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Non‑KAM classical chaos topology 
for electrons in superlattice 
minibands determines 
the inter‑well quantum transition 
rates
F. Wang 1, M. T. Greenaway 2, A. G. Balanov 2 & T. M. Fromhold 1*

We investigate the quantum‑classical correspondence for a particle tunnelling through a periodic 
superlattice structure with an applied bias voltage and an additional tilted harmonic oscillator 
potential. We show that the quantum mechanical tunnelling rate between neighbouring quantum 
wells of the superlattice is determined by the topology of the phase trajectories of the analogous 
classical system. This result also enables us to estimate, with high accuracy, the tunnelling rate 
between two spatially displaced simple harmonic oscillator states using a classical model, and thus 
gain new insight into this generic quantum phenomenon. This finding opens new directions for 
exploring and understanding the quantum‑classical correspondence principle and quantum jumps 
between displaced harmonic oscillators, which are important in many branches of natural science.

Understanding the quantum-classical correspondence remains an enduring challenge of contemporary science. 
The transfer of concepts between classical and quantum mechanics provides insights that illuminate both. But 
rarely can quantitative prediction of purely quantum phenomena, such as jumps and tunnelling transitions, 
arise from entirely classical considerations. Conversely, it is unusual for such quantum phenomena to manifest 
themselves directly and quantitatively in the intricate behavior of classical systems. Here we show that quantum 
tunnelling transitions between the wells of a superlattice (SL) with an applied tilted simple harmonic oscillator 
(SHO) potential can be understood quantitatively by employing a semiclassical  model1, thus providing a new 
and widely applicable link between quantum transition rates and classical dynamics.

The dynamics of particles in a superlattice with strongly coupled quantum wells can be described semiclas-
sically using band theory. In the absence of scattering, particles that are constrained to move within a single 
energy band will perform Bloch oscillations under the influence of an electric field applied along the superlattice 
axis. If a magnetic field is then applied along the SL axis, and described by a one-dimensional SHO potential, the 
electron will also perform cyclotron motion perpendicular to the field direction. But if the magnetic field is tilted 
relative to the SL axis, it has been  shown1 that coupling between the SHO cyclotron motion and Bloch oscillations 
gives rise to chaotic  dynamics2–8. The Kolmogorov–Arnold–Moser (KAM) theorem states that for systems that 
are non-degenerate, which in a classical picture means that the oscillation frequency depends on the energy of 
the oscillator, the transition to chaos occurs gradually as the size of an applied perturbation increases. But for 
our system, the KAM theorem does not apply because the unperturbed system is a harmonic oscillator whose 
frequency is independent of energy, making it classically degenerate. Details of the KAM theorem and non-
KAM chaos for degenerate systems are given in Refs.2–8. Non-KAM chaos occurs when a harmonic oscillator is 
perturbed by a plane wave and is characterised by stochastic web-like (SW) structures that abruptly appear in the 
particle’s phase space, along which the particle can diffuse rapidly. It has been shown to give rise to resonant peaks 
in the measured current-voltage characteristics of a semiconductor SL in applied magnetic and electric  fields9–11.

A key measure of quantum transitions is the rate at which they occur, as determined by the overlap integral 
of the initial and final state wavefunctions. Calculation of the overlap integrals between two spatially and ener-
getically displaced quantum simple harmonic oscillator states is a ubiquitous problem in quantum  theory12 and 
relevant to many areas of natural science. They underpin the Franck–Condon  principle13,14, which states that a 
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quantum particle transition is most likely to occur between states whose wavefunctions have maximal spatial 
overlap. It is useful in many areas of physics, chemistry and biology for calculating photonic, phononic, and 
plasmonic transition rates between molecular energy  levels15–18, and diverse processes including the biological 
mechanism behind  vision19,20, quantum logic in molecular  ions21, imaging molecular  motion22 and the operation 
of molecular  transistors23,24. Transitions between spatially and energetically displaced harmonic oscillators are 
also important for quantum  optics25,26, understanding the Jahn-Teller  effect27–29, quantum tunnelling between 
two-dimensional electron  gases30,31, and inter-layer transport in van der Waals  heterostructures32–35.

