4 treatment, patients in the low 
F2R expression group exhibited higher immune scores, suggesting a more favorable outcome for individuals 
with low F2R expression when undergoing anti-CTLA4 treatment (Fig. 11A,B).

Impact of F2R on the proliferation, migration and invasion of STAD cells
To further validate F2R expression in gastric adenocarcinoma, we performed IHC staining on human GC tissue. 
This analysis revealed significantly upregulated F2R expression in five paired samples compared to their matched 
non-cancerous counterparts (Fig. 12A). qRT-PCR confirmed that F2R was significantly elevated in gastric cancer 
tissues, which was consistent with the IHC results (Fig. 12B). The intense staining observed in tumor tissues 

Table 3.   Univariate analysis and multivariate analyses of STAD patients overall survival in the TCGA 
database. T topography distribution, N lymph node metastasis, M distant metastasis. Significant values are in 
bold.

Characterical Total (N)

Univariate analysis Multivariate analysis

Hazard ratio (95% Cl) p value Hazard ratio (95% Cl) p value

T stage (T2 & T3 & T4 vs. T1) 367 7.248 (1.011–51.980) 0.049 3.804 (0.483–29.971) 0.205

N stage (N1 & N2 & N3 vs. N0) 357 1.507 (0.965–2.354) 0.071 1.198 (0.7–2.05) 0.511

M stage (M1 vs. M0) 355 2.048 (1.096–3.827) 0.025 2.976 (1.541–5.747) 0.001

Pathological stage (stage II & stage III & stage IV vs. 
stage I) 352 2.111 (1.062–4.195) 0.033 1.182 (0.502–2.781) 0.702

Age (> 60 vs. ≤ 60 years) 371 1.029 (1.01–1.048) 0.002 1.038 (1.018–1.058) 0

Gender (male vs. female) 375 1.297 (0.872–1.927) 0.199 1.160 (0.772–1.744) 0.474

Histological grade (G2 & G3 vs. G1) 366 2.894 (0.404–20.76) 0.29 2.276 (0.314–16.480) 0.415

F2R (high vs. low) 375 1.367 (1.110–1.683) 0.003 1.294 (1.028–1.628) 0.028
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provides compelling evidence for F2R’s heightened role in gastric cancer, paving the way for further investiga-
tion into its potential clinical implications. To verify the expression level of F2R in STAD cell lines, we assessed 
F2R expression in STAD cell lines (MGC-803 and SGC-7901) and normal gastric cells (HFE-145) using qPCR. 
F2R exhibited a significant upregulation (p < 0.05) in MGC-803 and SGC-7901 compared to the normal gastric 
cell line HFE-145 (Fig. 12C). Following F2R siRNA transfection, the downregulation of F2R in MGC-803 and 
SGC-7901 cell lines was confirmed through qPCR (Fig. 12D). We further investigated the impact of F2R on 
tumor progression. CCK-8 assays revealed a significant reduction in cell viability upon F2R silencing (Fig. 12E), 

