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Non‑invasive fractional flow 
reserve estimation using deep 
learning on intermediate left 
anterior descending coronary 
artery lesion angiography images
Farhad Arefinia 1, Mehrad Aria 2, Reza Rabiei 1*, Azamossadat Hosseini 1*, Ali Ghaemian 3 & 
Arash Roshanpoor 4

This study aimed to design an end-to-end deep learning model for estimating the value of fractional 
flow reserve (FFR) using angiography images to classify left anterior descending (LAD) branch 
angiography images with average stenosis between 50 and 70% into two categories: FFR > 80 
and FFR ≤ 80. In this study 3625 images were extracted from 41 patients’ angiography films. Nine 
pre-trained convolutional neural networks (CNN), including DenseNet121, InceptionResNetV2, 
VGG16, VGG19, ResNet50V2, Xception, MobileNetV3Large, DenseNet201, and DenseNet169, 
were used to extract the features of images. DenseNet169 indicated higher performance compared 
to other networks. AUC, Accuracy, Sensitivity, Specificity, Precision, and F1-score of the proposed 
DenseNet169 network were 0.81, 0.81, 0.86, 0.75, 0.82, and 0.84, respectively. The deep learning-
based method proposed in this study can non-invasively and consistently estimate FFR from 
angiographic images, offering significant clinical potential for diagnosing and treating coronary artery 
disease by combining anatomical and physiological parameters.
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LCX	� Left circumflex artery
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ML	� Machine learning
MLNN	� Multilevel neural network
MLP	� Multilayer perceptron
OCT	� Optical coherence tomography
RCA​	� Right coronary artery
RCNN	� Recurrent convolutional neural network
RF	� Random forest
SVM	� Support vector machine
XCA	� X-ray coronary angiography

Cardiovascular diseases (CVD) are the leading cause of death worldwide1. These diseases have been a significant 
concern in recent decades2, with nearly 18.5 million people expected to die from cardiovascular disease in 2019 
and deaths from these diseases predicted to reach 23.6 million by 20303.

Coronary artery disease is the most common CVD, affecting over twenty million adults in the United States 
and accounting for almost one-third of all cardiovascular-related deaths4. This disease leads to plaque accu-
mulation in the coronary arteries, called stenosis5,6. Stenosis can occur as a partial or complete blockage of the 
coronary arteries, resulting in reduced blood supply to heart tissue7. Narrowing or blockage of the coronary 
arteries can lead to severe symptoms such as angina pectoris and even myocardial ischemia8.

Regarding the diagnosis of coronary artery disease, coronary angiography is considered the gold standard 
for evaluating the anatomical status of coronary arteries in patients9. Coronary angiography is an essential 
diagnostic tool for coronary artery disease, and the cardiologist’s visual assessment of angiography images is 
used to identify narrowing and guide treatment10. However, visual evaluation of angiography images can lead 
to overestimating the severity of coronary artery stenosis11, and the variability in evaluation among evaluators 
makes it challenging12–15. On the other hand, visual evaluation is highly subjective and lacks accuracy, objectiv-
ity, and consistency16.

Although coronary angiography is a valuable method for describing the extent and severity of coronary 
artery disease, evidence shows that anatomical stenosis of the coronary arteries does not necessarily indicate 
the presence of myocardial ischemia, and the functional severity of coronary artery stenosis is the leading cause 
of myocardial ischemia17,18 The physiological assessment uses the fractional flow reserve (FFR) method, using 
a pressure wire to measure blood flow and pressure after passing through a stenosis following an agent such as 
adenosine injection. The results are displayed on a monitor along with the FFR value19. Based on extensive clinical 
evidence, using FFR to select patients and appropriate lesions for treatment helps avoid unnecessary procedures, 
reduces medical costs, and improves clinical outcomes20.

Various studies have shown that FFR is the gold standard for evaluating physiological coronary artery ste-
nosis and making decisions regarding coronary revascularization. If this value is greater than or equal to 80, 
medical treatment is performed, and if it is less than 80, stenting is performed21–25. Using coronary angiography 
images alone in treatment decisions is challenging due to the variability in assessments among observers12–14. 
Additionally, performing revascularization without sufficient evidence of ischemia has significant health and 
economic consequences19,23. Therefore, evaluating coronary artery physiology is essential for providing appro-
priate treatment plans18.

However, despite the recommendations of treatment guidelines, the use of FFR for diagnosing coronary artery 
disease is limited worldwide26,27. It may be due to complexity, high cost, and the invasive nature of this method28. 
Treatment decisions still rely on visual estimation of stenosis severity from angiographic images, indicating a 
discrepancy between clinical guidelines and current practice29. On the other hand, visual assessment of angio-
graphic images leads to an overestimation of coronary artery stenosis severity11. Since physiological assessment 
of stenosis severity during coronary angiography affects decision-making regarding revascularization in 43% of 
cases, all cardiac catheterization laboratories (Cath labs) should be capable of measuring the FFR17. Coronary 
angiography-based FFR eliminates the complications of the invasive nature of FFR and displays the values of 
coronary artery FFR30. Using FFR along with the coronary artery anatomy could significantly improve the clinical 
outcomes of patients. However, physiological assessment using anatomical data is challenging, and validation 
is required to confirm the accuracy of these models31. Therefore, physiological assessment using non-invasive 
methods with the help of angiographic images, obtaining the value of FFR, is of interest, and angiography image-
based software provides the possibility of evaluating coronary artery physiology25.