Here, we demonstrate that, remarkably, both the amplitude and the form of the overlap integrals between 
displaced harmonic oscillator states can be quantitatively determined purely by considering the phase space 
topology of classical stochastic webs. We find clear quantitative equivalence between the classical stochastic 
web topology and electron diffusion rates, and the quantum mechanical overlap integrals, which provides new 
insights that the tunnel coupling of adjacent SHO states corresponds to the rates of classical diffusion away from 
the stochastic web centre. Conversely, the tunnelling matrix elements govern the key timescales in the dynamics 
of a classical oscillator driven by a plane wave. This correspondence between the classical and quantum models 
enables us to calculate the tunnelling rate between two offset SHO states using a purely classical analysis. In the 
SL, on resonance, electron transport rates through the system are determined from the overlap integral between 
offset SHO states in adjacent quantum wells and, hence, from the associated SW topologies.

Finally, we show that SW dynamics generalise the widely-used Franck–Condon principle, which gives the 
transition rates between SHO states with a specific displacement, to the case of arbitrarily-displaced SHO states 
and classical oscillators.

Quantum model
We consider electron transport through a GaAs/AlGaAs semiconductor SL with a magnetic field B applied at 
an angle θ to the superlattice axis and an electric field F, applied anti-parallel to the x axis, as shown in Fig. 1a. 
The Hamiltonian of this system for an electron with effective mass, m∗ is given by

here Vp is the superlattice potential with period d, e is electron charge magnitude, and

is the tilted harmonic potential that is generated by the applied magnetic field, where ωz = eB/m∗ cos θ is the 
harmonic oscillator frequency corresponding to the magnetic field component along the z-axis. The parameters 
used in our calculations are given in Section 1 of Supplementary Information (SI).

We solve the two-dimensional time-independent Schrödinger equation with the Hamiltonian in Eq. (1)36 to 
calculate the energy eigenfunctions, � , see Eq. (7) in the SI Section 1. For small θ and F, the form of � along z at 
the centre of the quantum wells, can be accurately approximated by a series of Landau-like SHO states (arising 
from the SHO basis), and thus transport through the lattice can be understood in terms of tunnelling transitions 
between these states in adjacent wells, see Fig. 1b. When θ = 0 , the SHO states localised in adjacent quantum 
wells are orthonormal and have energy Ewn = �ωz(n+ 1/2)− weFd for a given energy level index, n = 0, 1, 2, ... , 
and well index, w = 0, 1, 2....

(1)Ĥ = − �
2

2m∗

(

∂2

∂x2
+ ∂2

∂z2

)

+ Vp(x)+ VH (x, z)− eFx,

(2)VH = m∗ω2
z

2
(x sin θ − z cos θ)2

Figure 1.  (a) Colour map of the total potential energy in Eq. (1) created by the constant electric field, the tilted 
harmonic trap, and the SL potential: vertical gray stripes indicate the tunnel barrier positions. (b) Wavefunction 
plots calculated for spatially-displaced SHO states in adjacent quantum wells with indices w (blue shaded 
curves) and w + 1 (red shaded curves) when r = 1 . Ewn  ( n = 0 . . . 5 ) are energy levels in well w.
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When θ  = 0 the states in adjacent wells are spatially offset by z0 = d tan θ , which breaks orthogonality and 
enables the electron to tunnel between multiple states in adjacent wells. In a sequential tunnelling model, the elec-
tron can transition between different wells with energy conservation when its energy, Ewn  in well w is equal to an 
energy level with index n+ r in an adjacent well w + 1 so that Ewn = Ew+1

n+r  . This resonance condition is met when 
the potential energy difference between the adjacent wells is r�ωz , i.e. when the electric field F = r�ωz/ed and

Our full quantum calculations show that when r = 1 , |�|2 extends over many lattice periods due to the reso-
nant coupling of states with the same energy in adjacent wells, see Fig. 2a.

