
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports

Resource constrained neural
network training
Mariusz Pietrołaj * & Marek Blok

Modern applications of neural-network-based AI solutions tend to move from datacenter backends
to low-power edge devices. Environmental, computational, and power constraints are inevitable
consequences of such a shift. Limiting the bit count of neural network parameters proved to be
a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is
understandable that a similar approach is gaining momentum in the field of neural network training.
In the face of growing complexity of neural network architectures, reducing resources required for
preparation of new models would not only improve cost efficiency but also enable a variety of new
AI applications on modern personal devices. In this work, we present a deep refinement of neural
network parameters limitation with the use of the asymmetric exponent method. In addition to the
previous research, we study new techniques of floating-point variables limitation, representation, and
rounding. Moreover, by leveraging exponent offset, we present floating-point precision adjustments
without an increase in variables’ bit count. The proposed method allowed us to train LeNet, AlexNet
and ResNet-18 convolutional neural networks with a custom 8-bit floating-point representation
achieving minimal or no results degradation in comparison to baseline 32-bit floating-point variables.

In recent years we saw a significant growth of neural network (NN) usage in various domains including computer
security, business, agriculture, healthcare, finance, or military. The use cases focus on approximation of complex
algorithms, computer vision, speech recognition, data classification, and many more1. Although novel applica-
tions of NN are limited only by researchers’ creativity, there are strict hardware requirements when it comes to
both training and inference of NN models2. Most of the globally available general-purpose hardware leverages
32-bit single-precision IEEE 754 floating-point (FP32) format for calculations requiring a large dynamic range3.
The problem lies behind FP32 computations that take a significant part in overall core energy consumption,
including operations and moving operands between data memory and registers4. The majority of neural net-
work designs heavily depend on a large number of FP32 multiplications resulting in high power and memory
requirements. Hence, there is debate about deep learning with relation to growing energy consumption and its
influence on carbon emission5,6.

Multiple effective methods of NN inference optimization have been already proposed. Various techniques
such as pruning, quantization, or dynamic parameters limitation enable faster and more energy efficient infer-
ence, also on edge devices7–10. Hardware related research goes on par with algorithmic advancements. There are
both experimental and production devices available in the form of neural network accelerators or co-processors
such as DianNao, Intel MovidiusX, or Google TPU Edge11–13. Even though the aspect of inference has been well
covered by multiple production-ready frameworks and hardware architectures, resource constrained NN train-
ing is still an open issue14–16.

Training of a modern, deep neural network requires significant computational resources and a large amount
of input data. Therefore, powerful computational units need to be utilized to finish such a process in a reasonable
 time2. Graphical Processing Units (GPU) are commonly used for this purpose, but such an approach comes at
the cost of the hardware and consumed power3. Limiting the time and resources required for NN training would
allow for shortening time-to-product for many algorithms. Moreover, it would enable online training of specific
models on edge devices without resource-expensive re-training and deployment. Adjusting the model on the
device would allow limiting resource-consuming client–server communication and externally triggered model
 updates17. This is especially important in the case of privacy sensitive applications, where storing personal data
outside of a device may not only undermine customers’ trust but also violate legal regulations18.

The continuously growing size of NN models and the high number of complex multiplications, required for
both forward and backward passes, is the main root cause behind resource demanding NN training process19.
Although due to a proper quantization, inference can often use fixed-point parameters to provide sufficient
results, there are several studies showing that such an approach in the case of NN training might be difficult

OPEN

Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdańsk, Poland.
*email: mariusz.pietrolaj@pg.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-52356-1&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

for variables below 12 bits20–23. Recent findings show that limiting the bit count of FP32 parameters tends to be
the right path for improving power efficiency of modern NN24,25. Besides removing the least significant bits of
the variables’ exponent and mantissa, researchers tend to propose mixed precision networks and sophisticated
rounding techniques in order to avoid accuracy degradation26–29. In the result, reducing both memory and
computational power required by multiplication operations can significantly increase the applicability of NN
training to a broader number of devices. It has to be mentioned that major companies in the business as Nvidia
or IBM already focus on low- and mixed-precision hardware for neural network training30,31. Additionally, there
is growing interest in the hardware enabling calculations on flexible bit count parameters which is required for
productization of many of the recently proposed algorithms32–34.

In our previous research we have shown that limiting floating-point parameters along with changing its
bit-level representation allows for achieving accuracy close to FP32 baseline35. Based on this initial idea, the
presented work provides an original contribution in terms of analysis of exponent values utilization during
convolutional neural network training. Additionally, a new floating-point format has been proposed, including
a custom approach to exponent range representation. A new method focusing on low-precision floating-point
arithmetic for NN training has been presented combining techniques such as asymmetric exponent, stochastic
rounding, and denormalization of low-precision variables. Moreover, extensive experiments on the proposed
method’s impact on the selected NN architectures’ training accuracy have been conducted, proving the method’s
achievements. Our refined method shows that usage of limited floating-point value with asymmetric exponent,
exponent offset, and stochastic rounding techniques enables efficient convolutional neural network training
with a custom 8-bit floating-point.

This paper is organized in the following way, in the next section, related work and recent findings in terms of
neural network training with limited precision are presented. Sections three and four give a detailed overview
of limitation methods and experiments conducted during our research. In the fifth section, we present a sum-
mary of accuracy achieved for chosen convolutional networks along with a comprehensive results overview of
the previously described papers. The ending sections combine the conclusions drawn from our work and future
research directions.

Related work
NN training optimization is still a vital subject of research as presented in our previous study35. This time, in
order to further investigate the propositions from the recent work, we focus solely on findings published since
2020. The experiments reviewed in this section show intensified focus on NN optimization by precision limi-
tation and modification of floating-point representation. There is a growing number of proposals leveraging
mixed precision for limitation of inference resource requirements, combining in-training36–39 and post-training
 techniques40. More importantly, it opens additional research paths for power efficient neural network training.

In research towards energy-efficient neural network training Lee (2020)14 proposes a DNN training method
called fine-grained mixed precision (FGMP). The technique is based on using both FP8 and FP16 in dynamically
calculated ratio during the NN training in order to limit power requirements while maintaining the network’s
accuracy. According to the author, the external memory accesses have been reduced by 38.9% for ResNet-18
training. In addition, a deep learning neural processing unit (LNPU) is proposed, allowing for doubling energy
efficiency. In the case of ResNet-18, the method achieves FP16 levels of accuracy for both CIFAR10 and Ima-
geNet datasets.