In the past three decades, artificial intelligence (AI) has been widely used to improve the diagnostic accuracy 
of clinical tools and for data-driven decision-making in cardiovascular diseases. Additionally, AI-based systems 
can facilitate decision-making by improving interpretation processes, inference, and diagnostic accuracy28,32,33. 
As a subfield of artificial intelligence, machine learning has a subfield called deep learning, describing algorithms 
that analyze data with a logical structure similar to human reasoning. Deep learning is a subfield of machine 
learning that uses multiple layers of linear transformations to process data. Deep learning is a rapidly evolving 
field with many applications in medical imaging. Deep learning algorithms can extract and learn raw features 
from image data without limitations on feature extraction. Therefore, deep learning can be an ideal solution34. 
Deep learning is highly suitable for medical image segmentation35. Convolutional neural networks (CNN) are 
one of the most famous deep learning-based networks.
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CNN is an artificial neural network consisting of convolutional, pooling, and fully connected layers. It has 
many applications for automatically extracting rules and features from various data types. CNNs are extensively 
used for image processing36 and classifying medical images37. They are used to segment coronary vessels9 and 
classify and identify stenosis in vessels36,38 using angiography images. Using pre-trained CNN models to increase 
accuracy and effectively reduce training time is a common approach in artificial neural networks. This method 
is referred to as transfer learning36.

This research endeavors to develop an advanced diagnostic and therapeutic system utilizing artificial intelli-
gence (AI) techniques to surmount the constraints associated with traditional methods like coronary angiography 
and Fractional Flow Reserve (FFR) in the identification and treatment of moderate coronary artery stenosis. 
More specifically, our investigation aims to fill the existing gaps in this domain by introducing an innovative, 
comprehensive, and automated system, driven by artificial intelligence. This system is designed to process angiog-
raphy images as input, providing a determination of FFR as either greater or less than 80. By doing so, it seeks to 
address the limitations inherent in conventional approaches, ushering in the integration of AI capabilities into the 
realm of cardiovascular diagnostics, allowing for the direct estimation of FFR values from angiography images.

Related works
Estimating FFR using AI methods has been an essential topic in recent years, as researchers have attempted to 
calculate FFR non-invasively. Various AI methods, including deep learning-based methods, machine learning-
based methods, and a combination of them, have been used along with different imaging tools such as CCTV, 
OCT, XCA, and IVUS. Table 1 shows the studies conducted in this field39.

Methods
This section consists of two parts. The first part includes the population, data structure, and data preparation 
methods. The second part examines the structure of the proposed method, data pre-processing methods, and 
the architecture of the proposed model discussed in detail below.

Population
This retrospective cross-sectional study was conducted in 2023. The angiographic images of 41 patients who 
underwent angiography and FFR on the left anterior descending (LAD) coronary artery and were referred to 
a cardiac center between 2015 and 2022 were used in this study. Patients were referred for angiography based 
on symptoms such as chest pain or shortness of breath, as well as risk factors like family history, smoking, high 
cholesterol, etc., suggesting a preliminary diagnosis of coronary artery disease. Angiography was requested 
for further evaluation based on clinical presentation and noninvasive testing such as stress testing. The study 
participants ages ranged from 42 to 57 years and 19 participants were female. The participants had no stenosis, 
coronary flow impairment, acute myocardial infarction, or history of open-heart surgery. FFR was performed to 
physiologically evaluate the lesions with a visual estimation of 50% and 70% of stenosis. The data were collected 
by reviewing the medical records and the angiography department’s archive. All patients underwent coronary 
angiography through the femoral artery using a Judkins catheter and conventional imaging. Multiple physicians 
performed angiography in all cases, and Ultravist-370 (Schering, Berlin, Germany) was used as the contrast agent. 
The injection was done manually (6–8 ml of contrast agent per injection). Coronary pressure was measured using 
a 0.014-inch pressure wire (St. Jude Medical, USA). The wire was guided and calibrated using a guiding catheter 
and placed approximately three centimeters past the stenosis. Maximum hyperemia was induced by intravenous 
administration of adenosine (average dose of 120 µg).

All experimental protocols were approved by the Institutional Review Board of Shahid Beheshti University 
of Medical Sciences, with the approval code IR.SBMU.RETECH.REC.1401.665, and were performed in accord-
ance with relevant guidelines and regulations. Informed consent was obtained from all subjects and/or their 
legal guardians.