The calculated |�|2 profile reveals a regular modulation along the x axis with minima corresponding to the 
barrier regions (arbitrary well indices are labelled w and w + 1 in Fig. 1), reflecting the form of the Wannier basis 
(see SI Section 2). In the z direction there are antinodes corresponding to the SHO basis. The number of anti-
nodes increases linearly with w, i.e. the probability density in well w = 0 at has a single antinode corresponding 
to the n = 0 SHO state, in well w = 1 there are two antinodes corresponding to the n = 1 SHO state, and so on.

We find that |�|2 is fully bounded in the (x − z) plane; a phenomenon which arises from three different 
mechanisms. The left-hand limit of |�|2 (labeled LHL in Fig. 2) is due to total energy conservation. The top and 
bottom barriers are created by the tilted SHO “gutter” potential (labeled GP). There is an also effective right-
hand barrier that limits the extent of |�|2 along the x-axis (dashed vertical line labelled DB). To investigate this 
effective barrier further, we now consider the transition rates between adjacent wells.

Fermi’s Golden rule states that the transition rate between two quantum states depends on their overlap inte-
gral. When the electric field is tuned to the energy resonance condition, i.e. r is a positive integer, the n-th SHO 
state in well w is aligned with the (n+ r)-th state in adjacent well w + 1 and the two states are spatially displaced 
by z0 along the z axis, see Fig. 1b. The overlap integral

where φn = cnhn(z/lB) exp(−z2/2l2B) is the nth SHO state, cn = (2nn!)−1/2(π l2B)
−1/4 normalises the wavefunc-

tion, hn is the nth-order Hermite polynomial, and lB =
√
�/mωz  is the SHO length scale along the z axis. The 

green crosses in Fig. 2a show the dependence of In,n+1 on the x co-ordinate, xn = ( nr + 1)d , of the barrier that 
separates wells w and w + 1 , taking system parameters corresponding to the |�|2 plot shown in the figure. The 
plot reveals that |�|2 vanishes, i.e. is bounded by the magenta dashed line, when In,n+1 = 0 . Consequently we 
see that the “Dynamical Barrier”, which limits the spatial extent of the eigenstate on the right-hand side, is 
equivalent to the point where there is a suppression of tunnel coupling between adjacent quantum wells of the 
superlattice. In the next section we show that this dynamical barrier, which in the quantum analysis arises from 
the detailed form of the offset simple harmonic oscillator wavefunctions, also manifests itself in the semiclassical 
dynamics of the system.

(3)r = eFd

�

1

ωz
.

(4)In,n+r = ∫φn(z)φn+r(z + z0)dz,

Figure 2.  (a) Colour map of the electron probability density |�|2 (red is high), calculated when θ = 30◦ , r = 1 
and B = 11 T, with the width and location of an arbitrary quantum well (labelled QW) indicated by solid black 
lines. The dashed blue and magenta vertical lines show, respectively, the positions of the Left Hand Limit (LHL) 
and the Dynamical Barrier (DB). Dashed locus labelled GP shows the form of the Gutter Potential arising 
from the tilted SHO potential. Blue curve shows the function v0�n,n+1 and green crosses show the function 
v0In,n+1 ; red dots show vx(x) (units on right axis); see text for details. (b), Corresponding classical trajectory 
with the same parameters defined in (a). Red dots show the positions of the local orbital extrema along the z 
axis from which the loop spacings, �l , are determined as shown; Inset: off resonance semiclassical orbit when 
r = (1+

√
5)/2.
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Semiclassical model
In Refs.1,9, it was shown that a semiclassical model can be used accurately to model charge transport through the 
miniband of a SL with strongly coupled quantum wells. In this case, the dispersion relation for electrons in the 
first miniband is given by E(kx) = �b[1− cos(kxd)]/2 , where �b is a miniband width. On application of a tilted 
magnetic field, the equation of motion of the z component of the electron’s momentum, pz can be shown to satisfy

This equation describes a classical simple harmonic oscillator with natural frequency ωz driven by a time 
(t)-dependent plane wave. Here, ωB = eFd/� is the Bloch oscillation frequency due to the applied electric field 
and the constant C = (�b/2m

∗)(z0/l4B) . The position vector (x, y, z) and the other momentum components 
px and py can be determined from pz1. This system is degenerate (in the sense that the frequency of the SHO is 
independent of its energy) and is known to exhibit non-KAM chaos, characterised by the formation of intricate 
SW patterns in phase space, which was first discovered and studied by Zaslavsky et al.6–8.

