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Resource constrained neural 
network training
Mariusz Pietrołaj * & Marek Blok 

Modern applications of neural-network-based AI solutions tend to move from datacenter backends 
to low-power edge devices. Environmental, computational, and power constraints are inevitable 
consequences of such a shift. Limiting the bit count of neural network parameters proved to be 
a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is 
understandable that a similar approach is gaining momentum in the field of neural network training. 
In the face of growing complexity of neural network architectures, reducing resources required for 
preparation of new models would not only improve cost efficiency but also enable a variety of new 
AI applications on modern personal devices. In this work, we present a deep refinement of neural 
network parameters limitation with the use of the asymmetric exponent method. In addition to the 
previous research, we study new techniques of floating-point variables limitation, representation, and 
rounding. Moreover, by leveraging exponent offset, we present floating-point precision adjustments 
without an increase in variables’ bit count. The proposed method allowed us to train LeNet, AlexNet 
and ResNet-18 convolutional neural networks with a custom 8-bit floating-point representation 
achieving minimal or no results degradation in comparison to baseline 32-bit floating-point variables.

In recent years we saw a significant growth of neural network (NN) usage in various domains including computer 
security, business, agriculture, healthcare, finance, or military. The use cases focus on approximation of complex 
algorithms, computer vision, speech recognition, data classification, and many  more1. Although novel applica-
tions of NN are limited only by researchers’ creativity, there are strict hardware requirements when it comes to 
both training and inference of NN  models2. Most of the globally available general-purpose hardware leverages 
32-bit single-precision IEEE 754 floating-point (FP32) format for calculations requiring a large dynamic  range3. 
The problem lies behind FP32 computations that take a significant part in overall core energy consumption, 
including operations and moving operands between data memory and  registers4. The majority of neural net-
work designs heavily depend on a large number of FP32 multiplications resulting in high power and memory 
requirements. Hence, there is debate about deep learning with relation to growing energy consumption and its 
influence on carbon  emission5,6.

Multiple effective methods of NN inference optimization have been already proposed. Various techniques 
such as pruning, quantization, or dynamic parameters limitation enable faster and more energy efficient infer-
ence, also on edge  devices7–10. Hardware related research goes on par with algorithmic advancements. There are 
both experimental and production devices available in the form of neural network accelerators or co-processors 
such as DianNao, Intel MovidiusX, or Google TPU  Edge11–13. Even though the aspect of inference has been well 
covered by multiple production-ready frameworks and hardware architectures, resource constrained NN train-
ing is still an open  issue14–16.

Training of a modern, deep neural network requires significant computational resources and a large amount 
of input data. Therefore, powerful computational units need to be utilized to finish such a process in a reasonable 
 time2. Graphical Processing Units (GPU) are commonly used for this purpose, but such an approach comes at 
the cost of the hardware and consumed  power3. Limiting the time and resources required for NN training would 
allow for shortening time-to-product for many algorithms. Moreover, it would enable online training of specific 
models on edge devices without resource-expensive re-training and deployment. Adjusting the model on the 
device would allow limiting resource-consuming client–server communication and externally triggered model 
 updates17. This is especially important in the case of privacy sensitive applications, where storing personal data 
outside of a device may not only undermine customers’ trust but also violate legal  regulations18.

The continuously growing size of NN models and the high number of complex multiplications, required for 
both forward and backward passes, is the main root cause behind resource demanding NN training  process19. 
Although due to a proper quantization, inference can often use fixed-point parameters to provide sufficient 
results, there are several studies showing that such an approach in the case of NN training might be difficult 
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for variables below 12  bits20–23. Recent findings show that limiting the bit count of FP32 parameters tends to be 
the right path for improving power efficiency of modern  NN24,25. Besides removing the least significant bits of 
the variables’ exponent and mantissa, researchers tend to propose mixed precision networks and sophisticated 
rounding techniques in order to avoid accuracy  degradation26–29. In the result, reducing both memory and 
computational power required by multiplication operations can significantly increase the applicability of NN 
training to a broader number of devices. It has to be mentioned that major companies in the business as Nvidia 
or IBM already focus on low- and mixed-precision hardware for neural network  training30,31. Additionally, there 
is growing interest in the hardware enabling calculations on flexible bit count parameters which is required for 
productization of many of the recently proposed  algorithms32–34.