Data structure
The training data used in this study consisted of 2390 images from 18 patients before and after revascularization 
(All of these patients underwent FFR procedure after revascularization surgery, and their FFR values were greater 
than 80). Given that the arterial structure of a patient before and after revascularization surgery is the same, and 
the only difference is the removal of stenosis and increase in flow at the site of the lesion, the angiography images 
of these patients before stenting were classified into the category of patients with FFR ≤ 80, and the images after 
revascularization surgery were classified into the category of patients with FFR > 80. Therefore, assuming that 
the proposed model is sensitive to these changes and learns the desired region of interest better, this category 
of images was selected as the training dataset. Additionally, for model evaluation, the test dataset consisted of 
772 images from twenty-three patients, including 14 patients with FFR > 80 and nine patients with FFR ≤ 80, as 
described in Table 2. The before-and-after images of patients were not used in the test dataset, and the images in 
each category in this dataset only included unique images of unique patients to have a fair and unbiased evalu-
ation of the model. Figure 1 shows a patient’s FFR value before and after revascularization surgery and changes 
in the region of interest (ROI) indicated with a red circle in the image.

Data preparation
An interventional cardiologist evaluated the angiography films of patients, and a total of 3625 black and white 
images related to the LAD artery from forty-one patients were included in the study, each measuring 512 × 512 
pixels. This study classified patients into FFRH class for FFR > 80 and FFRL class for FFR ≤ 80.
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Reference (Year) Modality
Number of patients/
lesions AI Methods Prediction Task Feature Engineering Features Performance

Hatfaludi et al.40 OCT 80/102 (LAD = 57, 
LCX = 20, RCA = 25) DNN Classification Feature learning 

(DNN)
Anatomical OCT 
information

AUC = 0.763

Accuracy = 0.775

Sensitivity = 0.729

Specificity = 0.815

PPV = 0.778

NPV = 0.772

Xue et al.41

CCTA​

40/67(LAD = 32, D = 4, 
LCX = 10, OM = 1, 
RCA = 20)

BRNN Regression Feature learning 
(MLP)/ Handcrafted

Flow features AUC = 0.95

XCA

Radius features Accuracy = 0.925

Centerline Information

Sensitivity = 0.936

Specificity = 0.881

PPV = 0.8333

NPV = 1

Lee et al.42 CCTA​

144/200(LAD) ANN, MLP

Classification
Feature learning 
(InceptionV3)/ Hand-
crafted

Morphological feature
Accuracy = 0.75 to 
0.983Synthetic RF, AdaBoost, SVM, 

GB, GP, KNN
Flow features

Biometric features

Roguin et al.43 XCA 31(LAD = 25, LCX = 3, 
RCA = 3) ANN Regression Feature learning –

Accuracy = 0.9

Sensitivity = 0.88

Specificity = 0.93

PPV = 0.94

NPV = 0.87

Fossan et al.44 CCTA​

50(LAD = 26, LCX = 13, 
RCA = 11)/150

FFNN Classification

Handcrafted

Geometric features

Accuracy = 0.955

(LAD = 78, LCX = 39, 
RCA = 33) (VMTK)

Sensitivity = 0.94

Specificity = 0.963

He et al.45 CCTA​ 60 SVM Classification Handcrafted (PyRadi-
omics)

left ventricular myocar-
dial radiomics features

AUC = 0.8952

Accuracy = 0.855

Cha et al.46 OCT 125(LAD) RF Classification Handcrafted

OCT Geometric feature AUC = 0.98

Biometric features Accuracy = 0.952

Clinical features

Sensitivity = 1

Specificity = 0.929

PPV = 0.875

NPV = 1

Kim et al.47

OCT

20 SVM Classification

Handcrafted Geometric feature Accuracy = 0.75

CCTA​ (Boruta)

Flow features Sensitivity = 0.5

Biometric features

Specificity = 0.8

PPV = 0.83

NPV = 0.63

Gao et al.48 CCTA​ 180/13,000 Synthetic RNN Regression Feature learning (RNN) Centerline Information

AUC = 0.93

Sensitivity = 0.84

Specificity = 0.89

Carson et al.49 CCTA​ 25(LCA) FFNN, LSTM, MPR Regression

Handcrafted

Centerline Information

Accuracy = 0.72

(VMTK)
Sensitivity = 0.9

Specificity = 0.6

Kawasaki et al.50 CCTA​ 47/60 RF, LR, SVM Classification Handcrafted (CCTA 
Analysis)

Anatomic CCTA 
Descriptors AUC = 0.698 to 0.835
Functional Descriptors

Kumamaru et al.51 CCTA​

1052

NN Classification
Feature learning 
(cGAN [Conditional 
Generative Adversarial 
Network])

-

AUC = 0.78

(131 labelled 
LAD = 118, LCX = 49, 
RCA = 40))

Accuracy = 0.759

Sensitivity = 0.846

Specificity = 0.626

PPV = 0.777

NPV = 0.724

Zreik et al.52 CCTA​ 126/2340 CNN Classification Feature learning (CAE)