When θ = 0◦ , electron motion along the x direction is decoupled from motion along the z-axis. The electron 
performs Bloch oscillations along the x axis and simple harmonic motion (with frequency ωz ) along the z axis. 
Increasing θ from 0◦ couples the Bloch and simple harmonic cyclotron motion causing the electron orbits to 
become chaotic. For most field values the extent of the electron’s trajectory along the x−axis is small, see inset 
in Fig. 2b, and therefore the electrons have a small drift velocity. But when ωB and ωz are commensurate, i.e. 
when r = ωB/ωz is an integer, the trajectories become highly extended along the x axis, see Fig. 2b. This clas-
sical resonant condition, is equivalent to the alignment of quantised SHO energy levels in adjacent wells, see 
Eq. (3). Comparison between the form of |�|2 in Fig. 2a and the electron orbits calculated for the same system 
parameters in Fig. 2b reveals a striking agreement between their bounded regions. We find that the same spatial 
constraints, which determine which region of space the electron can access, are imposed on both the classical 
trajectory and |�|2 by the LHL, GP and, in particular, the Dynamical Barrier.

Comparison of classical stochastic webs & quantum wigner functions
To understand the origin of the DB from a classical perspective, in Fig. 3a we show the Poincaré section px = 0 
of the classical particle trajectory in the (pz , qy) phase portrait, where qy = ṗz/ωz . We also define the polar 
coordinates of the particle in the phase portrait, (ρ,�) , where ρ =

√

q2y + p2z  and � is the angle measured with 
respect to the qy axis. The particle maps out an intricate SW structure, comprising an infinite set of concentric 
ring filaments crossed by vertical filaments that extend to infinity in each direction. The vertical filaments act as 
conduction channels through which the particles can diffuse rapidly, enabling the orbits, modelled by Eq. (5), 
to become highly spatially extended and so enhancing electrical current through the  SL9,11,37. Even though the 
web filaments extend to infinity, transport through them is limited by their thickness, which depends exponen-
tially on ρ38. Therefore, there is an exponentially small probability that the electron will continue to move out 
along the vertical filament towards the second ring. Instead, the particle’s trajectory becomes “trapped” on the 
first ring for an extended time. The radius, ρi

r , of the ith web ring for the resonance with the given integer r (see 
Fig. 3a) corresponds to the root, ρi

rz0 , of the Bessel function of the first  kind1, i.e. for which

(5)p̈z + ωz
2pz = −C sin

( z0pz

�
− ωBt

)

.

(6)Jr

(

ρi
rz0

�

)

= 0.

Figure 3.  (a) Poincaré section calculated for r = 1 and corresponding to the real space classical trajectory 
shown in Fig. 2b. (b) Wigner function corresponding to quantum eigenstate shown in Fig. 2a. Overlayed green 
dots show the classical Poincaré section shown in (a). Blue dashed circles in (a) and (b) show the position of the 
first (i.e. innermost) SW ring.
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It can be shown that the x position of an electron, starting from rest at the origin, has the following depend-
ence on ρ

Therefore, if the electron’s orbit is constrained within the first ring of the SW in phase space, it will also have 
limited extent along the x-axis in real space, having a right-hand bound at x(ρ1

r ) = �x1r . The vertical magenta 
dashed lines in Fig. 2a,b show the position of �x1r , which coincides with where the classical trajectory and quan-
tum wavefunction are constrained by the DB when B = 11 T, θ = 30o and r = 1.

In Fig. 3b, we show the Wigner function W(pz , qy) corresponding to the wavefunction in Fig. 2a. The Wigner 
function is the quantum analogue of the semiclassical Poincaré section and is calculated by mapping (pz , qy) 
onto (x, z, px , pz) using

W(pz , qy) has a strikingly similar form to the semiclassical Poincaré section (Fig. 3a). In particular, its extent 
is limited by the first ring of the classical SW, shown by the dashed blue circle. This further demonstrates the 
equivalence between the quantum and classical pictures of the electron dynamics.