Along with the growing number of dynamic precision training algorithms, there is a visible demand for
hardware architectures supporting such use cases. Precision-controlled memory system (PCM) proposed by Kim
et al. (2020)40 focuses on reducing power requirements while training NN with limited parameters bit counts.
Their work shows that it is possible to achieve FP32 accuracy of ResNet-20 on CIFAR100 with 34% lower energy
consumption and 20% speed up in comparison to regular GPU architectures.

Another approach to mixed precision NN training is depicted by Rios et al. (2021)41. The method combines
16- and 32-bit arithmetic, where Brain Floating Point based half-precision stands for up to 96.4% of the compu-
tations. Experiments on AlexNet, Inception, and ResNet-50 showed accuracy results close to the FP32 baseline.

Fu et al. (2021)42 propose Cyclic Precision Training (CPT) which explores the idea of increasing variables’ bit
count along training iterations. The authors state that the precision of NN parameters can be treated similarly
to learning rate, its adjustment allows a network to generalize or converge depending on the bit count used.
The method has been validated across multiple topologies such as ResNet, MoblieNet, LSTM, and Transformer
achieving accuracies on par with FP32 implementations. A slightly different view on this matter is proposed by
Yu et al. (2022)43. Their Learnable Dynamic Precision (LDP) framework uses additional layer-wise parameters
for learning the optimal precision. The results show improvement in comparison to SBM44 or CPT42 techniques
based on various ResNet models.

Park et al. (2022)15 present another approach to limited precision training with the use of 8-bit floating point
with a shared exponent bias (FP8-SEB). The method also includes multiple-way fuse multiply–add (FMA) trees in
hardware implementation. FP8-SEB consists of a tensor with FP8 values where 1 bit is assigned to sign, 4 to expo-
nent, and 3 to mantissa. The exponent is biased differently for each tensor based on its dynamic range. According
to the authors, the overhead of using separate biasing is negligible. Training results verified on ResNet-18 and
ImageNet dataset achieve 69% accuracy. Moreover, the authors state that their hardware proposal requires 78.1
times lower energy than standard GPUs.

The architecture proposed by Junaid et al. (2022)16 leverages a mixed precision training approach, incorpo-
rating 32-, 24-, and 16-bits floating-point parameters along with the hardware accelerator engine. The solution
includes a custom floating-point representation proposal and has been verified on a CNN with MNIST dataset

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

achieving 93.32% accuracy versus 96% FP32 baseline. According to the authors, their mixed precision accelerator
engine limits energy consumption by 3.91 times in comparison to FP32 architecture.

As presented in multiple cases14,16,40–43, novel methods focus on a static or dynamic mix of parameters with
varying bit count. Although there are studies on hardware supporting such use cases, this approach provides an
additional overhead on the design itself33,45. Our method also includes the ability of mixed precision applica-
tion during NN training but does not enforce multiple bit count changes. In a similar fashion to FP8-SEB15, in
our case, such functionality is achieved with the exponent offset method presented in the following chapter.
Moreover, focusing on an optimal bit allocation to exponent and mantissa parts of a limited floating-point type
is an important matter. In this work we investigate a full range of exponent and mantissa bit count combinations,
including the previously mentioned variant with 4-bit exponent and 3-bit mantissa as its performance may vary
per selected network architecture or training dataset.

Limitation method
As already mentioned, in our research we have focused on refining the previously presented method of neural
network training with asymmetric exponent35. The technique allowed us to train LeNet CNN without accuracy
degradation on 12-bit floating point. The limitation assumed shortening FP32 exponent and mantissa to a given
limited bit count. Instead of using a regular IEEE 754 exponent format, the asymmetric method assigns all bits
to represent negative exponent values. In the case of all presented experiments, a general-purpose hardware has
been utilized without any application of specific neural accelerators. Based on trainings conducted by the authors,
even a configuration combining of Intel Core i7-4770, 32 GB 1600 MHz DDR3 RAM and GeForce GTX 1080
TI 11 GB is sufficient for results reproduction. Nevertheless, as most of available GPUs with CUDA capabilities
should suffice, it is advised to use a more powerful hardware for NN training speed up. All calculations have been
executed with software level limitation. All parameters and intermediate values were stored and calculated using
32-bit floating-point. The limitation to a given bit count was done after every calculation stage21.

In the current approach we provide a significant improvement of the previously proposed method, resulting
in FP32 accuracy levels for LeNet, AlexNet, and ResNet-18 networks with 8-bit floating-point values. The new
method includes:

• An additional offset of the asymmetric exponent.
• Introduction of stochastic rounding technique during the limitation process.
• Utilization of denormalized values for a limited floating-point type.

Figure 1 gives a general overview of the refined limitation method. The diagram presents the approach used
in our experiments but does not include all available parameterization possibilities. The presented limitation
method has been implemented with the use of Python 3.9 programming language and PyTorch 1.10 machine
learning framework. Additionally, it leveraged cudatoolkit 10.2 and torchvision 0.11.2.

Offset of the asymmetric exponent
Based on our previous study, we introduced the asymmetric exponent method35. It was an answer for the low
utilization of positive exponent values represented by a regular IEEE 754 representation during NN training.
Such an approach allowed for limiting the bit count of FP32 without losing the commonly used dynamic range of
floating-point parameters for a particular CNN. During our work, we discovered that selecting a specific range of
negative values represented by the exponent improves the overall accuracy and training behavior of the network.
Hence, applying an offset to an asymmetric exponent can be treated as an additional hyperparameter during
the training process. Table 1 presents a comparison of 8-bit floating point variables with regular, asymmetric,

Figure 1. Overview of the proposed limitation method.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

and asymmetric with an offset exponent. The detailed format which assigns 1 bit to sign, 3 to exponent, and 4
to mantissa is presented in Fig. 2.

Introduction of stochastic rounding
A variety of new NN training studies include rounding techniques in their implementation. One of the commonly
used methods is stochastic rounding which can be summarized by the following equation.

Alternatively, the following version of Eq. (1) can be considered

which emphasize HW design efficiency improvement relying on the possibility of using random bit stream
generator for generation of binary representation of stochastic parameter u.