LVM Computed 
features AUC = 0.74

Centerline Information

Accuracy = 0.7

Sensitivity = 0.7

Specificity = 0.7

Continued
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Reference (Year) Modality
Number of patients/
lesions AI Methods Prediction Task Feature Engineering Features Performance

YIN et al.53 CCTA​ 13(LAD) GPR Regression Handcrafted
Physiologic parameters Sensitivity = 0.76 to 

0.91Anatomic parameters

Dey et al.54 CCTA​ 254/484 LB Classification

Handcrafted Patient factors Accuracy = 0.8

(AutoPlaque) Quantitative CTA​
Sensitivity = 0.73

Specificity = 0.8

Zreik et al.55 CCTA​ 137/192(LAD = 104, 
LCX = 52, RCA = 36) SVM Classification Feature learning (CAE) Centerline Information

AUC = 0.87

Accuracy = 0.8

Lee et al.56 IVUS 1328/1328(LAD = 891, 
LCX = 100, RCA = 337)

RF, SVM, ANN, 
LR,AdaBoost , Cat-
Boost

Classification Handcrafted

Computed IVUS 
features

Accuracy = 0.85 to 0.87Clinical variables

Patient factors

Quantitative CTA​

WANG et al.57 CCTA​ 63/71 (LAD = 32, 
LCX = 21, RCA = 18) BRNN Regression

Feature learning 
(MLNN [Multilevel 
Neural Network])

-

AUC = 0.664

Accuracy = 0.873

Sensitivity = 0.9714

Specificity = 0.75

PPV = 0.8293

NPV = 0.9545

Denzinger et al.58 CCTA​ 95/345 GRU​ Classification

Feature learning 
(RCNN [Recurrent 
Convolutional Neural 
Network]) / Hand-
crafted (PyRadiomics)

Radiomic features AUC = 0.88

Centerline Information

Accuracy = 0.87

Sensitivity = 0.95

Specificity = 0.61

PPV = 0.9

NPV = 0.74

Cho et al.59 XCA 1501/1501(LAD = 1017, 
LCX = 155, RCA = 329) XGBoost Classification Handcrafted (CAAS-5)

Computed angio-
graphic features AUC = 0.87

Clinical features

Accuracy = 0.81

Sensitivity = 0.84

Specificity = 0.89

PPV = 0.77

NPV = 0.79

Hamersvelt et al.60 CCTA​ 126 SVM Classification
Feature learning (CAE 
[Convolutional Auto-
Encoder])

LVM Computed 
features

AUC = 0.76

Sensitivity = 0.846

Specificity = 0.484

Hae et al.61

XCA

1132/1132(LAD = 718, 
LCX = 141, RCA = 273)

RF, SVM, LR, Ada-
Boost, CatBoost Classification Handcrafted (CAAS-5/ 

EchoPlaque 3.0)

Computed angio-
graphic features AUC = 0.84 to 0.91

IVUS

Computed IVUS 
features Accuracy = 0.78 to 0.84

Clinical features

Sensitivity = 0.76 to 
0.84

Specificity = 0.8 to 0.85

PPV = 0.63 to 0.71

NPV = 0.88 to 0.92

Kim et al.62 IVUS 70/ 1447 XGBensmble, ANN, 
XGBoost, RF Classification Feature learning 

(VGG16)

Computed IVUS 
features Accuracy = 0.73 to 0.81

Patient factors

Recall = 0.63 to 0.71

Precision = 0.61 to 0.74

F1 score = 0.64 to 0.73

Zreik et al.63 CCTA​ 126 SVM Classification Feature learning (CAE) LVM Computed 
features

AUC = 0.74

Sensitivity = 0.71

Han et al.64 CCTA​ 252/408 AdaBoost Classification Handcrafted (Smart-
Heart)

LVM Computed 
features

Accuracy = 0.683

Sensitivity = 0.527

Specificity = 0.846

PPV = 0.782

NPV = 0.63

Continued
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Proposed method
Figure 2 illustrates the structure of the proposed method. First, pre-processing was performed on the input 
images, including decoding, resizing, normalization, augmentation, and histogram equalization. Then, the feature 
extractor inserted the obtained feature vector into the classifier block, and finally, the images were divided into 
two classes: FFR > 80 and FFR ≤ 80.

Reference (Year) Modality
Number of patients/
lesions AI Methods Prediction Task Feature Engineering Features Performance

Itu et al.65 CCTA​

87/125

DNN Classification Feature learning Geometric features

AUC = 0.9

(12,000 Synthetic)

Accuracy = 0.832

Sensitivity = 0.816

Specificity = 0.839

PPV = 0.689

NPV = 0.912

Table 1.   Studies on estimating FFR using AI methods39.

Table 2.   The dataset used for training and testing the proposed model.

Train Set Test Set Total

No. patients 18 23 41

No. Images 2390 772 3625

Figure 1.   FFR Value before Revascularization is 0.8, and FFR Value after Revascularization is 0.9

Figure 2.   The overall structure of the proposed method.
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Preprocessing
Pre-processing is an essential step in deep learning that involves transforming and preparing raw data for effec-
tive utilization by a neural network66. It involves various techniques such as decoding, resizing, normalization, 
augmentation, and histogram equalization.