Figure 4.   Screening the upstream miRNA and lncRNA of F2R and constructing the ceRNA network diagram. 
(A) Network mapping of F2R-related miRNAs based on the Starbase database. (B) The expression of F2R based 
on the TCGA dataset was negatively correlated with the expression of hsa-miR-144-5p and hsa-miR-486-5p. 
(C) The expression of hsa-miR-144-5p and hsa-miR-486-5p in STAD tissues based on the TCGA data set 
decreased. (D) Mapping of hsa-miR-144-5p and hsa-miR-486-5p related lncRNA networks based on the Starbase 
database. (E) To construct an F2R-centered ceRNA network. (F) Based on the TCGA data set, the expression 
of hsa-miR-144-5p was negatively correlated with the expression of FTX, and the expression of has-miR-486-5p 
was negatively correlated with the expression of ZEB1-AS1. (G) The expression of FTX and ZEB1-AS1 in 
STAD based on the TCGA data set increased. (H) Based on the TCGA data set, F2R expression was positively 
correlated with FTX and ZEB1-AS1 expression.
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Figure 5.   Gene enrichment analysis to identify F2R-related pathways. (A) Screening genes that are positively or 
negatively correlated with F2R expression to draw a gene heat map. (B) Analysis of 11 genes with significantly different 
expression related to F2R. (C–D) The enrichment analysis of gene ontology (GO) showed that F2R-related genes were 
mainly related to the completion of the activation of classical pathways, circulating mediated human immune response, 
immunoglobulin, cell recognition and phagocytosis. (E,F) The enrichment analysis of the Kyoto Encyclopedia of 
Genes and Genome (KEGG) showed that F2R-related genes mainly interact with ECM receptor, neuroactive ligand 
receptor, protein differentiation and uptake, cytokine-cyclin receptor interaction, PI3K-Akt signal pathway, cAMP 
signal pathway, Wnt signal pathway, cGMP PKG signal pathway and TGF-β Signal path correlation. (G) Gene cluster 
enrichment analysis (GSEA) showed that the signal pathway related to the expression of F2R mRNA in gastric cancer. 
The results showed that DNA replication, Huntington’s disease, JAK-STAT signal pathway, MAPK signal pathway and 
oxidative phosphorylation were related to the expression of F2R. (H) Protein–protein interaction (PPI) network was 
used to analyze genes related to F2R.
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Figure 6.   F2R may participate in the immune regulation and infiltration of cancer tissue. (A) The increase of 
F2R expression in STAD is related to the decrease of TMB. (B) The expression of F2R in STAD was divided 
into low expression group and high expression group, and the immune infiltration of Stromalscores and 
Immunocore in low and high-expression groups was analyzed. (C) CIBERSORT was used to calculate the 
correlation between F2R and 22 immune cells. (D,E) Analyze the correlation between F2R and immune-related 
genes. (F) Analyze the correlation between F2R and immune cells. (G) Analysis of the linear relationship 
between F2R and differential immune cells shows a positive regulatory relationship between F2R and immune 
cells.
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Figure 7.   Correlation between immune cell infiltration, PDCD1 (PD1), CD274 (PD-L1), and expression of 
CTLA4 and F2R in STAD. (A–F) TIMER database showed that the expression of F2R was significantly positively 
correlated with the infiltration of CD4 T cells, CD8 T cells, dendritic cell, macrophages, neutrophils and B 
cells. (G–I) TIMER database showed that the expression of F2R was positively correlated with the expression of 
CD274, PDCD1 and CTLA4. (J–L) Gepia database showed that the expression of F2R was positively correlated 
with the expression of CD274, PDCD1 and CTLA4.
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suggesting its role in promoting cell survival. This anti-proliferative effect was further corroborated by EdU 
and colony formation assays, showcasing decreased proliferation and colony-forming ability in F2R-depleted 
cells (Fig. 12F,G). To investigate the effects of F2R on the migration and invasion capabilities of MGC-803 and 
SGC-7901 cells, we performed a transwell assay with cells transfected with F2R siRNA. As shown in Fig. 12H,I 
F2R knockdown significantly inhibited the migration and invasion of MGC-803 and SGC-7901 cells compared 
with the negative control group. In conclusion, our in vitro experiments demonstrated that F2R promoted the 
proliferation, migration and invasion of MGC-803 and SGC-7901 cells. This supports its potential as a novel 
therapeutic target specifically for STAD, offering opportunities for inhibiting tumor progression.

Figure 8.   Methylation levels in the F2R gene are associated with the prognosis of STAD patients. The prognosis 
value of DNA methylation levels in the F2R gene and CpG islands in the F2R gene were analyzed using the 
MetSurv tool.
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Discussion
Exploring biomarkers and molecular targets is imperative for early diagnosis and effective treatment of STAD38, 
a prevalent malignancy within the digestive system. Through robust bioinformatics analyses of the TCGA data-
base, we identified genes associated with STAD pathogenesis and clinical prognosis. Our investigation revealed 
a significant upregulation of F2R in STAD, prompting compelling inquiries about its specific role in the develop-
ment and progression of this cancer subtype. Compared to other gastrointestinal tumors, the elevated expression 
of F2R in STAD suggests its unique function within STAD biology. This finding has ignited a quest to decipher 
whether F2R’s role in STAD is distinct from its functions in other cancers. This distinction is pivotal for unrave-
ling the complexities of STAD and holds the potential to unveil novel therapeutic avenues tailored to its specific 
characteristics.

The prognostic significance of F2R expression in STAD provides new perspectives for patient stratification 
and treatment approaches. Our investigation revealed a strong association between high F2R expression and 
poorer survival outcomes, high F2R expression is associated with poor prognosis of GC, F2R gene is an onco-
gene, when it is highly expressed in tissues, it promotes the malignant progression of GC cells and shortens the 
survival time of patients, positioning F2R as a promising prognostic biomarker. Recognizing this correlation 
underscores the importance of considering F2R expression in therapeutic decision-making and emphasizes its 
potential as a guiding factor in the development of targeted therapies. In a thorough examination of F2R’s impact 
on clinicopathological parameters in STAD patients, our findings indicated that F2R serves as an independent 

Figure 9.   Predicted drug sensitivity in risk groups. (A) Sensitive drugs in high-risk groups. (B) Sensitive drugs 
in low-risk groups.
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Figure 10.   Correlation plot of F2R gene and drug sensitivity. (A) F2R expression was positively correlated with 
drug sensitivity. (B) F2R expression was negatively correlated with drug sensitivity. The x-axis is gene expression 
and the y-axis is drug sensitivity.