Note that when C in Eq. (5) is large, the channel width of SW filament is also  large8 and the electron has a 
higher probability of continuing outwards along the SW filament to the second ring. However, for the param-
eters we consider here, this only occurs when θ > 60◦ . Like the semiclassical trajectory, in this case the quantum 
energy eigenstates also extend beyond the position of the DB.

Classical calculation of quantum tunnelling rates
In this section, we demonstrate how the SW topology determines the electron’s semiclassical velocity dependence 
on its position, x, and, by linking the quantum mechanical tunnelling rates to the local semiclasscial velocity, how 
the form of the SW determines the overlap integral between simple harmonic oscillator states. To investigate the 
connection between the position and velocity of the electron, we rewrite the semiclassical Hamiltonian in terms 
of the canonical action-angle variables (I ,�) , where

I is action and � is the polar angle in the phase space (pz , qy) , see SI Section 4 for more details. In these coor-
dinates, the electron’s velocity, ẋ , has the  form39

where ẋ(ρ, t) has a time-independent part, ẋ1(ρ) , and a time-dependent part, ẋ2(ρ, t) , which satisfy

here, v0 = �bd/(2�) is the maximum speed of the electron within the miniband. To find how ẋ1 changes with x 
when an electron travels along a SW filament (i.e. when � = 0 ), we combine Eqs. (7) and (11) to obtain

Quantum mechanically, the propagation of the electrons along the SL axis is associated with transitions 
between the states in adjacent wells. Therefore, the local electron velocity is determined by the tunnelling rate. 
It is reasonable to assume that the maximum electron miniband velocity, v0 , is realised where there is maximum 
overlap between the states in adjacent wells. Therefore we make the ansatz,

In Fig. 2a we compare the values of ẋ1(x) determined using (13) and (14), which are shown by the blue curve 
and green crosses, respectively. These values show excellent agreement, justifying the assumption in Eq. (14).

We also compare the analytically obtained ẋ1 values with the numerically-determined electron velocity, 
vx(x) , along the upper edge of the orbit shown in Fig. 2b. We define vx(x) = �l(x)/τz , where �l(x) is the spac-
ing between adjacent orbital peaks (see red dots in Fig. 2b), and τz = 2π/ωz is the oscillation period along the z 
axis. The red filled circles in Fig. 2a show the numerically calculated values of vx(x) . We find good quantitative 
agreement between vx(x) and the analytical ẋ1(x) values, confirming that ẋ1 defines the propagation of the elec-
tron along x. The slightly lower values of vx(x) could be explained by a contribution from the time-dependent 

(7)x(ρ) = ρ2

2m∗eF
.

(8)
W(pz , qy) =

1

4π2�2

∫ ∞

−∞

∫ ∞

−∞
�∗(x + �x , z + �z)

×�(x − �x , z − �z)e
2ipz�z/�d�xd�z .

(9)ρ2 ≡ 2I

ωz

∝ x,

(10)ẋ(ρ, t) = ẋ1(ρ)+ ẋ2(ρ, t),

(11)ẋ1(ρ) = v0Jr(z0ρ/�) cos�,

(12)ẋ2(ρ, t) = v0
∑

m �=r

Jm(z0ρ/�) sin
[m

r
�− (1− m

r
)ωBt
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.
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√
2meFx
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.

(14)ẋ1(x) ≈ v0In,n+1.
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component of electron velocity ẋ2(ρ, t) , which is not accounted for by Eqs. (13) and (14). This additional compo-
nent could act to increase the time taken for the electron to return to the upper edge of the trajectory presented 
in Fig. 2b.

Comparison of Eqs. (13) and (14) suggests a general approximation for the overlap integral

This approximation is also confirmed by the close similarity of the Taylor expansions of In,n+r and �n,n+r 
which exhibit the same asymptotic behaviour (see SI Section 5). To explore the approximation in Eq. (15) fur-
ther, we investigate the dependence of the overlap integral In,n+1 on n and the ratio between the displacement 
of the oscillator states z0 and the natural length scale of the states lB , see Fig. 4a. When z0/lB = 0 , the harmonic 
oscillator states are orthogonal and uncoupled implying In,n+1 = 0 for all n. Increasing z0 breaks orthogonality, 
and the overlap integral becomes finite as adjacent states couple. We find that In,n+1 oscillates between 0.6 and 
−0.4 with increasing z0.