In general, this rounding technique maps a number to the next smaller or larger value based on its distance
between them. The smaller the distance, the higher probability of rounding to a particular value. The expected
error of the stochastic rounding is zero, hence it allows to statistically preserve information about values in the
limited NN46. The positive influence of stochastic rounding on NN accuracy has been confirmed by multiple
experiments in case of limitation to both fixed-point and floating-point formats20,47. It is worth highlighting that
besides mentioned benefits, this technique may introduce an additional overhead on the limitation method itself
including NN acceleration hardware designs.

Utilization of denormalized values for a limited floating-point type
In comparison to our previous work an extended approach to FP32 limitation is applied. Similarly as in the case
of the original IEEE-754 standard, the denormalization range is established for a proposed limited floating-
point type. Such approach provides improved utilization of available values range by additional representation
of numbers that are close to zero. This mechanism is provided at the expense of the significant mantissa’s bits
including interpretation of its hidden bit as 0. The denormalization feature for limited floating-point type can
be simulated at the software level by simple bit shift operations. By usage of right bit shift, the targeted value
is divided by 2 as long as there is at least one significant bit left in the mantissa’s representation. Such a limited
value can then again be translated to a normalized floating-point representation with left bit shift operations and
a proper exponent’s value adjustments.

Although the presented work mainly focuses on 8-bit parameters, such variables should not be treated as the
final target of floating-point limitation. Nevertheless, selecting an appropriate minimal bit count or floating-
point type representation might be difficult in the case of a variety of available NN topologies. Taking this into
consideration, the proposed method and its experimentation framework treat these limitation factors as a part
of the model’s hyper-parameterization. The assumption is that these characteristics can be dynamically adjusted
during succeeding training epochs, which is often the case in recent NN limitation studies42,43. An additional
advantage of this proposal is the possible parameterization of the exponent offset, which can also be dynamically
modified during the training. Such an approach allows for changing the dynamic range of a limited floating-point
parameter without affecting its bit count definition. The main advantage behind fixed bit count in the limita-
tion to a targeted format is a simplification of future requirements for software algorithms or hardware designs.

(1)r(x) = ⌊x⌋ + p,where p =

{

0 with probability : 1− (x − ⌊x⌋)
1 with probability : x − ⌊x⌋

and x is in rational numbers(Q)

(2)r(x) = ⌊x + u⌋, where u ∈ [0, 1)with uniform distribution

Table 1. Comparison of 3-bit exponent representations and their impact on 8-bit floating-point variable
range.

Type 3-bit exponent value range Full 8-bit variable range (4-bit mantissa)

Regular exponent [−2, 3] ± [0.25, 15.5]

Regular exponent (no bits reserved for special values) [−3, 4] ± [0.125, 31.0]

Asymmetric exponent [−7, 0] ± [0.0078125, 1.9375]

Asymmetric exponent with offset set to 2 [−9, −2] ± [0.001953125, 0.484375]

Figure 2. 8-bit floating point value with 1-bit sign, 3-bit exponent, and 4-bit mantissa.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

Conducted experiments
The proposed limitation method has been verified on three well-known neural network architectures, LeNet,
AlexNet, and ResNet. The selection of these topologies was dictated by three main factors. The first one is easy
reproducibility and comparison of our experiments’ results due to the popularity of these neural networks. The
next one is the less demanding computational complexity of such CNN models, in comparison to much deeper
networks, which allows for robust simulation-based experiments on general purpose hardware across all pos-
sible floating-point bit count variants in a reasonable time. Finally, many of new neural networks that aim for
specific use cases are not as deep in their design, especially if power efficiency or embedding the model inside
the chip’s memory is one of the goals. The selection of training data has been done based on similar arguments.
The training leverages three publicly available datasets used for image classification tasks, MNIST, CIFAR10, and
CIFAR100. These datasets provide a solid base for a benchmark comparison between other proposals of precision
limitation algorithms for neural networks. Additionally, their moderate size and complexity allows for robust
experimentation through a broad scope of floating-point format variants. Nevertheless, it is important to remark
that the application of the proposed method is not limited to vision data or the selected datasets.

Table 2 presents hyper-parameters used during the conducted trainings along with their values in order to
enable easy reproducibility of the presented results. It is important to highlight that hyper-parameters related
settings remained identical for limited and regular training scenarios.

Although the MNIST dataset remained unchanged, additional augmentations have been applied to train parts
of CIFAR datasets. Table 3 gives a summary of transformations applied to both CIFAR10 and CIFAR100 across
all conducted trainings along with required parameterization. All mentioned operations leverage implementa-
tion provided by torchvision package.

Asymmetric exponent values stored in limited floating point are additionally increased by the exponent offset
that has been determined based on exponent utilization during FP32 baseline training. In the case of LeNet we
have verified that across all network layers, exponent values utilized for the majority of weight parameters are
located in the range from −9 to −2 (Fig. 3). Nevertheless, some small utilization can be also observed for lower
exponent values, especially in the case of the range from −11 to −10 but as we will demonstrate their omission has
no significant impact on the training accuracy. Based on this analysis for LeNet the selected limitation method
includes an asymmetric exponent with offset set to 2, which covers most of the required exponent values. This
approach has been applied to all weights, biases, and gradients of the neural network.

The training results have been verified across all bit count combinations available in 32-bit floating point,
from 3 to 32 bit. Figure 4 presents a summary of LeNet accuracy over 10 epochs for the full range of exponent
and mantissa bit counts combinations. Our experiments show that 8 bit-floating point variables are sufficient to
train LeNet across the same number of epochs with no accuracy degradation in comparison to FP32 parameters
on MNIST dataset.

Based on Fig. 4 we can see that, similarly to our previous research, 1- or 2-bit exponents are not sufficient
to train a LeNet network without significant accuracy decrease. In the case of such highly limited exponents,
the accuracy fluctuates even with continuously increasing mantissa bit counts. The accuracy starts to rapidly
improve starting from 3-bit exponent and mantissa as low as 1-bit giving satisfactory 94.58% accuracy for a 5-bit

Table 2. Hyper-parameters used during trainings (presented per neural network architecture).

LeNet AlexNet ResNet-18

Optimizer Stochastic Gradient Descent Adam Stochastic Gradient Descent

Learning rate 0.01 0.0001 0.1

Batch size 64 128 128

Loss function Cross entropy Cross entropy Cross entropy

Momentum Not applicable Not applicable 0.9

Weight decay Not applicable Not applicable 5e−4

Learning rate scheduler milestones Not applicable Not applicable 60, 120, 160

Learning rate scheduler gamma Not applicable Not applicable 0.2

Table 3. Transformations applied to CIFAR10 and CIFAR100 datasets.