In our previous research we have shown that limiting floating-point parameters along with changing its 
bit-level representation allows for achieving accuracy close to FP32  baseline35. Based on this initial idea, the 
presented work provides an original contribution in terms of analysis of exponent values utilization during 
convolutional neural network training. Additionally, a new floating-point format has been proposed, including 
a custom approach to exponent range representation. A new method focusing on low-precision floating-point 
arithmetic for NN training has been presented combining techniques such as asymmetric exponent, stochastic 
rounding, and denormalization of low-precision variables. Moreover, extensive experiments on the proposed 
method’s impact on the selected NN architectures’ training accuracy have been conducted, proving the method’s 
achievements. Our refined method shows that usage of limited floating-point value with asymmetric exponent, 
exponent offset, and stochastic rounding techniques enables efficient convolutional neural network training 
with a custom 8-bit floating-point.

This paper is organized in the following way, in the next section, related work and recent findings in terms of 
neural network training with limited precision are presented. Sections three and four give a detailed overview 
of limitation methods and experiments conducted during our research. In the fifth section, we present a sum-
mary of accuracy achieved for chosen convolutional networks along with a comprehensive results overview of 
the previously described papers. The ending sections combine the conclusions drawn from our work and future 
research directions.

Related work
NN training optimization is still a vital subject of research as presented in our previous  study35. This time, in 
order to further investigate the propositions from the recent work, we focus solely on findings published since 
2020. The experiments reviewed in this section show intensified focus on NN optimization by precision limi-
tation and modification of floating-point representation. There is a growing number of proposals leveraging 
mixed precision for limitation of inference resource requirements, combining in-training36–39 and post-training 
 techniques40. More importantly, it opens additional research paths for power efficient neural network training.

In research towards energy-efficient neural network training Lee (2020)14 proposes a DNN training method 
called fine-grained mixed precision (FGMP). The technique is based on using both FP8 and FP16 in dynamically 
calculated ratio during the NN training in order to limit power requirements while maintaining the network’s 
accuracy. According to the author, the external memory accesses have been reduced by 38.9% for ResNet-18 
training. In addition, a deep learning neural processing unit (LNPU) is proposed, allowing for doubling energy 
efficiency. In the case of ResNet-18, the method achieves FP16 levels of accuracy for both CIFAR10 and Ima-
geNet datasets.

Along with the growing number of dynamic precision training algorithms, there is a visible demand for 
hardware architectures supporting such use cases. Precision-controlled memory system (PCM) proposed by Kim 
et al. (2020)40 focuses on reducing power requirements while training NN with limited parameters bit counts. 
Their work shows that it is possible to achieve FP32 accuracy of ResNet-20 on CIFAR100 with 34% lower energy 
consumption and 20% speed up in comparison to regular GPU architectures.

Another approach to mixed precision NN training is depicted by Rios et al. (2021)41. The method combines 
16- and 32-bit arithmetic, where Brain Floating Point based half-precision stands for up to 96.4% of the compu-
tations. Experiments on AlexNet, Inception, and ResNet-50 showed accuracy results close to the FP32 baseline.

Fu et al. (2021)42 propose Cyclic Precision Training (CPT) which explores the idea of increasing variables’ bit 
count along training iterations. The authors state that the precision of NN parameters can be treated similarly 
to learning rate, its adjustment allows a network to generalize or converge depending on the bit count used. 
The method has been validated across multiple topologies such as ResNet, MoblieNet, LSTM, and Transformer 
achieving accuracies on par with FP32 implementations. A slightly different view on this matter is proposed by 
Yu et al. (2022)43. Their Learnable Dynamic Precision (LDP) framework uses additional layer-wise parameters 
for learning the optimal precision. The results show improvement in comparison to  SBM44 or  CPT42 techniques 
based on various ResNet models.

Park et al. (2022)15 present another approach to limited precision training with the use of 8-bit floating point 
with a shared exponent bias (FP8-SEB). The method also includes multiple-way fuse multiply–add (FMA) trees in 
hardware implementation. FP8-SEB consists of a tensor with FP8 values where 1 bit is assigned to sign, 4 to expo-
nent, and 3 to mantissa. The exponent is biased differently for each tensor based on its dynamic range. According 
to the authors, the overhead of using separate biasing is negligible. Training results verified on ResNet-18 and 
ImageNet dataset achieve 69% accuracy. Moreover, the authors state that their hardware proposal requires 78.1 
times lower energy than standard GPUs.

The architecture proposed by Junaid et al. (2022)16 leverages a mixed precision training approach, incorpo-
rating 32-, 24-, and 16-bits floating-point parameters along with the hardware accelerator engine. The solution 
includes a custom floating-point representation proposal and has been verified on a CNN with MNIST dataset 
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achieving 93.32% accuracy versus 96% FP32 baseline. According to the authors, their mixed precision accelerator 
engine limits energy consumption by 3.91 times in comparison to FP32 architecture.