Decoding.  Image decoding is converting the encoded image back to an uncompressed bitmap. The attribute 
channels indicate the decoded image’s desired number of color channels.

Resizing.  The image size of 380 × 380 pixels was selected using Grid search.

Data normalization.  Normalization was applied to all images before entering the network.
The data were normalized to reduce the effect of intensity variations between radiographs. Normalization 

involves scaling the pixel values of images to a standard range or mean and unit variance to reduce the impact 
of varying lighting conditions on the image. Scaling involves rescaling the data to have similar units so that no 
feature dominates another67.

For data normalization, first, the pixel‐level global mean and standard deviation (SD) were calculated for all 
the images; next, the data were normalized using Eq. 1 where μ is the global mean of the image set X, σ is the 
SD, ε = 1e − 10 is an insignificant value to prevent the denominator from turning zero, i = [1 − 2083] is the index 
of each training sample, and Zi is the normalized version of Xi (41).

Augmentation.  Data augmentation is essential in deep learning models. It involves generalizing the training 
samples by transforming images without losing their semantic and intrinsic information. These transformations 
were randomly applied to the data68,69.

Data augmentation involves creating more training examples by transforming existing images through rota-
tion, translation, contrast change, and zooming techniques.

Table 3 shows data augmentation techniques and the parameters used in this study.

Histogram equalization.  The histogram information was used, and the most common intensity values were 
dispersed to produce a contrast-improved image70. Histogram equalization was performed using Eq. 2, where L 
is the maximum intensity level of the image; M: is the width of the image; N: is the height of the image; N: is the 
frequency corresponding to each intensity level; rj: the range of values from 0 to L-1; Pin: the total frequency that 
corresponds to a specific value of rj; Rk: the new frequencies; Sk: The new equalized histogram; where k = 0,1,2, 
……, L − 113.

This study used this technique to adjust the contrast of the input image. Figure 3 shows an example of using 
this technique.

Model architecture
The proposed model consisted of feature extraction and classification blocks, explained in the following.

Feature extractor.  Nine famous pre-trained CNNs were used for image feature extraction, including 
DenseNet12171, InceptionResNetV272, VGG1673, VGG1973, ResNet50V274, Xception75, DenseNet20171, 
DenseNet16971, and MobileNetV3Large76. After running these networks on the dataset and evaluating them, 
DenseNet169 showed the best performance. This architecture consists of a convolutional layer, a pooling layer, 
four dense blocks, and three transition layers. the 4 dense blocks and 3 transition layers have been delineated 
separately using distinct boxes to showcase the individual components. For each dense block, the number of 
constituent layers is also indicated. For instance, Dense Block 1 is composed of 6 layers, with each layer utiliz-
ing batch normalization (BN), ReLU activation, followed by 1 × 1 and 3 × 3 convolutional filters of size 64. The 
subsequent Dense Blocks 2, 3 and 4 progressively increase the layers, while maintaining an identical structure of 

(1)Zi =
Xi = µ

σ + ε

(2)Sk = T(Rk) =

k
∑

j=0

Pin
(

rj
)

=
(L− 1)

MN

k
∑

j=0

nj

Table 3.   Details on the data augmentation techniques and parameters.

Type Parameters

Random rotation [-%30, + %30]

Random translation [-%15, + %15]

Random zoom [0, + %15]

Random contrast [-%15, + %15]
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batch normalization, ReLU activation, and convolutional filtering. Finally, the transition layers in between the 
dense blocks employ batch normalization, ReLU activation, and 1 × 1 convolutions with 128, 256, and 512 filters 
respectively. We believe these model architecture clarifications provide improved understanding of the underly-
ing DenseNet169 infrastructure per the reviewer’s suggestion. Please advise if further explanation or modifica-
tion would be beneficial. Figure 4 illustrates the overall architecture of this network71.

Classifier.  For classifying angiography images into two classes of FFR > 80 and FFR ≤ 80, a classifier block was 
designed, as shown in  Fig. 5, in which two fully connected sequential blocks were used after the batch-normal-
ization layer.

The first block consisted of dense, ReLU, Kernel Regularizer L1L2, batch‐normalization, and dropout layers. 
The second block comprised dense, ReLU, and batch‐normalization layers, respectively. Figure 6 displays these 
steps in detail.

The classifier was a dense layer with two neurons, and the Softmax function was applied to these representa-
tions. This function specified the probability of allocating each sample to one out of Two classes, and its value 
fell in the [0,1] range. Figure 5 displays these steps in detail.

Figure 3.   X-ray image before and after histogram equalization.

Figure 4.   DenseNet‐169 architecture‐based feature extraction block71.

Figure 5.   Classification block.
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Training and implementation
The feature extractor block was completely frozen using the transfer learning approach in the first training phase 
and included non-trainable parameters. This model was trained for several epochs with weights obtained after 
fitting the ImageNet dataset. However, all parameters of the classifier block were trainable.