CIFAR10 CIFAR100

Random Horizontal Flip Probability: 0.5 Probability: 0.5

Random Crop Height: 32, width: 4 size: 32, padding: 4

Random Rotation Not applied Degrees: 15

Normalization
Means (per channel):
[0.485, 0.456, 0.406]
Standard deviations (per channel): [0.229, 0.224, 0.225]

Means (per channel):
[0.5070751592371323, 0.48654887331495095, 0.4409178433670343]
Standard deviations (per channel): [0.2673342858792401, 0.2564384629170883,
0.27615047132568404]

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

floating-point. Even better results are observed for targeted 8-bit parameters allowing the network to achieve the
FP32 baseline (Table 4) across 10 epochs. The 8-bit floating-point variant with 4-bit exponent and 3-bit mantissa
achieves 95.98% versus 96.18% on FP32. Even better result of 96.15% can be achieved with 3-bit exponent and
4-bit mantissa. This also gives above 20 percentage points improvement in comparison to our previous result of
75.89%. It is worth mentioning that starting from this point, an additional increase of exponent and mantissa

Figure 3. LeNet exponent values utilization for NN weights per layer (the darker the color the higher the
utilization).

Figure 4. LeNet cross-validation accuracy with different exponent and mantissa sizes.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

bit counts is not followed with an improvement of training accuracy which is presented by flat accuracy results
lines for all exponents above 2 bits.

Similar experiments have been conducted for AlexNet with CIFAR10 and CIFAR100 datasets. The only
parameterization difference applied in the case of this network was the increase of the exponent offset by one.
The reason behind this change comes from different exponent utilization derived from the FP32 training. Fig-
ure 5 gives an example of such analysis results based on exponent values utilization for AlexNet weights with
CIFAR10 dataset. The selected asymmetric exponent’s range from −10 to −3 covers most exponent values used
for weights during the training. The utilization of exponent values below −10 can be also observed, but they
represent only a small percentage of parameters used per each layer. It is also worth remarking that the wider the
range of exponent values is used, the more exponent bits will be required to maintain accuracy of the network,
hence bigger topologies may require more bits for exponent representation.

The CIFAR10 cross-validation results depicted in Fig. 6 show that the proposed technique allows to train a
deeper convolutional network such as AlexNet with no accuracy degradation on 8-bit floating point. Same as with
the LeNet, the 2-bit exponent is not enough to train the network. It can be observed that for AlexNet the results
convergence is achieved for slightly higher bit counts. The 5-bit floating-point with 3-bit exponent and 1-bit
mantissa is enough to achieve a tolerable result of 61.09%. Starting from a 3-bit exponent and 3-bit mantissa, the
accuracy finally tends to follow the FP32 baseline of 74.39% (Table 4), although it is vivid that results fluctuation

Table 4. Neural networks 8-bit floating-point accuracy across different variants of exponent and mantissa
sizes. Significant values are in bold.

8-bit floating-point variant LeNet AlexNet ResNet-18

Sign bit count Exponent bit count Mantissa bit count MNIST CIFAR10 CIFAR100 CIFAR10 CIFAR100

1 1 6 54.84% 22.23% 1.98% 8.02% 0.91%

1 2 5 77.81% 62.93% 1.46% 9.97% 1.02%

1 3 4 96.15% 72.94% 38.59% 76.48% 1.17%

1 4 3 95.98% 74.50% 38.69% 76.01% 40.21%

1 5 2 95.78% 71.10% 36.02% 62.85% 42.62%

1 6 1 94.66% 66.11% 30.00% 63.39% 39.68%

32-bit baseline 96.81% 74.39% 38.93% 77.08% 39.54%

Figure 5. AlexNet (CIFAR10) exponent values utilization for NN weights per layer (the darker the color the
higher the utilization).

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

over increased bit counts is higher than in case of LeNet. Targeted 8-bit floating-point scenario with 4-bit expo-
nent and 3-bit mantissa slightly outperforms the FP32 baseline with 74.5% accuracy over 10 epochs training.

The next cross-validation experiment involved AlexNet with CIFAR100 dataset. The results of this verifica-
tion are presented in Fig. 7. Same as with CIFAR10 the proposed method allows for training the network on
8-bit floating-point with no significant degradation in comparison to the FP32 38.93% baseline (Table 4). The
limited network achieved 38.69% accuracy. In both scenarios, the networks have been trained over 10 epochs.
Interestingly, the more complicated classification task stated in this experiment resulted in poor results for 5-bit
floating-point. In case of such a limitation, it was not possible to train the network. First tolerable results are
achieved for 6-bit floating-point with 33.98% accuracy.

Finally, the same framework parametrization as with AlexNet has been applied to ResNet-18. Although
the network was unable to converge with as low as 5-bit floating-point variables, satisfactory results have been

Figure 6. AlexNet cross-validation accuracy with different exponent and mantissa sizes (CIFAR10).

Figure 7. AlexNet cross-validation accuracy with different exponent and mantissa sizes (CIFAR100).

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

observed for 8-bit floating-point on CIFAR10. The baseline 32-bit accuracy of 77.08% (Table 4) was not matched
by the limitation framework for 10 epochs giving 76.01% 8-bit counterpart with 4-bit exponent. However, the
result can be improved to 76.49% by using 3-bit exponent and 4-bit mantissa type. The limited network was able
to perform on similar accuracy over a standard training path of 200 epochs. In such a case the 4-bit exponent
results gave a small advantage for 32-bit variables with accuracy of 94.99% vs 94.58%. Similar scenario has been
observed for the CIFAR100 dataset. Accuracy on 10 epochs achieved 39.54% for 32-bit and 40.21% for 8-bit
variables with a small advantage for limited network. In the case of 200 epochs, the limited network achieved
satisfactory 8-bit accuracy of 74.25% in comparison to the 32-bit baseline of 75.08%.

The training convergence is an especially important aspect when it comes to NN training with limited preci-
sion. The longer utilization of a training device may hinder expected power and memory savings. Hence, it is
crucial that the proposed method does not negatively affect the time of the training convergence in comparison
to regular 32-bit trainings. Figure 8 gives an example of network convergence between the proposed 8-bit limita-
tion method and IEEE754 32-bit floating-point. The chart is based on the results achieved for ResNet-18 with
CIFAR10 dataset. Additional data regarding network convergence for different epoch checkpoints can be found
in the results section in Table 5.