As presented in multiple  cases14,16,40–43, novel methods focus on a static or dynamic mix of parameters with 
varying bit count. Although there are studies on hardware supporting such use cases, this approach provides an 
additional overhead on the design  itself33,45. Our method also includes the ability of mixed precision applica-
tion during NN training but does not enforce multiple bit count changes. In a similar fashion to FP8-SEB15, in 
our case, such functionality is achieved with the exponent offset method presented in the following chapter. 
Moreover, focusing on an optimal bit allocation to exponent and mantissa parts of a limited floating-point type 
is an important matter. In this work we investigate a full range of exponent and mantissa bit count combinations, 
including the previously mentioned variant with 4-bit exponent and 3-bit mantissa as its performance may vary 
per selected network architecture or training dataset.

Limitation method
As already mentioned, in our research we have focused on refining the previously presented method of neural 
network training with asymmetric  exponent35. The technique allowed us to train LeNet CNN without accuracy 
degradation on 12-bit floating point. The limitation assumed shortening FP32 exponent and mantissa to a given 
limited bit count. Instead of using a regular IEEE 754 exponent format, the asymmetric method assigns all bits 
to represent negative exponent values. In the case of all presented experiments, a general-purpose hardware has 
been utilized without any application of specific neural accelerators. Based on trainings conducted by the authors, 
even a configuration combining of Intel Core i7-4770, 32 GB 1600 MHz DDR3 RAM and GeForce GTX 1080 
TI 11 GB is sufficient for results reproduction. Nevertheless, as most of available GPUs with CUDA capabilities 
should suffice, it is advised to use a more powerful hardware for NN training speed up. All calculations have been 
executed with software level limitation. All parameters and intermediate values were stored and calculated using 
32-bit floating-point. The limitation to a given bit count was done after every calculation  stage21.

In the current approach we provide a significant improvement of the previously proposed method, resulting 
in FP32 accuracy levels for LeNet, AlexNet, and ResNet-18 networks with 8-bit floating-point values. The new 
method includes:

• An additional offset of the asymmetric exponent.
• Introduction of stochastic rounding technique during the limitation process.
• Utilization of denormalized values for a limited floating-point type.

Figure 1 gives a general overview of the refined limitation method. The diagram presents the approach used 
in our experiments but does not include all available parameterization possibilities. The presented limitation 
method has been implemented with the use of Python 3.9 programming language and PyTorch 1.10 machine 
learning framework. Additionally, it leveraged cudatoolkit 10.2 and torchvision 0.11.2.

Offset of the asymmetric exponent
Based on our previous study, we introduced the asymmetric exponent  method35. It was an answer for the low 
utilization of positive exponent values represented by a regular IEEE 754 representation during NN training. 
Such an approach allowed for limiting the bit count of FP32 without losing the commonly used dynamic range of 
floating-point parameters for a particular CNN. During our work, we discovered that selecting a specific range of 
negative values represented by the exponent improves the overall accuracy and training behavior of the network. 
Hence, applying an offset to an asymmetric exponent can be treated as an additional hyperparameter during 
the training process. Table 1 presents a comparison of 8-bit floating point variables with regular, asymmetric, 

Figure 1.  Overview of the proposed limitation method.
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and asymmetric with an offset exponent. The detailed format which assigns 1 bit to sign, 3 to exponent, and 4 
to mantissa is presented in Fig. 2.

Introduction of stochastic rounding
A variety of new NN training studies include rounding techniques in their implementation. One of the commonly 
used methods is stochastic rounding which can be summarized by the following equation.

Alternatively, the following version of Eq. (1) can be considered

which emphasize HW design efficiency improvement relying on the possibility of using random bit stream 
generator for generation of binary representation of stochastic parameter u.

In general, this rounding technique maps a number to the next smaller or larger value based on its distance 
between them. The smaller the distance, the higher probability of rounding to a particular value. The expected 
error of the stochastic rounding is zero, hence it allows to statistically preserve information about values in the 
limited  NN46. The positive influence of stochastic rounding on NN accuracy has been confirmed by multiple 
experiments in case of limitation to both fixed-point and floating-point  formats20,47. It is worth highlighting that 
besides mentioned benefits, this technique may introduce an additional overhead on the limitation method itself 
including NN acceleration hardware designs.

Utilization of denormalized values for a limited floating-point type
In comparison to our previous work an extended approach to FP32 limitation is applied. Similarly as in the case 
of the original IEEE-754 standard, the denormalization range is established for a proposed limited floating-
point type. Such approach provides improved utilization of available values range by additional representation 
of numbers that are close to zero. This mechanism is provided at the expense of the significant mantissa’s bits 
including interpretation of its hidden bit as 0. The denormalization feature for limited floating-point type can 
be simulated at the software level by simple bit shift operations. By usage of right bit shift, the targeted value 
is divided by 2 as long as there is at least one significant bit left in the mantissa’s representation. Such a limited 
value can then again be translated to a normalized floating-point representation with left bit shift operations and 
a proper exponent’s value adjustments.