The first training phase used the Adam optimizer with an initial learning rate of 1e-2 and a decay rate of 1e-5. 
The Adam optimizer with an initial learning rate of 1e-4 and a decay rate of 1e-6 was used in the second training 
phase. In both training phases, cosine Annealing was used. In the second phase of fine-tuning, all network layers 
except for the first eight layers, the feature extractor, and the first convolutional block were trainable and frozen.

The training process consisted of 120 epochs in the first phase and 600 in the second phase. Early stopping 
was considered at ten epochs in the first and 100 in the second phases. In the second phase of training, validation 
loss was also monitored. If it remained constant for ten epochs and did not improve, the learning rate would 
decline by 20%. Validation accuracy was also monitored, and only the model with the best weights obtained 
was saved. The optimal hyperparameter values were obtained using grid search. The value of the kernel regular-
izer parameters was l1 = 1e-5 and l2 = 1e-4. These architectures were implemented using Python language and 
the Keras library and executed on Google’s TPU v3-8. Figure 7 shows the training and validation loss after 238 
iterations during the training process.

Loss function.  Cross-entropy was used as the loss function, which is a metric for measuring the performance 
of a classification model in machine learning and is defined by Eq. 3, Where P(x) is the probability of the event 
x in P, Q(x) is the probability of event x in Q, and the log is the base-2 logarithm77.

(3)H(P,Q) = −sum x inXP(x) ∗ log(Q(x))

Figure 6.   Mixed precision training iteration for a layer83.

Figure 7.   The loss of the proposed model during training. Model converged after 238 epochs.
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Learning rate schedule.  The learning rate schedule is a pre-defined framework that adjusts the learning rate 
between epochs or iterations to avoid getting stuck in the local optimum as training progresses. This study used 
a warm restart cosine annealing for the learning rate scheduling program, considering the best weights as the 
restart points. It is demonstrated in the following equation (Eq. 4), where the best weights are considered as the 
restart points.

Within i-th run, the learning rate is decayed with a cosine annealing for each batch as follows:
ηimin and ηimax are ranges for the learning rate, and Tcur accounts for how many epochs have been performed 

since the last restart. Since Tcur is updated at each batch iteration t, it can take discredited values such as 0.1 and 
0.2. Thus, ηt = ηimax when t = 0 and Tcur = 0 . Once Tcur = Ti , the cos function will output − 1, so ηt = ηimin

78.

Custom weighting.  The unequal number of class samples, known as class imbalance, is an issue in machine 
learning classification problems. It affects the prediction model and leads to bias. Custom weighting was used to 
prevent this challenge, with a weight of 0.8 for the high-count class and 1.32 for the low-count class. These values 
represent the weighted average of the number of samples in each class.

Label smoothing.  Label smoothing was used to improve the generalizability of the model.
Label smoothing is an effective regularization tool for deep neural networks (DNNs) and can implicitly cali-

brate the model’s predictions. It significantly impacts the model interpretability and improves model calibration 
and beam search. It accounts for the possible mistakes in datasets, so maximizing the likelihood of log p

(

y|x
)

 
can be directly harmful. For a small constant ε, the training set label y  is correct with the probability of 1—ε and 
incorrect otherwise. Label Smoothing regularizes a model based on a Softmax with k output values by replacing 
the hard 0 and 1 classification targets with targets of ε

k−1 , respectively76,79–81.

Techniques to prevent overfitting.  Overfitting is a fundamental problem in supervised machine learning, pre-
venting models from perfectly generalizing to observed training data and unseen test set data. Overfitting occurs 
due to noise, limited training set size, and classifier complexity82. In order to address concerns related to poten-
tial overfitting in our model, several regularization techniques were strategically incorporated during the model 
development phase. Batch Normalization was applied to normalize the activations of various layers, enhancing 
the stability of the learning process. Additionally, Dropout with a rate of 0.2 was implemented on specific layers 
to introduce a level of randomness, preventing the model from relying too heavily on specific features present in 
the training set. Furthermore, L1L2 Kernel Regularizer was employed on the Dense layer with carefully chosen 
coefficients to penalize large weights and reduce model complexity. These regularization techniques collectively 
contribute to the robustness of our model by striking a balance between fitting the training data and generalizing 
well to new, unseen data. The effectiveness of these measures is evident in the model’s performance, as illustrated 
in Fig. 7 and discussed in the results section.

Mixed precision.  Mixed precision decreased fitting/training time and reduced memory usage during training. 
Figure 6 illustrates the mechanism of this method.

Ethical approval
All experimental protocols were approved by the Institutional Review Board of Shahid Beheshti University of 
Medical Sciences, with the approval code IR.SBMU.RETECH.REC.1401.665, and informed consent was obtained 
from all subjects and/or their legal guardians.

Experiments
In this section, the performance evaluation parameters of the model are first explained, then the proposed 
method’s performance is evaluated, and the model training results are reported. Furthermore, various well-
known pre-trained networks were also used, and their training results were compared with the proposed method.