Figure 11.   Immunoscore of F2R expression with anti-pd1 and anti-ctla4 treatment. (A) High and low immune 
scores in the low and high F2R expression groups while on anti-pd1 therapy. (B) High and low immune scores 
in the low and high F2R expression groups while on anti-ctla4 therapy.
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prognostic factor influencing survival in GC patients. This aligns with existing literature, where F2R has been 
consistently linked to increased tumor aggressiveness and unfavorable prognosis across various cancer types. 
Incorporating F2R expression levels into established prognostic models has the potential to enhance the preci-
sion of survival prediction, offering valuable insights for personalized treatment planning in STAD patients. 
The high expression of F2R in STAD not only signifies its potential as a prognostic marker but also hints at its 
involvement in tumorigenesis and early progression. The correlation between F2R level and advanced disease 

Figure 12.   F2R promotes cell proliferation, migration and invasion in GC cells. (A) IHC staining analysis of 
F2R protein expression in matched gastric adenocarcinoma tissues (T) and adjacent non-cancerous tissues (N) 
(× 400 magnification). (B) Levels of F2R mRNA in 30 pairs of carcinomatous and paracarcinomatous tissues 
from GC patients detected by qRT-PCR. (C) Relative F2R mRNA expression in normal gastric cells (HFE-145) 
and gastric cancer cell lines (MGC-803 and SGC-7901) determined by RT-qPCR. (D) RT-qPCR was used to 
detect the inhibitory efficiency of F2R siRNA in MGC-803 and SGC-7901 cells. (E) CCK-8 assay was used 
to detect the viability of cells after F2R siRNA transfection. (F) The effects of F2R siRNA on the proliferation 
of MGC-803 and SGC-7901 cells were detected using EdU assays. (G) The effects of F2R siRNA on the 
proliferation of MGC-803 and SGC-7901 cells were detected using colony formation assays. (H,I) Transwell 
assay was used to determine the effects of F2R siRNA on MGC-803 and SGC-7901 cell migration and invasion. 
*p < 0.05, **p < 0.01, ***p < 0.001 vs. si-NC.
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staging in STAD suggests a role for F2R in driving tumor progression and metastasis. Investigating the role of 
F2R in tumor development and its potential as a biomarker for early detection could provide insights into the 
temporal changes in F2R expression from early to late stages of STAD.

The correlation of F2R with key cancer-related signaling pathways suggests that F2R inhibition could disrupt 
these pathways, thereby inhibiting tumor proliferation and invasion. To explore this avenue further, the devel-
opment of inhibitors or monoclonal antibodies against F2R could offer a novel therapeutic approach for STAD. 
The potential synergies between F2R-targeted therapies and existing treatment modalities such as chemotherapy 
and immunotherapy are worth exploring. This may lead to more effective combination therapies that enhance 
therapeutic efficacy while minimizing side effects. Furthermore, delving into the role of F2R within the tumor 
microenvironment (TME), including its interactions with immune cells and immune checkpoints, unveils oppor-
tunities for immunomodulatory strategies. Targeting F2R could potentially reshape the dynamics between tumor 
and immune system, thereby improving the efficacy of immunotherapy for STAD. As research progresses, the 
translation of these findings into clinical applications becomes critical. Investigating clinical treatment strategies 
for F2R-targeted therapies will provide essential evidence regarding efficacy and safety. This could pave the way 
for new treatment options for STAD patients.

The impact of immune infiltration on tumor behavior and prognosis underscores the potential of targeting 
the TME as a promising avenue for cancer treatment. In this study, we focused on understanding the role of F2R 
in immune infiltration, revealing a significant correlation between increased F2R expression and decreased TMB. 
As an immune-related gene, F2R is known to influence the behavior of immune cells, prompting a comprehensive 
analysis of its effects on the TME using the CIBERSORT algorithm. The CIBERSORT results demonstrated that 
high F2R expression in STAD is associated with the activation of memory CD4+ T cells, quiescent dendritic cells, 
eosinophils, M2 macrophages and M1 macrophages. Conversely, low F2R expression correlated with activated 
NK cells. The activation of CD4+ T cells, known for their role in regulating cytolytic mechanisms and enhanc-
ing B cell and CD8+ T cell responses39,40, suggests a complex interplay in STAD progression. The activation of 
macrophages and their subtypes in the high F2R expression group aligns with previous studies, implicating these 
cells in cancer development and metastasis41.

Inflammation can be divided into two categories-acute inflammation and chronic inflammation—depend-
ing on the duration of the disease. Acute inflammation is the initial response to a noxious stimulus and lasts for 
days or weeks. Most of the infiltrated inflammatory cells are granulocytes. If the pro-inflammatory stimulus is 
not eliminated during the acute inflammation, the result will be chronic inflammation. The main infiltrating 
immune cells at the site of chronic inflammation are macrophages and lymphocytes. Large numbers of immu-
nosuppressive cells inhibit the killing function of T cells, leading to immune escape, which promotes tumour 
formation. There is evidence that up to 25% of cancers are associated with chronic inflammatory diseases, some 
of which are clinically considered precancerous, and our study suggests a potential link between F2R expression 
and the promotion of chronic inflammation in STAD. The persistence of inflammatory factors and immune 
cells, particularly macrophages, in the microenvironment may contribute to immune escape, fostering tumor 
formation and progression42. This suggests that increased F2R expression promotes the development of chronic 
inflammation, which in turn promotes increased immune pathway activity. Therefore, activation of immune 
pathway activity in GC patients is associated with poor prognosis in patients.