Although the presented work mainly focuses on 8-bit parameters, such variables should not be treated as the 
final target of floating-point limitation. Nevertheless, selecting an appropriate minimal bit count or floating-
point type representation might be difficult in the case of a variety of available NN topologies. Taking this into 
consideration, the proposed method and its experimentation framework treat these limitation factors as a part 
of the model’s hyper-parameterization. The assumption is that these characteristics can be dynamically adjusted 
during succeeding training epochs, which is often the case in recent NN limitation  studies42,43. An additional 
advantage of this proposal is the possible parameterization of the exponent offset, which can also be dynamically 
modified during the training. Such an approach allows for changing the dynamic range of a limited floating-point 
parameter without affecting its bit count definition. The main advantage behind fixed bit count in the limita-
tion to a targeted format is a simplification of future requirements for software algorithms or hardware designs.

(1)r(x) = ⌊x⌋ + p,where p =

{

0 with probability : 1− (x − ⌊x⌋)
1 with probability : x − ⌊x⌋

and x is in rational numbers(Q)

(2)r(x) = ⌊x + u⌋, where u ∈ [0, 1)with uniform distribution

Table 1.  Comparison of 3-bit exponent representations and their impact on 8-bit floating-point variable 
range.

Type 3-bit exponent value range Full 8-bit variable range (4-bit mantissa)

Regular exponent [−2, 3] ± [0.25, 15.5]

Regular exponent (no bits reserved for special values) [−3, 4] ± [0.125, 31.0]

Asymmetric exponent [−7, 0] ± [0.0078125, 1.9375]

Asymmetric exponent with offset set to 2 [−9, −2] ± [0.001953125, 0.484375]

Figure 2.  8-bit floating point value with 1-bit sign, 3-bit exponent, and 4-bit mantissa.
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Conducted experiments
The proposed limitation method has been verified on three well-known neural network architectures, LeNet, 
AlexNet, and ResNet. The selection of these topologies was dictated by three main factors. The first one is easy 
reproducibility and comparison of our experiments’ results due to the popularity of these neural networks. The 
next one is the less demanding computational complexity of such CNN models, in comparison to much deeper 
networks, which allows for robust simulation-based experiments on general purpose hardware across all pos-
sible floating-point bit count variants in a reasonable time. Finally, many of new neural networks that aim for 
specific use cases are not as deep in their design, especially if power efficiency or embedding the model inside 
the chip’s memory is one of the goals. The selection of training data has been done based on similar arguments. 
The training leverages three publicly available datasets used for image classification tasks, MNIST, CIFAR10, and 
CIFAR100. These datasets provide a solid base for a benchmark comparison between other proposals of precision 
limitation algorithms for neural networks. Additionally, their moderate size and complexity allows for robust 
experimentation through a broad scope of floating-point format variants. Nevertheless, it is important to remark 
that the application of the proposed method is not limited to vision data or the selected datasets.

Table 2 presents hyper-parameters used during the conducted trainings along with their values in order to 
enable easy reproducibility of the presented results. It is important to highlight that hyper-parameters related 
settings remained identical for limited and regular training scenarios.

Although the MNIST dataset remained unchanged, additional augmentations have been applied to train parts 
of CIFAR datasets. Table 3 gives a summary of transformations applied to both CIFAR10 and CIFAR100 across 
all conducted trainings along with required parameterization. All mentioned operations leverage implementa-
tion provided by torchvision package.

Asymmetric exponent values stored in limited floating point are additionally increased by the exponent offset 
that has been determined based on exponent utilization during FP32 baseline training. In the case of LeNet we 
have verified that across all network layers, exponent values utilized for the majority of weight parameters are 
located in the range from −9 to −2 (Fig. 3). Nevertheless, some small utilization can be also observed for lower 
exponent values, especially in the case of the range from −11 to −10 but as we will demonstrate their omission has 
no significant impact on the training accuracy. Based on this analysis for LeNet the selected limitation method 
includes an asymmetric exponent with offset set to 2, which covers most of the required exponent values. This 
approach has been applied to all weights, biases, and gradients of the neural network.

The training results have been verified across all bit count combinations available in 32-bit floating point, 
from 3 to 32 bit. Figure 4 presents a summary of LeNet accuracy over 10 epochs for the full range of exponent 
and mantissa bit counts combinations. Our experiments show that 8 bit-floating point variables are sufficient to 
train LeNet across the same number of epochs with no accuracy degradation in comparison to FP32 parameters 
on MNIST dataset.