Evaluation metrics
Evaluation metrics are different types of measures to evaluate the performance of a deep learning model. They 
are mainly Accuracy (3), Precision (4), Recall (4), F-Measure (6), and Specificity. The number of true-positive 
(TP), false-positive (FP), true-negative (TN), and false-negative (FN) values are required to measure these 
parameters, as mentioned below.

(4)ηt = ηimin +
1

2

(

ηimax − ηimin

)

(

1+ cos(
Tcur

Ti
π

)

(5)Accuracy =
TP + TN

TP + FP + FN + TN

(6)Precision =
TP

TP + FP
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Model evaluation
In this section, the evaluation results of the model on the test dataset were reported. For evaluating the pro-
posed model, the cross-validation method was used. Cross-validation is a statistical method for evaluating and 
comparing learning algorithms by dividing the data into model training and validation84–86. The main form of 
cross-validation is k-fold cross-validation, where k equals the number of folds. This type of validation is per-
formed as follows:

In each iteration, one or more learning algorithms use k = 1 folds of data to learn one or more models, 
and subsequently, the learned models are asked to make predictions about the data in the validation fold. The 
performance of each learning algorithm on each fold can be tracked using some predetermined performance 
metric like accuracy. Different methodologies, such as averaging, can be used to obtain an aggregate measure 
from these samples, or these samples can be used in a statistical hypothesis test to show that one algorithm is 
superior to another.

This study used five-fold cross-validation to validate the proposed model. The final results of evaluating the 
proposed model using this method are reported in Table 4 and Fig. 8.

The Receiver Operating Characteristic (ROC) curve in Fig. 9 illustrates the predictive model’s performance 
for Fractional Flow Reserve (FFR) with an Area Under the Curve (AUC) of 0.81. This AUC value signifies a 
strong discriminatory capacity, effectively distinguishing between FFR > 80 and FFR < = 80 classes. Specifically, the 
model excels in discerning FFR > 80 and FFR < = 80 classes, as indicated by the AUC value. The 95% confidence 
interval for the AUC, [0.777, 0.833], ensures the precision of this discrimination. Moreover, the exceedingly 
low p-value (< 0.001) underscores the model’s statistical significance, indicating a substantial and meaningful 
difference compared to the baseline value of 0.5.

(7)sensitivity(Recall) =
TP

TP + FN

(8)F1− Score =
2 ∗ (Recall ∗ Precision)

Recall + Precision

(9)Specificity =
TN

TP + FN

Table 4.   The proposed model’s evaluation results in DenseNet-169 Network.

Accuracy Sensitivity Specificity Precision F1-Score Support

FFR > 80 0.81 0.86 0.75 0.82 0.84 440

FFR < = 80 0.81 0.75 0.86 0.81 0.77 332

Weighted avg 0.81 0.81 0.81 0.81 0.81 772

Figure 8.   Confusion matrix of model evaluation on the test data set.
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Review and comparison of pre‑trained feature extractors
Nine pre-trained CNNs, including DenseNet121, InceptionResNetV2, VGG16, VGG19, ResNet50V2, Xception, 
MobileNetV3Large, DenseNet201, and DenseNet169 (Proposed), were used for image feature extraction and 
were evaluated with the test dataset. These models were compared based on the accuracy parameter. Table 5 
shows the obtained results.

The performance outcomes from assessing the three highest-accuracy models using the evaluation the test 
data are presented in Table 6.

Figure 9.   Fig. 1—Receiver Operating Characteristic (ROC) curve on the test data set.

Table 5.   Comparison of the prediction accuracy of the proposed model on the test set using different pre-
trained networks as feature extractors.

Feature extractor Accuracy

MobileNetV3Large 0.55

VGG16 0.57

VGG19 0.63

ResNet50V2 0.70

InceptionResNetV2 0.71

Xception 0.72

DenseNet201 0.74

DenseNet121 0.80

Proposed (DenseNet-169-Based) 0.81

Table 6.   Evaluation results for top 3 pre-trained feature extractors.

Feature extractor Class Accuracy sensitivity Specificity Precision F1-Score Support

DenseNet-169

FFR > 80 0.81 0.86 0.75 0.82 0.84 440

FFR < = 80 0.81 0.75 0.86 0.81 0.77 332

Weighted avg 0.81 0.81 0.81 0.81 0.81 772

DenseNet121

FFR > 80 0.80 0.81 0.80 0.84 0.83 440

FFR < = 80 0.80 0.80 0.80 0.76 0.78 332

Weighted avg 0.80 0.80 0.80 0.80 0.80 772

DenseNet201

FFR > 80 0.74 0.70 0.79 0.82 0.76 440

FFR < = 80 0.74 0.79 0.70 0.67 0.72 332

Weighted avg 0.74 0.74 0.74 0.74 0.74 772
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Discussion
In the present study, a fast, end-to-end, automated deep learning model was designed for estimating FFR values 
using angiography images. This model can classify angiography images into two classes, FFR > 80 and FFR < = 80, 
with no manual annotation and an overall accuracy of 81%. Multiple studies have shown a correlation between 
anatomical and physiological parameters87,88, and the current study’s findings also provide further insights into 
how angiography features affect FFR values.