The association between F2R and immune pathways suggests its potential role as a key regulator in the 
immune response. In both in vivo and in vitro experiments, F2R was found to be significantly upregulated in 
gastric adenocarcinoma tissues. The high expression of the F2R gene promotes the progression of cancer, and 
the progression of cancer will activate tumor-related immune cells to produce inflammatory responses, result-
ing in poor prognosis in patients with high expression of the F2R gene43. Therefore, we speculate that F2R is a 
poor prognostic factor for patients with STAD and one of the key factors for regulating the immune response. 
In this study, F2R was proven to be related to the infiltration of immune cells in the STAD microenvironment. 
Moreover, knockdown of F2R resulted in a significant inhibition of cell proliferation, migration, and invasion 
in MGC-803 and SGC-7901 cells. Collectively, these bioinformatics analyses and experimental results position 
F2R as a potential biomarker and therapeutic target in STAD.

While our study enhances our understanding of the role of F2R in GC, certain limitations should be acknowl-
edged. Firstly, the limited sample size and the absence of specific details on surgery, chemotherapy, and tumor size 
limit the completeness of our analysis. Secondly, reliance on public databases and published articles introduces 
potential biases, and data quality could influence results. Thirdly, the precision of the database and the choice 
of statistical methods can impact result interpretation. However, the consistency of our results across multiple 
databases and experimental validations reinforces the robustness of our conclusions. In the field of GC biomarker 
screening, global studies often encounter issues such as small sample sizes, reliance on single data analysis meth-
ods, and a lack of experimental verification. To address these challenges, our study employs a comprehensive 
approach, integrating various bioinformatics methods for an in-depth analysis of gene datasets from multiple 
platforms. By expanding the sample size and corroborating findings with in vitro cell experiments, we aim to 
enhance the scientific rigor of bioinformatics analysis. This endeavor provides a more accurate exploration of 
GC pathogenesis and therapeutic targets, offering a molecular biology foundation and suggesting new avenues 
for subsequent experimental studies.

Conclusion
We used bioinformatics to explore the relationship between high F2R gene expression and GC progression. We 
also evaluated the feasibility of F2R gene expression as a prognostic factor for GC and predicted potential signal-
ing pathways through which F2R affects GC progression. Our findings provide novel insights into the prevention 
and prognosis of GC. The construction of a nomogram comprehensively visualized all factors in the model, 
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providing predictions that closely aligned with real-world scenarios. Calibration curves, assessing the probability 
of survival at 1, 3, and 5 years, confirmed the accuracy of the nomogram, showcasing strong agreement between 
observed and predicted OS in GC patients. These findings suggest that high F2R expression may independently 
contribute to a heightened risk of poor prognosis in GC. F2R’s interaction with hsa-miR-144-5P and lncFTX, as 
well as with hsa-miR-486-5P and lncZEB1-AS1, forms a comprehensive lncRNA-miRNA-mRNA ceRNA network, 
implicating F2R in GC development. The analysis of this network provides initial insights into F2R’s role in the 
onset and progression of GC. GSEA identified the signaling pathway associated with F2R mRNA expression in 
GC, revealing a significant association with tumor progression. The results suggest that suppressing F2R expres-
sion could potentially inhibit the progression of GC cells. The prediction of F2R’s impact on GC through GSEA 
indicates its involvement in activating the MAPK and JAK-STAT pathways linked to tumor progression. Future 
therapeutic strategies may involve inhibiting these pathways to impede gastric cancer progression. This study 
underscores F2R’s potential as a prognostic biomarker for GC, positioning it as a promising predictive biomarker 
and a potential target for immunotherapy. Subsequent experimental investigations are crucial to validate the 
biological mechanisms underlying the impact of elevated F2R expression on gastric cancer progression.

Methods
Gene expression level analysis
GEPIA2 (Gene Expression Profiling Interactive Analysis) is a web tool based on TCGA and GTEx data that pro-
vides fast and customizable functionality. The GEPIA database was used to search and analyze F2R gene expres-
sion in GC and adjacent tissues, as well as OS data from different cancer datasets. The screening criteria |LogChange| 
> 1 and p < 0.01 were set as significance thresholds. Cancer type is selected as STAD, and we used log2

(TPM+1) for 
logarithmic scaling. The Jitter Size was 0.4. Within the GEPIA online database, the STAD dataset was chosen for 
further investigation. We retrieved a survival graph illustrating the correlation between F2R expression and OS 
in the form of Kaplan–Meier curves. The median filter was applied with a truncation value, and hazard ratio was 
calculated based on the Cox Proportional-Hazards (PH) model, with 95% confidence intervals (CI) depicted as 
dotted lines. Axis units were specified in months. For PPI analysis, the top 20 genes displaying the most significant 
correlation with F2R were selected from the STAD dataset within the GEPIA database. Timer 2.0 (http://​timer.​
cistr​ome.​org/) analysis was used to explore the association between tumor immune cell infiltration and F2R 
expression levels. This included B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages and dendritic cells. 
The TIMER database, a web server built on the R Shiny Web framework, was used for the exploration module. 
TCGA tumor data from TIMER allowed us to study the expression of F2R in the TCGA-STAD cohort, visual-
izing it through the visualization function of the website. In the Gene_DE module, the differential expression of 
F2R between tumor and adjacent normal tissues was studied across all TCGA tumors. The distribution of gene 
expression levels is shown using box plots. The statistical significance of Wilcoxon test calculations is annotated 
with stars (*p values < 0.05; **p value < 0.01; ***p value < 0.001). The gene module in TIMER focused on F2R, 
visualizing its correlation with immune cell infiltration in the STAD dataset. By clicking on different immune 
cells on the heatmap, the scatter plot illustrated the relationship between estimated immune cell infiltration and 
F2R gene expression. Partial Spearman correlations were used for association analysis, taking into account the 
confounding factor of tumor purity, with the purity adjustment option selected.