Based on Fig. 4 we can see that, similarly to our previous research, 1- or 2-bit exponents are not sufficient 
to train a LeNet network without significant accuracy decrease. In the case of such highly limited exponents, 
the accuracy fluctuates even with continuously increasing mantissa bit counts. The accuracy starts to rapidly 
improve starting from 3-bit exponent and mantissa as low as 1-bit giving satisfactory 94.58% accuracy for a 5-bit 

Table 2.  Hyper-parameters used during trainings (presented per neural network architecture).

LeNet AlexNet ResNet-18

Optimizer Stochastic Gradient Descent Adam Stochastic Gradient Descent

Learning rate 0.01 0.0001 0.1

Batch size 64 128 128

Loss function Cross entropy Cross entropy Cross entropy

Momentum Not applicable Not applicable 0.9

Weight decay Not applicable Not applicable 5e−4

Learning rate scheduler milestones Not applicable Not applicable 60, 120, 160

Learning rate scheduler gamma Not applicable Not applicable 0.2

Table 3.  Transformations applied to CIFAR10 and CIFAR100 datasets.

CIFAR10 CIFAR100

Random Horizontal Flip Probability: 0.5 Probability: 0.5

Random Crop Height: 32, width: 4 size: 32, padding: 4

Random Rotation Not applied Degrees: 15

Normalization
Means (per channel):
[0.485, 0.456, 0.406]
Standard deviations (per channel): [0.229, 0.224, 0.225]

Means (per channel):
[0.5070751592371323, 0.48654887331495095, 0.4409178433670343]
Standard deviations (per channel): [0.2673342858792401, 0.2564384629170883, 
0.27615047132568404]
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floating-point. Even better results are observed for targeted 8-bit parameters allowing the network to achieve the 
FP32 baseline (Table 4) across 10 epochs. The 8-bit floating-point variant with 4-bit exponent and 3-bit mantissa 
achieves 95.98% versus 96.18% on FP32. Even better result of 96.15% can be achieved with 3-bit exponent and 
4-bit mantissa. This also gives above 20 percentage points improvement in comparison to our previous result of 
75.89%. It is worth mentioning that starting from this point, an additional increase of exponent and mantissa 

Figure 3.  LeNet exponent values utilization for NN weights per layer (the darker the color the higher the 
utilization).

Figure 4.  LeNet cross-validation accuracy with different exponent and mantissa sizes.
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bit counts is not followed with an improvement of training accuracy which is presented by flat accuracy results 
lines for all exponents above 2 bits.

Similar experiments have been conducted for AlexNet with CIFAR10 and CIFAR100 datasets. The only 
parameterization difference applied in the case of this network was the increase of the exponent offset by one. 
The reason behind this change comes from different exponent utilization derived from the FP32 training. Fig-
ure 5 gives an example of such analysis results based on exponent values utilization for AlexNet weights with 
CIFAR10 dataset. The selected asymmetric exponent’s range from −10 to −3 covers most exponent values used 
for weights during the training. The utilization of exponent values below −10 can be also observed, but they 
represent only a small percentage of parameters used per each layer. It is also worth remarking that the wider the 
range of exponent values is used, the more exponent bits will be required to maintain accuracy of the network, 
hence bigger topologies may require more bits for exponent representation.

The CIFAR10 cross-validation results depicted in Fig. 6 show that the proposed technique allows to train a 
deeper convolutional network such as AlexNet with no accuracy degradation on 8-bit floating point. Same as with 
the LeNet, the 2-bit exponent is not enough to train the network. It can be observed that for AlexNet the results 
convergence is achieved for slightly higher bit counts. The 5-bit floating-point with 3-bit exponent and 1-bit 
mantissa is enough to achieve a tolerable result of 61.09%. Starting from a 3-bit exponent and 3-bit mantissa, the 
accuracy finally tends to follow the FP32 baseline of 74.39% (Table 4), although it is vivid that results fluctuation 

Table 4.  Neural networks 8-bit floating-point accuracy across different variants of exponent and mantissa 
sizes. Significant values are in bold.

8-bit floating-point variant LeNet AlexNet ResNet-18

Sign bit count Exponent bit count Mantissa bit count MNIST CIFAR10 CIFAR100 CIFAR10 CIFAR100

1 1 6 54.84% 22.23% 1.98% 8.02% 0.91%

1 2 5 77.81% 62.93% 1.46% 9.97% 1.02%

1 3 4 96.15% 72.94% 38.59% 76.48% 1.17%

1 4 3 95.98% 74.50% 38.69% 76.01% 40.21%

1 5 2 95.78% 71.10% 36.02% 62.85% 42.62%

1 6 1 94.66% 66.11% 30.00% 63.39% 39.68%

32-bit baseline 96.81% 74.39% 38.93% 77.08% 39.54%

Figure 5.  AlexNet (CIFAR10) exponent values utilization for NN weights per layer (the darker the color the 
higher the utilization).
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over increased bit counts is higher than in case of LeNet. Targeted 8-bit floating-point scenario with 4-bit expo-
nent and 3-bit mantissa slightly outperforms the FP32 baseline with 74.5% accuracy over 10 epochs training.