As presented in Fig. 8 the accuracy of the proposed method with 8-bit floating point closely follows the one
achieved for the 32-bit. It can be observed that the stabilization of accuracy occurs at similar training stages in
both cases around the 120th epoch. The initial training, up to 60th epoch, shows a much higher fluctuation of
results but it remains in similar boundaries for both 32-bit and 8-bit scenarios. The steep changes observed in
the chart can be attributed to learning rate scheduler’s milestones which were set to 60, 120, and 160 epochs.
Interestingly, the IEEE-754 32-bit based training shows a much more significant reaction for the first learning
rate milestone with a staggering decrease of accuracy below 15 percentage points. The 200th epoch’s accuracy
difference does not exceed 0.5 percentage point.

The experiments presented in this section confirm that the proposed method allows for training convolutional
neural networks with 8-bit or even lower floating-point parameters. In the case of a variety of network topologies
and available datasets, the method’s hyper-parameterization is a crucial way for achieving satisfactory results.
The presented technique aims to establish a consistent precision limitation method for neural network training
with low bit count variables. The method’s applicability to other NN topologies may differ per chosen architecture
and its size. A similar case should be considered in the case of datasets with different size, shape, and complexity.
Hence, it is crucial to leverage the mechanisms provided by the proposed method as hyper-parameterization dur-
ing the training stage. This includes the exponent bit count, its asymmetric representation and offset. Although
presented experiments, leveraged constant values of the mentioned parameters during a single training, they can
be dynamically adjusted to specific parameter’s types, layers or even training epochs. Such an approach provides
a wide range of method’s enhancements including mixed-precision training procedures for larger neural topolo-
gies. The authors state that such a dynamic approach to modification of the proposed technique during training
and its additional calibration gives a big margin for further improvements of the presented results.

Figure 8. Comparison of ResNet-18 (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point trainings
convergence.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

Results
As shown in the experiments section, the refined method of parameters limitation allowed for training CNNs
without significant accuracy degradation for 8-bit floating-point parameters. Additionally, it was possible to train
LeNet and AlexNet networks with MNIST and CIFAR10 datasets with as low as 5-bit floating-point. Our results
show that proper selection of a bit count split between exponent and mantissa parts of floating-point type has a
significant impact on final network’s accuracy. As previously mentioned, it can be observed that commonly used
4-bit exponent and 3-bit mantissa floating-point type is not always the optimal solution for limited precision

Table 5. Summary of related study papers results including the proposed NN limitation method.

Paper Variable type Technique Dataset Topology Baseline accuracy Accuracy after limitation

Lee (2020) 14
Mix of:
16-bit FP
8-bit FP

Fine-Grained Mixed Precision
CIFAR10

ResNet-18

72.48%
(16-bit FP)

72.45%
(up to 94% of 8-bit FP)

ImageNet 68.25%
(16-bit FP)

69.11%
(up to 90% of 8-bit FP)

Kim et al. (2020) 40

Subset of results presented
Mix of:
7-bit FP
9-bit FP

Precision-controlled memory
system (PCM) CIFAR10 ResNet-200 69%

(16-bit FP)
 ~ 69%
(9-bit FP)

Rios et al. (2021) 41
Mix of:
32-bit FP
16-bit Brain FP

Mixed precision training ImageNet

AlexNet 60.79%
(32-bit FP)

60.32%
(BF16FMA 94.60%)

Inception 74.01%
(32-bit FP)

72.80%
(BF16FMA 95.55%)

ResNet-50 75.69%
(32-bit FP)

92.70%
(BF16FMA 96.40%)

Fu et al. (2021) 42

Subset of results presented
Dynamic range:
From 2-bit FP to 32-bit FP

Cycling Precision Training
(CPT)
Last two stages trained with
full precision

CIFAR10
ResNet-74 91.15%

(SBM 6 bit)
92.4%
(CPT 3-t o 6-bit, grad 6 bit)

MobileNetV2 91.56%
(SBM 6 bit)

91.81%
(CPT 4- to 6-bit, grad 6 bit)

CIFAR100
ResNet-74 70.31%

(SBM 6 bit)
70.83%
(CPT 3- to 6-bit, grad 6 bit)

MobileNetV2 72.31%
(SBM 6 bit)

73.18%
(CPT 4– to 6-bit, grad 6 bit)

ImageNet ResNet-18 69.76%
(32-bit FP)

70.67%
(CPT: 8- to 32-bit)

Park et al. (2021) 15 8-bit FP

Floating point with shared
exponent
bias
multiple-way fuse multiply–
add trees

ImageNet ResNet-18 Not defined 69%
(8-bit FP + SEB)

Junaid et al. (2022) 16

Mix of:
32-bit FP
24-bit FP
16-bit FP

Mixed precision training MNIST Custom CNN 96%
(32-bit FP) 93.32%

Yu et al. (2022) 43

Subset of results presented
Dynamic range:
From 3-bit FP to 16-bit FP

Learnable Dynamic Precision
(LDP)

CIFAR10

ResNet-18

91.86%
(SBM 8 bit)

92.08%
(LDP 3- to 8- bit, grad 8 bit)

CIFAR100 67.24%
(SBM 8 bit)

67.88%
(LDP 3- to 8- bit, grad 8 bit)

ImageNet 69.60%
(SBM 8 bit)

69.62%
(LDP 4- to 8- bit, grad 8 bit)

Our previous proposal.
(Pietrołaj and Blok 2022) 35

8-bit FP
12-bit FP
14-bit FP

Asymmetric exponent
No additional rounding MNIST LeNet 96.04%

75.89%
(8-bit FP)
95.01%
(12-bit FP)
97.13%
(14-bit FP)

Current proposal
8-bit FP
(4-bit exponent and 3-bit
mantissa)

Asymmetric exponent
Exponent offset
Stochastic rounding

MNIST LeNet 96.18% (10 epochs)
98.35% (30 epochs)

8-bit FP:
95.98% (10 epochs)
98.38% (30 epochs)

CIFAR10

AlexNet 74.39% (10 epochs)
79.53% (30 epochs)

8-bit FP:
74.5% (10 epochs)
80.06% (30 epochs)

ResNet-18
77.08% (10 epochs)
83.41 (30 epochs)
94.99% (200 epochs)

8-bit FP:
76.01% (10 epochs)
82.22% (30 epochs)
94.58% (200 epochs)

CIFAR100

AlexNet 38.93% (10 epochs)
51.82% (30 epochs)

8-bit FP:
38.69% (10 epochs)
51.91% (30 epochs)

ResNet-18
39.54% (10 epochs)
51.96% (30 epochs)
75.08% (200 epochs)

8-bit FP:
40.21% (10 epochs)
55.16% (30 epochs)
74.25% (200 epochs)

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

network training and its performance may vary depending on chosen topology or dataset. Table 4 present the
accuracy achieved for investigated networks with multiple variants of 8-bit floating-point bits distribution over
10 epochs. In each case, besides 32-bit baseline, the previously presented limitation method has been applied.