Data mining of the TCGA database
The analysis included RNA-Seq HTSeq count gene expression data and clinical information obtained from GC 
patients, using R software (version 4.2.1). The TCGA database was the source for GC samples, containing clinical 
information, mRNA, lncRNA and miRNA expression data. All original RNA sequence data, including lncRNA, 
miRNA, and mRNA, were obtained from the TCGA database. mRNA information from 375 GC tissues and 
32 adjacent nontumor tissues was obtained from the TCGA database. High-quality mRNA information was 
extracted, followed by name conversion and logarithmic correction of RNA-seq data obtained from both TCGA 
and GEO. The R software packages ggplot2, limma and beeswarm were used to statistically analyze the expression 
of F2R in the two groups. Scatter plots and pairing plots were generated to visually display the results. Clinical 
data on GC patients, including age, gender, clinical grade, T stage, M stage, and N stage, were also acquired 
from the database. The Perl programming language was used to match gene expression information with clini-
cal information. Unknown or incomplete clinical information was removed from the dataset. The integrated 
dataset, combining patient clinical information with F2R expression data, underwent further statistical analysis 
using the ggpubr package in R software. The survival package in R was used to analyze the survival status and 
gene expression. The significance level for all analyses was set at p < 0.05.

Logistic regression analysis
Clinical data of STAD patients were downloaded from the TCGA database, and the patients’ clinical information 
was combined with F2R expression data. Logistic regression analysis was performed using R software to analyze 
the patients’ clinical data. p < 0.05 was considered to be statistically significant.

Independent prognostic analysis
In our investigation into the impact of F2R expression on the prognosis of STAD patients, we employed a com-
prehensive approach. Univariate Cox regression analysis was initially applied to quantify the correlation between 
F2R expression levels and patient survival. Following this, multivariate analysis was conducted to determine 
whether F2R stands as an independent prognostic factor for survival in STAD patients. The patients’ Cox data 
were statistically analyzed using the survival package within the R software, employing both univariate and 
multivariate methods to ascertain independent prognostic indicators. The results were visualized using forest 

http://timer.cistrome.org/
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plots. Clinical data of STAD patients were downloaded from the TCGA database, and the patients’ survival time 
and status were integrated with F2R expression data. The R software survival, survival, and time ROC packages 
were then used to conduct a rigorous time-dependent receiver operating characteristic (ROC) analysis. This 
analysis served to validate the predictive efficacy of the risk model at distinctive time points: 1, 3, and 5 years. 
The significance threshold was set at p < 0.05.

GSEA
The GSEA software, downloaded from the GSEA website, is a powerful platform for gene set enrichment analysis. 
The initial molecular signature database comprises 1325 gene sets, spanning various categories such as biologi-
cal pathways, chromosomal locations, upstream cis-patterns, drug therapy responses, and expression profiles 
from microarray datasets. Additional gene sets can also be created through genetic and chemical perturbations, 
computational analysis of genomic information and other biological annotation. GSEA results yield a compu-
tational enrichment score (ES), indicating the extent to which a gene set S is overrepresented in the extreme 
(top or bottom) of the overall sorted list L. To enhance result interpretation, the ES is normalized to account for 
genome size, resulting in a normalized enrichment score (NES). To control for false positives, the false positive 
rate (FDR) corresponding to each NES is calculated. Patient data were stratified into high and low F2R gene 
expression groups based on the median level. These TCGA data were formatted in text files and imported into 
GSEA software. The grouping and expression matrix files were then imported into GSEA 4.3.2 lineage enrichment 
analysis. The resulting data were exported to analyze significant functional and pathway differences between the 
high and low F2R expression groups. The genomic alignment was repeated 1000 times for each analysis. p values, 
FDR values, ES values, and NES values of GSEA were analyzed. In the gene enrichment analysis, expression 
differences were considered significant if they met the criteria of p < 0.05 and FDR < 25%.