The next cross-validation experiment involved AlexNet with CIFAR100 dataset. The results of this verifica-
tion are presented in Fig. 7. Same as with CIFAR10 the proposed method allows for training the network on 
8-bit floating-point with no significant degradation in comparison to the FP32 38.93% baseline (Table 4). The 
limited network achieved 38.69% accuracy. In both scenarios, the networks have been trained over 10 epochs. 
Interestingly, the more complicated classification task stated in this experiment resulted in poor results for 5-bit 
floating-point. In case of such a limitation, it was not possible to train the network. First tolerable results are 
achieved for 6-bit floating-point with 33.98% accuracy.

Finally, the same framework parametrization as with AlexNet has been applied to ResNet-18. Although 
the network was unable to converge with as low as 5-bit floating-point variables, satisfactory results have been 

Figure 6.  AlexNet cross-validation accuracy with different exponent and mantissa sizes (CIFAR10).

Figure 7.  AlexNet cross-validation accuracy with different exponent and mantissa sizes (CIFAR100).
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observed for 8-bit floating-point on CIFAR10. The baseline 32-bit accuracy of 77.08% (Table 4) was not matched 
by the limitation framework for 10 epochs giving 76.01% 8-bit counterpart with 4-bit exponent. However, the 
result can be improved to 76.49% by using 3-bit exponent and 4-bit mantissa type. The limited network was able 
to perform on similar accuracy over a standard training path of 200 epochs. In such a case the 4-bit exponent 
results gave a small advantage for 32-bit variables with accuracy of 94.99% vs 94.58%. Similar scenario has been 
observed for the CIFAR100 dataset. Accuracy on 10 epochs achieved 39.54% for 32-bit and 40.21% for 8-bit 
variables with a small advantage for limited network. In the case of 200 epochs, the limited network achieved 
satisfactory 8-bit accuracy of 74.25% in comparison to the 32-bit baseline of 75.08%.

The training convergence is an especially important aspect when it comes to NN training with limited preci-
sion. The longer utilization of a training device may hinder expected power and memory savings. Hence, it is 
crucial that the proposed method does not negatively affect the time of the training convergence in comparison 
to regular 32-bit trainings. Figure 8 gives an example of network convergence between the proposed 8-bit limita-
tion method and IEEE754 32-bit floating-point. The chart is based on the results achieved for ResNet-18 with 
CIFAR10 dataset. Additional data regarding network convergence for different epoch checkpoints can be found 
in the results section in Table 5.

As presented in Fig. 8 the accuracy of the proposed method with 8-bit floating point closely follows the one 
achieved for the 32-bit. It can be observed that the stabilization of accuracy occurs at similar training stages in 
both cases around the 120th epoch. The initial training, up to 60th epoch, shows a much higher fluctuation of 
results but it remains in similar boundaries for both 32-bit and 8-bit scenarios. The steep changes observed in 
the chart can be attributed to learning rate scheduler’s milestones which were set to 60, 120, and 160 epochs. 
Interestingly, the IEEE-754 32-bit based training shows a much more significant reaction for the first learning 
rate milestone with a staggering decrease of accuracy below 15 percentage points. The 200th epoch’s accuracy 
difference does not exceed 0.5 percentage point.

The experiments presented in this section confirm that the proposed method allows for training convolutional 
neural networks with 8-bit or even lower floating-point parameters. In the case of a variety of network topologies 
and available datasets, the method’s hyper-parameterization is a crucial way for achieving satisfactory results. 
The presented technique aims to establish a consistent precision limitation method for neural network training 
with low bit count variables. The method’s applicability to other NN topologies may differ per chosen architecture 
and its size. A similar case should be considered in the case of datasets with different size, shape, and complexity. 
Hence, it is crucial to leverage the mechanisms provided by the proposed method as hyper-parameterization dur-
ing the training stage. This includes the exponent bit count, its asymmetric representation and offset. Although 
presented experiments, leveraged constant values of the mentioned parameters during a single training, they can 
be dynamically adjusted to specific parameter’s types, layers or even training epochs. Such an approach provides 
a wide range of method’s enhancements including mixed-precision training procedures for larger neural topolo-
gies. The authors state that such a dynamic approach to modification of the proposed technique during training 
and its additional calibration gives a big margin for further improvements of the presented results.

