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Integrative analysis of gene 
expression profiles of substantia 
nigra identifies potential diagnosis 
biomarkers in Parkinson’s disease
Junming Huang 1,2,5, Bowen Li 2,5, Huangwei Wei 3,5, Chengxin Li 2, Chao Liu 4, Hua Mi 2* & 
Shaohua Chen 1*

Parkinson’s disease (PD) is a progressive neurodegenerative disease whose etiology is attributed to 
development of Lewy bodies and degeneration of dopaminergic neurons in the substantia nigra (SN). 
Currently, there are no definitive diagnostic indicators for PD. In this study, we aimed to identify 
potential diagnostic biomarkers for PD and analyzed the impact of immune cell infiltrations on disease 
pathogenesis. The PD expression profile data for human SN tissue, GSE7621, GSE20141, GSE20159, 
GSE20163 and GSE20164 were downloaded from the Gene Expression Omnibus (GEO) database for 
use in the training model. After normalization and merging, we identified differentially expressed 
genes (DEGs) using the Robust rank aggregation (RRA) analysis. Simultaneously, DEGs after batch 
correction were identified. Gene interactions were determined through venn Diagram analysis. 
Functional analyses and protein–protein interaction (PPI) networks were used to the identify hub 
genes, which were visualized through Cytoscape. A Lasso Cox regression model was employed to 
identify the potential diagnostic genes. The GSE20292 dataset was used for validation. The proportion 
of infiltrating immune cells in the samples were determined via the CIBERSORT method. Sixty-two 
DEGs were screened in this study. They were found to be enriched in nerve conduction, dopamine 
(DA) metabolism, and DA biosynthesis Gene Ontology (GO) terms. The PPI network and Lasso Cox 
regression analysis revealed seven potential diagnostic genes, namely SLC18A2, TAC1, PCDH8, 
KIAA0319, PDE6H, AXIN1, and AGTR1, were subsequently validated in peripheral blood samples 
obtained from healthy control (HC) and PD patients, as well as in the GSE20292 dataset. The results 
revealed the exceptional sensitivity and specificity of these genes in PD diagnosis and monitoring. 
Moreover, PD patients exhibited a higher number of plasma cells, compared to HC individuals. The 
SLC18A2, TAC1, PCDH8, KIAA0319, PDE6H, AXIN1, and AGTR1 are potential diagnostic biomarkers 
for PD. Our findings also reveal the essential roles of immune cell infiltration in both disease onset and 
trajectory.

Abbreviations
3D  3 Dimension
AT1R  Angiotensin II type 1 receptor
AUC   Area under the curve
BP  Biological process
CC  Cellular component
DA  Dopamine
DEGs  Differentially expressed genes
FC  Fold change
GEO  Gene expression omnibus
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GO  Gene ontology
HC  Healthy control
KEGG  Kyoto encyclopedia of genes and genomes
MF  Molecular function
PCA  Principal component analysis
PD  Parkinson’s disease
PPI  Protein–protein interaction
ROC  Receiver operating characteristic
RRA   Robust rank aggregation
RT-qPCR  Reverse transcription-quantitative real-time polymerase chain reaction
SN  Substantia nigra
SP  Substance P

Over the last 25 years, there has been a global increase in the number of individuals affected by, dying from, or 
suffering from long-term neurological disorder-associated disabilities. This is despite the development of multiple 
novel diagnostic and treatment  methods1. Parkinson’s disease (PD) is a significant contributor to neurological 
disability, and is the second most prevalent neurodegenerative disorder worldwide. With a global prevalence 
exceeding 6 million individuals, the condition has exhibited a remarkable 2.5-fold rise in occurrence over the 
past  generation2. In industrialized countries, the estimated prevalence of this condition is 0.3%, which is rarely 
observed in patients under the age of 40, but its incidence is increasing with advancing  age3. The disease is asso-
ciated with typical motor symptoms, such as parkinsonism, Lewy bodies and dopaminergic neuron degenera-
tion in the substantia nigra (SN)4–6. The underlying etiologic factors for this complex disease are attributed to a 
combination of genetic and environmental factors that affect essential cellular  processes7,8. Clinical management 
of this disease is challenged by limitations of treatment and definitive diagnosis, particularly at the earliest stages 
of the disease.