Table 5 gives a detailed overview of techniques presented in the related work section in comparison to the
proposed NN limitation method. The summary gives a description of each solution along with datasets and
topologies used during the evaluation phase. Moreover, the type of selected variables is highlighted as one of
the major factors in NN limitation. To ensure that the comparison was unbiased stop-loss mechanism was not
applied. Results were presented for 10 and 30 epochs variants to show that no significant degradation occurs
along with the later stages of CNNs training. In the case of ResNet-18 additional case of 200 epochs is presented
to allow full convergence of the tested topology. Unfortunately, direct comparison of the methods is difficult due
to different training hyper-parameters, topologies, datasets, or even numbers of epochs used during training.
In many cases such information is partially missing. Hence, the authors decided to present the accuracy results
for each experiment in comparison to the baseline provided in the specific papers. In combination with various
variable types, such an approach gives a general overview on the performance of the presented works.

The proposed limitation method implies substantial resource savings. It is important to remark that it does
not enforce additional floating-point operations as both neural network topology architecture and number of
training epochs remain unchanged. Taking this into consideration, shortening regular FP32 to 8-bit representa-
tion requires up to 4 times less storage capacity and runtime memory. In addition, using 8-bit floating-point
multiplications may reduce power consumption to less than a third of a regular 32-bit based unit48. Such savings
are especially important in the case of low power edge devices where both power and memory consumption
are the main constraints. Although power measurements are highly hardware dependent and are difficult to be
precisely calculated in the simulated environment, Fig. 9 gives an example of energy required per floating-point
operation across different variable bit-widths based on the research of Tong et al. (2000)48.

Based on the presented research, it can be stated that there is a clear correlation between the operands bit-
width and energy consumed by a single floating-point operation. This is why limiting the bit count of floating-
point variables, which is the root of our method, can be treated as one of efficient techniques of energy savings
and the reduction of computational complexity.

Future work
Taking into consideration a variety of neural network designs and hardware accelerators for flexible floating-
point bit counts, moving the presented method from general purpose hardware simulation to custom designs
is an obvious continuation of this research. Such an approach would not only allow to thoroughly validate the
presented method, but also precisely measure both power and latency savings while using a limited NN model.

Automatic parameterization of the proposed method is another focus of the presented research. The authors
work on a profiler implementation that would monitor regular FP32 training and gather statistics about exponent
utilization for a selected NN. Based on such information the mechanism could propose the optimal per-layer
or per-epoch parameterization for the limitation module. This feature should also allow for much more robust
generalization of the presented limitation method across various neural network architectures and datasets.

The efficient rounding hardware implementation is another aspect of the research that is worth pursuing.
Although stochastic rounding is an effective and well tested method, additional effort should be put into finding
more power and hardware friendly techniques that can be easily introduced to low power devices.

Figure 9. Performance of the digital multiplier across selected bit-widths48.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

Conclusion
Training neural network models on low-power edge devices is mainly constrained by limited memory and
power resources. Turning towards limited precision floating-point calculations creates a promising area for low-
resource NN training. This paper touches on this issue by proposing an effective method of training convolutional
neural networks as LeNet, AlexNet, and ResNet-18 with limited floating-point precision on MNIST and CIFAR
datasets. A deeply refined asymmetric exponent method is presented with improvements like exponent offset,
denormalization utilization, and stochastic rounding. The limited CNNs achieve on par results with the 32-bit
floating-point baseline for proposed 8-bit floating-point parameters. Such an approach would allow for up to 4
times memory savings and potentially above 60% power consumption reduction with custom designed hardware.

Data availability
The datasets used for experiments are publicly available. MNIST: http:// yann. lecun. com/ exdb/ mnist/. CIFAR10
and CIFAR 100: https:// www. cs. toron to. edu/ ~kriz/ cifar. html.

Received: 20 April 2023; Accepted: 17 January 2024

References
 1. Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4(11), e00938. https:// doi. org/ 10.

1016/j. heliy on. 2018. e00938 (2018).
 2. LeCun, Y. 1.1 Deep learning hardware: Past, present, and future. IEEE International Solid-State Circuits Conference (ISSCC), 12–19.

IEEE. https:// doi. org/ 10. 1109/ ISSCC. 2019. 86623 96 (2019).
 3. Kahan, W. IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the Status of IEEE 754 (94720-1776), 11 (1996).
 4. Mach, S., Rossi, D., Tagliavini, G., Marongiu, A., & Benini, L. A transprecision floating-point architecture for energy-efficient

embedded computing. IEEE International Symposium on Circuits and Systems (ISCAS), 1–5. IEEE. https:// doi. org/ 10. 1109/ ISCAS.
2018. 83518 16 (2018)

 5. Strubell, E., Ganesh, A., & McCallum, A. Energy and policy considerations for deep learning in NLP. https:// doi. org/ 10. 48550/
arXiv. 1906. 02243 (2019).

 6. Hsueh, G. Carbon footprint of machine learning algorithms. https:// digit alcom mons. bard. edu/ senpr oj_ s2020/ 296/ (2020)
 7. Liu, F. et al. Improving neural network efficiency via post-training quantization with adaptive floating-point. Proceedings of the

IEEE/CVF International Conference on Computer Vision, 5281–5290. https:// doi. org/ 10. 1109/ ICCV4 8922. 2021. 00523 (2021)
 8. Dai, S. et al. Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference. Proc. Mach. Learn.

Syst. 3, 873–884. https:// doi. org/ 10. 48550/ arXiv. 2102. 04503 (2021).
 9. David, R. et al. TensorFlow lite micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 3, 800–811. https://

doi. org/ 10. 48550/ arXiv. 2010. 08678 (2021).
 10. Nakahara, Y., Kiyama, M., Amagasaki, M. & Iida, M. Relationship between recognition accuracy and numerical precision in

convolutional neural network models. IEICE Trans. Inf. Syst. 103(12), 2528–2529. https:// doi. org/ 10. 1587/ trans inf. 2020P AL0002
(2020).