Figure 8.  Comparison of ResNet-18 (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point trainings 
convergence.
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Results
As shown in the experiments section, the refined method of parameters limitation allowed for training CNNs 
without significant accuracy degradation for 8-bit floating-point parameters. Additionally, it was possible to train 
LeNet and AlexNet networks with MNIST and CIFAR10 datasets with as low as 5-bit floating-point. Our results 
show that proper selection of a bit count split between exponent and mantissa parts of floating-point type has a 
significant impact on final network’s accuracy. As previously mentioned, it can be observed that commonly used 
4-bit exponent and 3-bit mantissa floating-point type is not always the optimal solution for limited precision 

Table 5.  Summary of related study papers results including the proposed NN limitation method.

Paper Variable type Technique Dataset Topology Baseline accuracy Accuracy after limitation

Lee (2020) 14
Mix of:
16-bit FP
8-bit FP

Fine-Grained Mixed Precision
CIFAR10

ResNet-18

72.48%
(16-bit FP)

72.45%
(up to 94% of 8-bit FP)

ImageNet 68.25%
(16-bit FP)

69.11%
(up to 90% of 8-bit FP)

Kim et al. (2020) 40

Subset of results presented
Mix of:
7-bit FP
9-bit FP

Precision-controlled memory 
system (PCM) CIFAR10 ResNet-200 69%

(16-bit FP)
 ~ 69%
(9-bit FP)

Rios et al. (2021) 41
Mix of:
32-bit FP
16-bit Brain FP

Mixed precision training ImageNet

AlexNet 60.79%
(32-bit FP)

60.32%
(BF16FMA 94.60%)

Inception 74.01%
(32-bit FP)

72.80%
(BF16FMA 95.55%)

ResNet-50 75.69%
(32-bit FP)

92.70%
(BF16FMA 96.40%)

Fu et al. (2021) 42

Subset of results presented
Dynamic range:
From 2-bit FP to 32-bit FP

Cycling Precision Training 
(CPT)
Last two stages trained with 
full precision

CIFAR10
ResNet-74 91.15%

(SBM 6 bit)
92.4%
(CPT 3-t o 6-bit, grad 6 bit)

MobileNetV2 91.56%
(SBM 6 bit)

91.81%
(CPT 4- to 6-bit, grad 6 bit)

CIFAR100
ResNet-74 70.31%

(SBM 6 bit)
70.83%
(CPT 3- to 6-bit, grad 6 bit)

MobileNetV2 72.31%
(SBM 6 bit)

73.18%
(CPT 4– to 6-bit, grad 6 bit)

ImageNet ResNet-18 69.76%
(32-bit FP)

70.67%
(CPT: 8- to 32-bit)

Park et al. (2021) 15 8-bit FP

Floating point with shared 
exponent
bias
multiple-way fuse multiply–
add trees

ImageNet ResNet-18 Not defined 69%
(8-bit FP + SEB)

Junaid et al. (2022) 16

Mix of:
32-bit FP
24-bit FP
16-bit FP

Mixed precision training MNIST Custom CNN 96%
(32-bit FP) 93.32%

Yu et al. (2022) 43

Subset of results presented
Dynamic range:
From 3-bit FP to 16-bit FP

Learnable Dynamic Precision 
(LDP)

CIFAR10

ResNet-18

91.86%
(SBM 8 bit)

92.08%
(LDP 3- to 8- bit, grad 8 bit)

CIFAR100 67.24%
(SBM 8 bit)

67.88%
(LDP 3- to 8- bit, grad 8 bit)

ImageNet 69.60%
(SBM 8 bit)

69.62%
(LDP 4- to 8- bit, grad 8 bit)

Our previous proposal. 
(Pietrołaj and Blok 2022) 35

8-bit FP
12-bit FP
14-bit FP

Asymmetric exponent
No additional rounding MNIST LeNet 96.04%

75.89%
(8-bit FP)
95.01%
(12-bit FP)
97.13%
(14-bit FP)

Current proposal
8-bit FP
(4-bit exponent and 3-bit 
mantissa)

Asymmetric exponent
Exponent offset
Stochastic rounding

MNIST LeNet 96.18% (10 epochs)
98.35% (30 epochs)

8-bit FP:
95.98% (10 epochs)
98.38% (30 epochs)

CIFAR10

AlexNet 74.39% (10 epochs)
79.53% (30 epochs)

8-bit FP:
74.5% (10 epochs)
80.06% (30 epochs)

ResNet-18
77.08% (10 epochs)
83.41 (30 epochs)
94.99% (200 epochs)