UCSC Xena
The UCSC Cancer Genomics Browser (https://​genome-​cancer.​ucsc.​edu/) is a web-based application that inte-
grates relevant data, analysis, and visualization to facilitate the exploration and sharing of research observations. 
The platform can be used to investigate the relationship between genomic alterations and phenotypes by visual-
izing a variety of omics data, and phenotypic characteristics such as age, subtype classification, and genomic 
biomarkers. The Cancer Genomics Explorer currently contains 575 public datasets derived from genome-wide 
analyses of more than 227,000 samples. These datasets include information from TCGA, CCLE, Connectivity 
Map, and TARGET. For this study, data on the relationship between F2R gene expression levels and their copy 
number variations were downloaded from the Genome Data Public Center within the UCSC Xena browser. A 
total of 415 STAD and 35 matched normal samples were extracted for further analysis. To better understand the 
functions of F2R, its expression data across multiple cancer types (pancancer) were also extracted. The ggpubr 
package in R software was used to visualize the expression levels of F2R in tumor and noncancerous tissues across 
various cancers. The statistical significance of the analyses was determined at a significance level of p < 0.05.

Construction of the ceRNA network
The miRNA gene expression data from normal gastric tissue and GC tissue samples were downloaded from 
the TCGA website. Then, the mirbase (https://​www.​mirba​se.​org/) database was utilized to obtain miRNA gene 
IDs, facilitating ID conversion for extracting miRNA expression levels in GC tissues and noncancerous tissues. 
StarBase v2.0 (https://​starb​ase.​sysu.​edu.​cn/​index.​phpSt​arBase) was used to build a comprehensive network of 
microRNA–lncRNA interactions. Utilizing a dataset of 108 CLIP-Seq generated from 37 independent studies, 
starBase v2.0 systematically identifies RNA-RNA and protein-RNA interaction networks. This database, enriched 
with CLIP-Seq experimental support, facilitated the identification of more than 10,000 ceRNA pairs from miRNA 
target sites. To predict the functions of miRNAs and other non-coding RNAs (ncRNAs), 13 functional genome 
annotations were incorporated, and miRFunction and ceRNAFunction web servers were developed. An interac-
tive web implementation was also developed to facilitate visualization, analysis, and download of these large-scale 
datasets. Information on miRNAs and lncRNAs related to F2R was screened based on stringent criteria such 
as mammalian data, human genome version hg19, minimum CLIP data rigor (≥ 5), and presence or absence 
of degradome data. The STARBase database predicted interactions among lncRNA/miRNA pairs and miRNA/
mRNA pairs. Cytoscape software (version 3.6.1) was employed to construct a lncRNA–miRNA–miRNA–ceRNA 
mRNA regulation network, unraveling intricate lncRNA–miRNA and miRNA–mRNA relationships. To construct 
miRNAs network regulated by F2R, miRNAs targeted by F2R were identified using starBase v2.0. Leveraging 
the regulatory mechanisms of ceRNA networks, miRNAs expression differences between normal and tumor 
samples were analyzed. Spearman statistical analysis identified miRNAs negatively correlated with F2R mRNA 
expression. The STARBASE database was again utilized to screen upstream miRNAs of mRNA, and the selected 
miRNAs were analyzed for correlation, expression differences, and survival in R software. Spearman statistical 
analysis showed that there was a correlation between miRNA and mRNA. miRNAs were screened according to 
cor <  − 0.2 and p < 0.001 screening criteria. lncRNA regulating miRNA and F2R was screened by STARBASE 
v2.0. According to the regulatory mechanism of the ceRNA network, lncRNA expression was different in normal 
samples and tumor samples, and lncRNAs were highly expressed in tumor tissues. Spearman statistically analysed 
whether lncRNAs were correlated with miRNAs and mRNAs. According to the screening criteria of COR = 0.2 
and p = 0.001, lncRNAs were negatively correlated with miRNAs, and lncRNAs were positively correlated with 
mRNAs. This analytic process, involving multiple databases, computational tools, and statistical analyses, and 
the selected lncRNAs met the requirements of negative correlation with miRNA expression, positive correlation 
with mRNA expression, high expression in tumor tissues, and negative correlation with patient survival time. 
The above differences were statistically significant. The resulting lncRNA, miRNA and mRNA networks were 

https://genome-cancer.ucsc.edu/
https://www.mirbase.org/
https://starbase.sysu.edu.cn/index.phpStarBase
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imported into Cytoscape 3.8 to map the ceRNA networks. Led to the identification of key regulatory networks 
involving F2R, miRNAs, and lncRNAs. The resulting networks were visualized using Cytoscape 3.8, providing a 
comprehensive representation of the ceRNA interactions and shedding light on the intricate regulatory mecha-
nisms surrounding F2R expression in GC.

Immunocorrelation analysis
The R software limma package and the ggpubr package were used to investigate the relationship between 
F2R expression and tumor-infiltrating immune cells. We leveraged the Tumor Immune Estimation Resource 
(TIMER2.0), a web-based interactive platform, to systematically analyze the immune infiltration in various 
malignant tumors. The TIMER2.0 database uses six advanced algorithms to deliver a rigorous assessment of 
tumor-infiltrating lymphocyte (TIL) levels. This platform is particularly valuable for analyzing TCGA or tumor-
related data and provides accurate estimates of tumor purity. Our investigation into the expression of F2R in 
GC involved an in-depth examination of its relationship with TILs using gene modules. In addition, we also 
analyzed the relationship between F2R expression and TIL gene markers through correlation modules. These 
gene markers encompassed various immune cell types, including CD8+/CD4+ T cells, B cells, monocytes, NK 
cells, DCs, tumor-associated macrophages (TAMs), M1 macrophages, M2 macrophages, and neutrophils. Utiliz-
ing the correlation module, we generated a discrete map illustrating the expression patterns between a pair of 
custom genes specific to GC. The correlation and Spearman estimates were analyzed for statistical significance. 
The expression levels of the genes were reported in log2

RSEM (RSEM: RNA-Seq by Expectation–Maximization).