The accuracy of Eq. (15) is illustrated in Fig. 4b, where the dependence of |In,n+1 −�n,n+1| is shown for 
the same range of n and x0/lB . It reveals that for z0/lB � 2 , |In,n+1 −�n,n+1| is close to zero reflecting the high 
accuracy of the approximation in Eq. (15) for this set of parameters. This correspondence is also demonstrated 
in Fig. 4c where the variations of In,n+1 and �n,n+1 with n are shown to be in excellent quantitative agreement for 
various values of z0/lB . When z0/lB � 2 and n is small, |In,n+1 −�n,n+1| > 0 and the models diverge. Here the 
correspondence between the quantum and classical models breaks down due to either spatial localisation of the 
states (for small n), or, equivalently, large spatial separation of the states (large z0 ). In SI Section 7 we provide 
more detail on how the length scales of the SHO states, and their dependence on n, determine the regimes of 
correspondence. We also demonstrate that expression (Eq. 15) is applicable when r > 1.

It is important to note that expression (Eq. 15) does not depend on the parameters of the lattice, i.e. d and 
�b , only on the properties of the SHO states, lB and z0 . Therefore Eq. (15) is generally valid irrespective of the 
particular physical system that is described using displaced SHO states.

Conclusion
In conclusion, we have found a remarkable link between two seemingly disparate dynamical concepts, namely 
the classical topology of a SW, and quantum tunnel coupling between displaced SHO wavefunctions. Using 
a semiconductor SL with an applied tilted magnetic field as practical example, we show that the width of the 
resonant delocalised classical electron trajectories and the quantum energy eigenstates can both be determined 
from the radii of the rings of the SW in the classical Poincaré section. Remarkably, we also find that the tunnel 
coupling between adjacent wells in the lattice, determined by the overlap integrals of Landau states in those 
wells, can also be determined purely from the topology of the SW and, more specifically, that the form of the 
Bessel function describes both the ring radii and the diffusion rate through the vertical filaments. Our analysis 
therefore provides a new picture of tunnelling between off-set SHO states in terms of the topology of SWs and, 
conversely, provides new insights into stochastic web transport in terms of quantum jumps. Our work therefore 
establishes correspondence between non-KAM chaos and quantum transitions between displaced harmonic 
oscillators, which are of fundamental importance in many areas of physics and chemistry. In particular, our work 
generalises the Franck–Condon principle and so provides deeper understanding of it. Whereas the Franck–Con-
don principle states that quantum transitions between offset SHO states are most likely when their separation 
is the sum of the radii of the corresponding classical orbits, our analysis shows that transitions between SHO 
states with arbitrary spatial separation can be calculated directly from classical stochastic web topology and dif-
fusion rates. Our results provide insights into the quantum-classical correspondence in a system demonstrating 
non-KAM chaos. In future research it will be interesting to investigate similar relations in systems that exhibit 
the more commonly observed KAM chaos. Another topic of practical importance is the effect of disorder on 
the quantum-classical correspondence. Previously, within a semi-classical picture, we found that although low-
amplitude noise has almost no effect on electron diffusion in our system, moderate noise can produce non-trivial 

(15)In,n+r ≈ Jr

(√
2n+ r + 1

z0

lB

)

= �n,n+r .

Figure 4.  (a) Colour map of the calculated overlap integrals In,n+1(n, z0/lB) (scale below). (b) In,n+1 −�n,n+1 
(scale below). (c) Comparison of In,n+1 (crosses) and �n,n+1 (lines) when z0/lB = 0.5, 1.0, 2.0 (legend inset).
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phenomena including the enhancement electron  mobility40. However, there has not been a comprehensive study 
of these phenomena from a classical perspective, and, to our knowledge, they have not been studied within the 
quantum realm.

Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
on reasonable request.
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