8-bit FP:
76.01% (10 epochs)
82.22% (30 epochs)
94.58% (200 epochs)

CIFAR100

AlexNet 38.93% (10 epochs)
51.82% (30 epochs)

8-bit FP:
38.69% (10 epochs)
51.91% (30 epochs)

ResNet-18
39.54% (10 epochs)
51.96% (30 epochs)
75.08% (200 epochs)

8-bit FP:
40.21% (10 epochs)
55.16% (30 epochs)
74.25% (200 epochs)
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network training and its performance may vary depending on chosen topology or dataset. Table 4 present the 
accuracy achieved for investigated networks with multiple variants of 8-bit floating-point bits distribution over 
10 epochs. In each case, besides 32-bit baseline, the previously presented limitation method has been applied.

Table 5 gives a detailed overview of techniques presented in the related work section in comparison to the 
proposed NN limitation method. The summary gives a description of each solution along with datasets and 
topologies used during the evaluation phase. Moreover, the type of selected variables is highlighted as one of 
the major factors in NN limitation. To ensure that the comparison was unbiased stop-loss mechanism was not 
applied. Results were presented for 10 and 30 epochs variants to show that no significant degradation occurs 
along with the later stages of CNNs training. In the case of ResNet-18 additional case of 200 epochs is presented 
to allow full convergence of the tested topology. Unfortunately, direct comparison of the methods is difficult due 
to different training hyper-parameters, topologies, datasets, or even numbers of epochs used during training. 
In many cases such information is partially missing. Hence, the authors decided to present the accuracy results 
for each experiment in comparison to the baseline provided in the specific papers. In combination with various 
variable types, such an approach gives a general overview on the performance of the presented works.

The proposed limitation method implies substantial resource savings. It is important to remark that it does 
not enforce additional floating-point operations as both neural network topology architecture and number of 
training epochs remain unchanged. Taking this into consideration, shortening regular FP32 to 8-bit representa-
tion requires up to 4 times less storage capacity and runtime memory. In addition, using 8-bit floating-point 
multiplications may reduce power consumption to less than a third of a regular 32-bit based  unit48. Such savings 
are especially important in the case of low power edge devices where both power and memory consumption 
are the main constraints. Although power measurements are highly hardware dependent and are difficult to be 
precisely calculated in the simulated environment, Fig. 9 gives an example of energy required per floating-point 
operation across different variable bit-widths based on the research of Tong et al. (2000)48.

Based on the presented research, it can be stated that there is a clear correlation between the operands bit-
width and energy consumed by a single floating-point operation. This is why limiting the bit count of floating-
point variables, which is the root of our method, can be treated as one of efficient techniques of energy savings 
and the reduction of computational complexity.

Future work
Taking into consideration a variety of neural network designs and hardware accelerators for flexible floating-
point bit counts, moving the presented method from general purpose hardware simulation to custom designs 
is an obvious continuation of this research. Such an approach would not only allow to thoroughly validate the 
presented method, but also precisely measure both power and latency savings while using a limited NN model.

Automatic parameterization of the proposed method is another focus of the presented research. The authors 
work on a profiler implementation that would monitor regular FP32 training and gather statistics about exponent 
utilization for a selected NN. Based on such information the mechanism could propose the optimal per-layer 
or per-epoch parameterization for the limitation module. This feature should also allow for much more robust 
generalization of the presented limitation method across various neural network architectures and datasets.

The efficient rounding hardware implementation is another aspect of the research that is worth pursuing. 
Although stochastic rounding is an effective and well tested method, additional effort should be put into finding 
more power and hardware friendly techniques that can be easily introduced to low power devices.

Figure 9.  Performance of the digital multiplier across selected bit-widths48.
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Conclusion
Training neural network models on low-power edge devices is mainly constrained by limited memory and 
power resources. Turning towards limited precision floating-point calculations creates a promising area for low-
resource NN training. This paper touches on this issue by proposing an effective method of training convolutional 
neural networks as LeNet, AlexNet, and ResNet-18 with limited floating-point precision on MNIST and CIFAR 
datasets. A deeply refined asymmetric exponent method is presented with improvements like exponent offset, 
denormalization utilization, and stochastic rounding. The limited CNNs achieve on par results with the 32-bit 
floating-point baseline for proposed 8-bit floating-point parameters. Such an approach would allow for up to 4 
times memory savings and potentially above 60% power consumption reduction with custom designed hardware.

Data availability
The datasets used for experiments are publicly available. MNIST: http:// yann. lecun. com/ exdb/ mnist/. CIFAR10 
and CIFAR 100: https:// www. cs. toron to. edu/ ~kriz/ cifar. html.
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