Although angiography is the gold standard for evaluating the severity of coronary lesions, physiological 
evaluation is the determining factor for treatment planning in patients with coronary artery disease89. FFR is 
considered the gold standard for the physiological assessment of coronary artery stenosis and is a strong indicator 
for diagnosis, treatment, and determining the approach for interventions. However, the invasive nature of FFR 
evaluation and its high cost has led to a lack of enthusiasm among healthcare professionals to use this method 
routinely in the Cath lab. The proposed method in this study has the potential to be used routinely in Cath labs 
due to its low cost, no need for additional data entry or extra workload for the cardiologist, online usability, and 
no need for changes in workflow in the Cath lab. However, this method requires external validation. External 
evaluation in deep learning checks a model’s performance on new, distinct data, ensuring its generalization and 
minimizing overfitting for real-world applications90–92.

The present study shows that in recent years, significant efforts have been made to integrate anatomical and 
physiological parameters, indicating this method’s clinical value for physicians and patients. However, integrat-
ing anatomical and physiological parameters is a significant challenge93. Various methods have been developed 
to calculate FFR without an invasive pressure wire or inducing hyperemia31. The present study’s findings also 
demonstrate that image-based deep learning for determining FFR is a non-invasive and cost-effective method 
that can be used to match the visual and physiological features of coronary artery stenosis.

In recent years, an end-to-end framework has been introduced in deep learning, and its benefits in the 
health field have been investigated94,95. This study’s proposed model demonstrates the advantages of using this 
approach for estimating FFR. Physicians can use this model to evaluate physiological conditions without enter-
ing additional data and manual annotation, only by inputting angiography images. Additionally, to facilitate 
the successful implementation of this method in Cath labs, systems based on this model can display FFR values 
online. On the other hand, the FAME study shows that only 35% of patients with stenosis between 50 and 70% 
are found to be significant stenosis in FFR evaluation. In other words, a model that can detect more insignificant 
stenosis will result in fewer unnecessary FFRs.

The existence of a non-invasive method for reducing unnecessary FFRs is also very important, and artificial 
intelligence, due to its non-invasiveness and the lack of need to change the workflow of the Cardiac catheteri-
zation laboratory, can be an excellent solution. This highlights the potential value of an accurate non-invasive 
AI-based FFR estimation approach. Such a method could help avoid unnecessary invasive FFR procedures and 
their associated costs and complications in cases where non-invasive assessment predicts non-significant stenosis. 
This is particularly relevant given that studies show only a subset of intermediate coronary lesions are found to 
be hemodynamically significant when measured invasively. More widespread adoption of validated non-invasive 
FFR estimation techniques may improve clinical workflows and benefit both patients and healthcare systems.

In the present study, the DenseNet169 model outperformed other models in detection of insignificant stenosis. 
Compared to other studies in this field, our proposed method requires only a single view from the angiography 
image with no need for annotation or additional parameters, without altering existing clinical workflows, yet 
still achieves state-of-the-art performance by utilizing a deep learning approach.

Study limitations and future considerations
While our study provides valuable insights into FFR estimation using angiography images, it is essential to 
acknowledge certain limitations. Firstly, the relatively small sample size of 41 patients might impact the gener-
alizability of our findings. Future research endeavors should prioritize the inclusion of a larger and more diverse 
cohort to enhance the robustness and external validity of the proposed model.Additionally, this study focused 
solely on the parameters present in angiography images, omitting potential influential factors such as age and 
gender. The exclusion of these variables may limit the comprehensive understanding of FFR estimation. Future 
investigations could explore the incorporation of additional clinical parameters to refine and expand the predic-
tive capabilities of the model. External evaluation of our method on independent datasets will also be important 
to further validate the generalizability of our findings. External evaluation is something that will be a focus of 
our future work.

Conclusion
This study designed an intelligent, fast, end-to-end, and automated method using the CNN architecture, the 
concept of transfer learning, and the pre-trained DenseNet169 network for estimating FFR values based on 
angiography images. This model can estimate FFR non-invasively with an overall accuracy of 81%. DL-based 
angiography image-derived FFR is a valuable tool for decision-making in diagnosing and treating stenosis in 
Cath labs. This model can assist cardiologists in decisions about diagnosis and treatment of moderate stenosis 
by combining physiological and anatomical parameters of coronary arteries.

Data availability
Due to the policies and guidelines of Shahid Beheshti University of Medical Science, data is not allowed for 
publication. The raw data supporting the conclusions of this article will be made available by the authors without 
undue reservation. The Python source codes used to develop the model are deposited on GitHub (https://​github.​
com/​Mehra​dAria/​FFR-​Estim​ation).

https://github.com/MehradAria/FFR-Estimation
https://github.com/MehradAria/FFR-Estimation
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