Immune microenvironment landscape and drug sensitivity analysis
Estimates of stromal and immune cells infiltration were determined using the estimation algorithm, and the 
CIBERSORT algorithm was used to estimate the scores of 22 distinct immune cells types. Correlation analysis 
between F2R expression and cancer type, as well as immune/stromal score and immune cell type, was performed 
using the ggplot2 package, with statistical significance set at p < 0.0001. Correlations between F2R expression 
and TMB were analyzed and visualized using the limma package, ggplot2 package, ggpubr package, and ggExtra 
package in R software. Drug sensitivity, a critical metric represented by the IC50 value, is an essential indicator 
for evaluating the efficacy of drug response. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) data-
base, the antitumour drug response of each GC sample was predicted by the R package pRRophetic, stratifying 
the analysis into low and high-risk categories. All statistical analyses were visualized by the ggplot2 R package.

GO and KEGG enrichment analyses
To elucidate the underlying biological processes and pathways associated with F2R, we used stringent criteria 
(|fold change| ≥ 2, p < 0.05) to identify genes correlated with F2R expression. Then, the R software packages, 
including clusterProfiler, org.hs.eg.db, enrich lot, ggplot2, circle, RColorBrewer, dplyr, and ComplexHeatmap, 
were used to conduct a comprehensive enrichment analysis and visually represent GO and KEGG44–46.

PPI network construction
PPI networks were extracted from the STRING database. The STRING database facilitates the collection of both 
direct (physical) and indirect (functional) interactions among proteins, providing a nuanced understanding 
of their relationships. To gain insights into the F2R-regulated protein interacting network, we constructed the 
F2R PPI network with a minimum interaction score of 0.1. The predictions regarding F2R-interacting proteins 
were predominantly derived from similar genes identified in the GEPIA database. By cross-referencing these 
databases, we aimed to bolster the robustness of our findings and provide a more comprehensive overview of 
the proteins potentially influenced by F2R.

DNA methylation analysis of CpG islands within the F2R gene
We explored the methylation status of the F2R gene using the MethSurv database (http://​biit.​cs.​ut.​ee/​meths​urv/). 
This web tool utilizes TCGA data to enable comprehensive survival analysis. Within the TCGA-STAD dataset, 
we specifically focused on the CpG loci of the F2R gene to analyze their methylation patterns. The association 
between the prognostic potential and OS of the CpG methylation status of F2R was analysed in TCGA-STAD 
samples.

Clinical sample collection
GC tissue samples and adjacent non-tumour tissues from 30 pairs of patients were collected at the Department 
of Gastrointestinal Surgery, Second Affiliated Hospital of Wannan Medical College (Wuhu, Anhui, China). The 
diagnosis of GC in the surgical specimens was independently determined by two senior pathologists. None of 
the patients had received any treatment prior to surgery. The study was approved by the Ethics Committee of the 
Second Affiliated Hospital of Wannan Medical College, and informed consent was obtained from all patients. 
The study was conducted according to the Declaration of Helsinki.

Immunohistochemical (IHC) staining
GC tissue samples and adjacent non-tumour tissues were collected from 30 pairs of patients who underwent GC 
surgery at the Department of Gastrointestinal Surgery. Five pairs of tissues were randomly selected for immu-
nohistochemical staining. The tissues were first fixed in 4% paraformaldehyde. They were then dehydrated. Sec-
tions of 4 mm thickness were then cut using a rotary slicer (RM2255, Leica, Germany). Immunohistochemistry 
for F2R protein was performed. Tissues were deparaffinised by immersion in xylene and rehydrated in reduced 

http://biit.cs.ut.ee/methsurv/
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concentrations of ethanol after baking at 60 °C for 2 h. The sections were incubated with F2R primary antibody 
(1:100, ER1917-72, Huaan Biotechnology Co., Limited, China) for 12 h at 4 °C. The next day, the sections were 
rinsed with PBS and incubated with biotinylated secondary antibody for 2 h at room temperature. Finally, slides 
were treated with ImmunoPure Metal Enhanced DAB Substrate Kit (Pierce, Rockford IL) according to the 
manufacturer’s instructions and images were captured using a Nikon E800 microscope.

Cell culture and plasmid transfection
The GC cells MGC-803 and SGC-7901 were used in this study. These cells were maintained in RPMI 1640 
medium supplemented with 10% fetal bovine serum (FBS) under a humidified atmosphere of 5% carbon dioxide 
at 37 °C. To investigate the functional role of F2R, we employed RNA interference technology. Specifically, cells 
were transfected with either negative control siRNA (si-NC) or small-interfering RNAs against F2R (si-F2R). 
The siRNA sequence was GAU​UAG​UCU​CCA​UCA​AUA​ATT. All siRNAs were purchased from GenePharma 
(Shanghai, China).