 11. Reuther, A. et al. Survey of machine learning accelerators. IEEE High Performance Extreme Computing Conference (HPEC), 1–12.
IEEE. https:// doi. org/ 10. 1109/ HPEC4 3674. 2020. 92861 49 (2020)

 12. Li, Z., Wang, Y., Zhi, T. & Chen, T. A survey of neural network accelerators. Front. Comput. Sci. 11(5), 746–761. https:// doi. org/
10. 1007/ s11704- 016- 6159-1 (2017).

 13. Hickmann, B. et al. Intel nervana neural network processor-t (nnp-t) fused floating point many-term dot product. IEEE 27th
Symposium on Computer Arithmetic (ARITH), 133–136. IEEE. https:// doi. org/ 10. 1109/ ARITH 48897. 2020. 00029 (2020)

 14. Lee, J. Energy-efficient deep-neural-network training processor with fine-grained mixed precision. http:// hdl. handle. net/ 10203/
284457 (2020).

 15. Park, J., Lee, S. & Jeon, D. A neural network training processor with 8-bit shared exponent bias floating point and multiple-way
fused multiply-add trees. IEEE J. Solid-State Circuits https:// doi. org/ 10. 1109/ JSSC. 2021. 31036 03 (2021).

 16. Junaid, M., Arslan, S., Lee, T. & Kim, H. Optimal architecture of floating-point arithmetic for neural network training processors.
Sensors 22(3), 1230. https:// doi. org/ 10. 3390/ s2203 1230 (2022).

 17. Konečný, J. et al. Federated learning: Strategies for improving communication efficiency. https:// doi. org/ 10. 48550/ arXiv. 1610.
05492 (2016)

 18. Osia, S. A. et al. A hybrid deep learning architecture for privacy-preserving mobile analytics. IEEE Internet Things J. 7(5), 4505–
4518. https:// doi. org/ 10. 1109/ JIOT. 2020. 29677 34 (2020).

 19. Sze, V., Chen, Y. H., Yang, T. J. & Emer, J. S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 105(12),
2295–2329. https:// doi. org/ 10. 1109/ JPROC. 2017. 27617 40 (2017).

 20. Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. Deep learning with limited numerical precision. In International
Conference on Machine Learning, 1737–1746. PMLR. https:// doi. org/ 10. 48550/ arXiv. 1502. 02551 (2015).

 21. Ortiz, M., Cristal, A., Ayguadé, E., & Casas, M. Low-precision floating-point schemes for neural network training. https:// doi. org/
10. 48550/ arXiv. 1804. 05267 (2018).

 22. Na, T., & Mukhopadhyay, S. Speeding up convolutional neural network training with dynamic precision scaling and flexible
multiplier-accumulator. International Symposium on Low Power Electronics and Design, 58–63. https:// doi. org/ 10. 1145/ 29345 83.
29346 25 (2016)

 23. Taras, I., & Stuart, D. M. Quantization error as a metric for dynamic precision scaling in neural net training. https:// doi. org/ 10.
48550/ arXiv. 1801. 08621 (2018)

 24. Barrois, B., & Sentieys, O. Customizing fixed-point and floating-point arithmetic—a case study in k-means clustering. In 2017
IEEE International Workshop on Signal Processing Systems (SiPS), 1–6. IEEE. https:// doi. org/ 10. 1109/ SiPS. 2017. 81099 80 (2017).

 25. Zhang, Y. et al. Integer or Floating Point? New Outlooks for Low-Bit Quantization on Large Language Models. https:// doi. org/ 10.
48550/ arXiv. 2305. 12356 (2023)

 26. Wang, N. et al. Training deep neural networks with 8-bit floating point numbers. Advances in Neural Information Processing Systems,
vol. 31. https:// doi. org/ 10. 48550/ arXiv. 1812. 08011 (2018)

 27. Sun, X. et al. Hybrid 8-bit floating point (HFP8) training and inference for deep neural networks. Advances in Neural Information
Processing Systems, vol. 32 (2019).

 28. Micikevicius, P. et al. Mixed precision training. https:// doi. org/ 10. 48550/ arXiv. 1710. 03740 (2017)
 29. Köster, U. et al. Flexpoint: An adaptive numerical format for efficient training of deep neural networks. Advances in Neural Infor-

mation Processing Systems, vol. 30. https:// doi. org/ 10. 48550/ arXiv. 1711. 02213 (2017).

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1109/ISSCC.2019.8662396
https://doi.org/10.1109/ISCAS.2018.8351816
https://doi.org/10.1109/ISCAS.2018.8351816
https://doi.org/10.48550/arXiv.1906.02243
https://doi.org/10.48550/arXiv.1906.02243
https://digitalcommons.bard.edu/senproj_s2020/296/
https://doi.org/10.1109/ICCV48922.2021.00523
https://doi.org/10.48550/arXiv.2102.04503
https://doi.org/10.48550/arXiv.2010.08678
https://doi.org/10.48550/arXiv.2010.08678
https://doi.org/10.1587/transinf.2020PAL0002
https://doi.org/10.1109/HPEC43674.2020.9286149
https://doi.org/10.1007/s11704-016-6159-1
https://doi.org/10.1007/s11704-016-6159-1
https://doi.org/10.1109/ARITH48897.2020.00029
http://hdl.handle.net/10203/284457
http://hdl.handle.net/10203/284457
https://doi.org/10.1109/JSSC.2021.3103603
https://doi.org/10.3390/s22031230
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.1109/JIOT.2020.2967734
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.48550/arXiv.1502.02551
https://doi.org/10.48550/arXiv.1804.05267
https://doi.org/10.48550/arXiv.1804.05267
https://doi.org/10.1145/2934583.2934625
https://doi.org/10.1145/2934583.2934625
https://doi.org/10.48550/arXiv.1801.08621
https://doi.org/10.48550/arXiv.1801.08621
https://doi.org/10.1109/SiPS.2017.8109980
https://doi.org/10.48550/arXiv.2305.12356
https://doi.org/10.48550/arXiv.2305.12356
https://doi.org/10.48550/arXiv.1812.08011
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1711.02213

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:2421 | https://doi.org/10.1038/s41598-024-52356-1

www.nature.com/scientificreports/

 30. Venkataramani, S. et al. RaPiD: AI accelerator for ultra-low precision training and inference. ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 153–166. IEEE. https:// doi. org/ 10. 1109/ ISCA5 2012. 2021. 00021 (2021)

 31. Sakr, C. et al. Accumulation bit-width scaling for ultra-low precision training of deep networks. https:// doi. org/ 10. 48550/ arXiv.
1901. 06588 (2019).

 32. Zhang, H., Chen, D. & Ko, S. B. New flexible multiple-precision multiply-accumulate unit for deep neural network training and
inference. IEEE Trans. Comput. 69(1), 26–38. https:// doi. org/ 10. 1109/ TC. 2019. 29361 92 (2019).

 33. Lee, J. et al. UNPU: A 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision.
In 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 218–220. IEEE. https:// doi. org/ 10. 1109/ ISSCC. 2018. 83102 62
(2018)

 34. Ghimire, D., Kil, D. & Kim, S. H. A survey on efficient convolutional neural networks and hardware acceleration. Electronics 11(6),
945. https:// doi. org/ 10. 3390/ elect ronic s1106 0945 (2022).

 35. Pietrołaj, M. & Blok, M. Neural network training with limited precision and asymmetric exponent. J. Big Data 9(1), 1–17. https://
doi. org/ 10. 1186/ s40537- 022- 00606-2 (2022).

 36. Zhang, Y. et al. Precision gating: Improving neural network efficiency with dynamic dual-precision activations. https:// doi. org/
10. 48550/ arXiv. 2002. 07136 (2020).

 37. Tang, C. et al. Mixed-Precision Neural Network Quantization via Learned Layer-wise Importance. Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel. https:// doi. org/ 10. 1007/ 978-3- 031- 20083-0_ 16 (2022).

 38. Park, J. H., Choi, J. S., & Ko, J. H. Dual-Precision Deep Neural Network. 3rd International Conference on Artificial Intelligence and
Pattern Recognition, 30–34. https:// doi. org/ 10. 1145/ 34301 99. 34302 28 (2020).

 39. Li, Y. et al. Efficient bitwidth search for practical mixed precision neural network. https:// doi. org/ 10. 48550/ arXiv. 2003. 07577
(2020).

 40. Kim, B. et al. PCM: precision-controlled memory system for energy efficient deep neural network training. Design, Automation
& Test in Europe Conference & Exhibition (DATE), 1199–1204. IEEE. https:// doi. org/ 10. 23919/ DATE4 8585. 2020. 91165 30 (2020).

 41. Ríos, J. O., Armejach, A., Petit, E., Henry, G., & Casas, M. Dynamically Adapting Floating-Point Precision to Accelerate Deep
Neural Network Training. IEEE International Conference on Machine Learning and Applications (ICMLA), 980–987. IEEE. https://
doi. org/ 10. 1109/ ICMLA 52953. 2021. 00161 (2021).

 42. Fu, Y. et al. CPT: Efficient deep neural network training via cyclic precision. https:// doi. org/ 10. 48550/ arXiv. 2101. 09868 (2021).
 43. Yu, Z. et al. LDP: Learnable dynamic precision for efficient deep neural network training and inference. https:// doi. org/ 10. 48550/

arXiv. 2203. 07713 (2022).
 44. Banner, R., Hubara, I., Hoffer, E., & Soudry, D. Scalable methods for 8-bit training of neural networks. Advances in Neural Informa-

tion Processing Systems, vol. 31 (2018).
 45. Sharma, H. et al. Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural network. In 2018 ACM/

IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 764–775. IEEE. https:// doi. org/ 10. 1109/ ISCA. 2018.
00069 (2018).

 46. Xia, L., Anthonissen, M., Hochstenbach, M., & Koren, B. A Simple and Efficient Stochastic Rounding Method for Training Neural
Networks in Low Precision. https:// doi. org/ 10. 48550/ arXiv. 2103. 13445 (2021).

 47. Croci, M., Fasi, M., Higham, N. J., Mary, T. & Mikaitis, M. Stochastic rounding: implementation, error analysis and applications.
R. Soc. Open Sci. 9(3), 211631. https:// doi. org/ 10. 1098/ rsos. 211631 (2022).

 48. Tong, J. Y. F., Nagle, D. & Rutenbar, R. A. Reducing power by optimizing the necessary precision/range of floating-point arithmetic.
IEEE Trans. Very Large Scale Integr. Syst. 8(3), 273–286. https:// doi. org/ 10. 1109/ 92. 845894 (2000).

Author contributions
Each of the authors significantly contributed to the presented research idea and preparation of the manuscript.
The described methodology has been developed and enhanced by both authors in close cooperation. All the
named authors took part in conducting experiments and thorough analysis of their results. The first draft of
the manuscript has been prepared by Mariusz Pietrołaj. Marek Blok supervised the work and conducted cyclic
reviews and editing of the manuscript. The presented study has been read and approved for publication by all
the named authors.

Funding
No funds, grants, or other support was received.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1109/ISCA52012.2021.00021
https://doi.org/10.48550/arXiv.1901.06588
https://doi.org/10.48550/arXiv.1901.06588
https://doi.org/10.1109/TC.2019.2936192
https://doi.org/10.1109/ISSCC.2018.8310262
https://doi.org/10.3390/electronics11060945
https://doi.org/10.1186/s40537-022-00606-2
https://doi.org/10.1186/s40537-022-00606-2
https://doi.org/10.48550/arXiv.2002.07136
https://doi.org/10.48550/arXiv.2002.07136
https://doi.org/10.1007/978-3-031-20083-0_16
https://doi.org/10.1145/3430199.3430228
https://doi.org/10.48550/arXiv.2003.07577
https://doi.org/10.23919/DATE48585.2020.9116530
https://doi.org/10.1109/ICMLA52953.2021.00161
https://doi.org/10.1109/ICMLA52953.2021.00161
https://doi.org/10.48550/arXiv.2101.09868
https://doi.org/10.48550/arXiv.2203.07713
https://doi.org/10.48550/arXiv.2203.07713
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.48550/arXiv.2103.13445
https://doi.org/10.1098/rsos.211631
https://doi.org/10.1109/92.845894
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Resource constrained neural network training
	Related work
	Limitation method
	Offset of the asymmetric exponent
	Introduction of stochastic rounding
	Utilization of denormalized values for a limited floating-point type

	Conducted experiments
	Results
	Future work
	Conclusion
	References