Quantitative PCR
Total RNA was extracted using TRIzol reagent (Invitrogen, USA), following the manufacturer’s instructions. 
Complementary DNA (cDNA) was synthesized using a commercially available kit (Ambion; Thermo Fisher 
Scientific, Inc). Subsequently, qPCR was performed using a commercial kit, and each experiment was repeated 
3 times. The primers for qPCR were as follows: F2R (forward primer: 5ʹ-CCA​CCT​TAG​ATC​CCC​GGT​CAT-3ʹ, 
reverse primer: 5ʹ-GTG​GGA​GGC​TGA​CTA​CAA​ACA-3ʹ) and GAPDH (forward primer: 5ʹ-AAA​GCC​TGC​CGG​
TGA​CTA​A-3ʹ, reverse primer: 5ʹ-AGA​GTT​AAA​AGC​AGC​CCT​GG-3ʹ). GAPDH was used as a reference gene 
for normalization of F2R mRNA expression.

Cell proliferation assay
Logarithmically growing cells were seeded into a 96-well plate and treated with a 50  µM 5-ethynyl-2ʹ-
deoxyuridine (EdU) stock solution at 37 °C for 2 h. The cells were then fixed with 4% paraformaldehyde (PFA), 
and the nuclei were stained with DAPI (D9542, Sigma-Aldrich). The resulting fluorescence was captured using 
an Olympus microscope. Cell proliferation was assessed with a CCK-8 assay kit. Briefly, cells were cultured in 
a 12-well plate for 3 days before the cell proliferation assay. Then 100 ml of CCK-8 solution was added to the 
12-well plate, after which an appropriate volume of stop solution was added to stop the reaction. The plate was 
read using a microplate analyzer to measure the optical density (OD) of the supernatant after a 2-h incubation 
period. MGC-803 and SGC-7901 cells, transfected either with negative control siRNA or F2R siRNA, were seeded 
in 6-well plates at a density of 4000 cells per well. After approximately 2 weeks, the medium was discarded, and 
the colonies were fixed with 4% paraformaldehyde for 30 min. Subsequently, crystal violet staining was performed 
for 15 min at room temperature, followed by rinsing with PBS.

Cell migration and invasion assays
Cell migration assays were performed using 24-well cell culture plates with 8 μm non-porous membranes (Mil-
lipore, USA). Cells (5 × 104) were resuspended in 200 μl serum-free medium in the upper chamber. The lower 
chamber was supplemented with 600 μl DMEM medium containing 20% FBS. Following 24 h of incubation at 
37 °C and 5% CO2, the cells on the upper surface were gently scraped. The cells that had migrated to the lower 
surface were fixed with 4% paraformaldehyde for 30 min and then stained with a crystal violet solution for 20 min 
at room temperature. For the Matrigel invasion assay, the upper chamber of CIM plate 16 was pre-coated with 
diluted Matrigel (356234, BD Biosciences). The same procedures were then followed.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 9.0 and R (version 4.2.1). The analysis involved the 
utilization of the limma package, ggplot2 package, and ggpubr package. Paired and unpaired samples were 
assessed for the expression of F2R using the Wilcoxon signed rank test and Wilcoxon rank sum test, respec-
tively. The relationship between F2R expression and clinical features was analyzed using the limma packages 
and ggpubr packages. Univariate and multivariate analyses of Cox proportional hazard regression models were 
used to identify independent prognostic factors, including gender, age, stage T, N, M, pathological stage and 
F2R expression, in assessing the risk of death. The CIBERSORT algorithm was applied to predict the abundance 
of 22 infiltrating immune cells in the TME using the GC gene expression profile downloaded from the TCGA 
database. At the same time, the ESTIMATE algorithm was used to obtain the matrix/immunity scores of the 
above datasets. The results were visualized using the limma package, ggplot2 package, and ggpubr package. The 
Wilcox test was used to compare stromal/immune scores among different clinicopathological groups, with a 
significance threshold set at p < 0.05.

Data availability
All data generated or analysed for this study are included in this article. Further details are available from the 
corresponding author upon request. The datasets generated and/or analysed during the current study are avail-
able in the The Cancer Genome Atlas (TCGA-STAD) datasets (https://​portal.​gdc.​cancer.​gov/​repos​itory), Gepia 
datasets (http://​gepia.​cancer-​pku.​cn/​repos​itory), TIMER2 datasets (http://​timer.​cistr​ome.​org/​repos​itory), GEO 
datasets (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​repos​itory), HPA datasets (https://​www.​prote​inatl​as.​org/​repos​itory), 
MethSurv database (http://​biit.​cs.​ut.​ee/​meths​urv/​repos​itory), mirbase datasets(https://​www.​mirba​se.​org/​repos​
itory), UCSC Xena datasets (http://​xena.​ucsc.​edu/​repos​itory) and the CellMiner datasets (https://​disco​ver.​nci.​
nih.​gov/​cellm​iner/​home.​do/​repos​itory).
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