Through transcriptomic analysis, studies have identified various differentially expressed genes (DEGs) and 
dysregulated pathways. Beta-glucocerebrosidase is involved in both the endo-lysosomal pathway and immune 
responses, which are two critical processes in PD  development9. Kurvits et al. used the Robust rank aggregation 
(RRA) strategy and found that IL18R1, an interleukin receptor associated with proinflammatory responses, was 
induced by GM-CSF administration and was associated with neuroprotective mechanisms in PD 10,11. Therefore, 
PD is a potential multisystem disorder. Songyun Zhao et al12. Performed Lasso Cox regression analysis and 
constructed a model that yielded the most substantial net gain, underscoring the critical role of the advanced 
risk model in guiding personalized anti-cancer therapy and driving informed decision-making, which is related 
to PD. Protein–protein interaction (PPI) network analysis is a powerful approach for achieving a comprehen-
sive understanding of biological processes at molecular and systemic  levels13. For downstream applications, 
the STRING database integrates data from various primary  databases14. Recently, Kim et al. reported on the 
functional significance of thiol-oxidoreductase TXNIP in development of LRRK2-associated PD within a three 
dimensional (3D) environment, highlighting the potential of 3D organoid-based models in advancing thera-
peutic discovery for sporadic  PD15. The significance of immune cell infiltrations in PD onset and progression 
has been well-established16,17. CIBERSORT, a computational tool, allows for assessment of immune cell propor-
tions based on gene expression  data18. Both innate and adaptive immune systems play a role in neuronal death 
and PD  pathogenesis19. Despite remarkable advances in recent years, the etiopathogenesis of PD, encompassing 
the contribution of biomarkers and underlying biological processes leading to formation of Lewy bodies and 
dopaminergic neuron loss in the SN, has not been fully elucidated. In this study, we aimed at identifying the 
potential biomarkers and molecular mechanisms that can promote healthy brain functions and avert PD onset.

We downloaded five datasets from the Gene Expression Omnibus (GEO), combined them as the training 
set and used another dataset as the validation set. Then, RRA and batch correction were used in the training 
set to establish the consensus DEGs of PD. Next, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses were performed to reveal the biological functions of the 
DEGs. The PPI networks were used to establish interactions among DEGs-related proteins. Lasso Cox regression 
models were used to identify the possible biomarkers for PD. Finally, 7 genes, namely SLC18A2, TAC1, PCDH8, 
KIAA0319, PDE6H, AXIN1, and AGTR1, were identified to be potential diagnostic genes for PD. To validate 
the clinical accuracy of the genes, a validation set and reverse transcription-quantitative real-time polymerase 
chain reaction (RT-qPCR) were performed. CIBERSORT analysis was performed to investigate immune cell 
infiltrations in PD samples. The goal of this study was to identify the potential diagnostic genes for PD and to 
characterize immune cell infiltrations in peripheral blood samples from PD patients.

Materials and methods
Data source and pre-processing.
Five PD datasets (GSE7621, GSE20141, GSE20159, GSE20163 and GSE20164) were downloaded from the GEO 
database (https:// www. ncbi. nlm. nih. gov/ geo/), merged and used as the training set, which contains 48 healthy 
control (HC) and 56 PD patients. The GSE20292 dataset, which consists of transcriptional analysis data for the 
whole SN in PD, was used for validation (Table 1). The ‘sva’ package (https:// bioco nduct or. org/ packa ges/ relea se/ 
bioc/ html/ sva. html) was used to remove batch effects from the training sets. The principal component analysis 
(PCA) cluster plot was used to visualize the effects of removing inter-batch differences. The workflow of this 
study is shown in Fig. 1.

RRA analysis.

https://www.ncbi.nlm.nih.gov/geo/
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
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The RRA analysis was employed to systematically integrate gene expression information across diverse 
 datasets20. We integrated the R packages ‘limma’ (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ limma. 
html) and ‘RobustRankAggreg’ (https:// cran.r- proje ct. org/ web/ packa ges/ Robus tRank Aggreg/ index. html) to 
identify genes that exhibited statistically significant changes (adjusted P value < 0.05) and those that were statisti-
cally significance in adjusted P value < 0.05 and |log fold change (FC) |> 1.0.

Functional enrichment analysis.
The GO and KEGG enrichment analyses of DEGs were conducted using the ‘clusterProfiler’ (https:// bioco nduct 
or. org/ packa ges/ relea se/ bioc/ html/ clust erPro filer. html) package of R software. Findings of GO annotation analy-
sis were categorized as follows: Biological Process (BP), Molecular Function (MF), and Cellular Components 
(CC)21,22. Significant enrichment was defined as adjusted P values < 0.05.

Establishment of the PPI network and identification of hub genes.
To establish the interplay of DEGs, PPI network analysis was performed using the STRING database (https:// 
cn. string- db. org/). A stringent interaction score threshold of 0.4 was employed to identify the most reliable and 
relevant interactions among the DEGs. Genes were denoted by nodes while connections between them were 
represented by edges. Subsequently, the main regulatory network was constructed and visualized using Cytoscape 
(https:// cytos cape. org/, version 3.9.1). The cytoHubba plugin of Cytoscape was used to identify the hub genes 
in the PPI network. A systematic evaluation of central genes was performed using a comprehensive repertoire 
of ten distinct methods: MCC, DMNC, Degree, BottleNeck, EcCentricity, Closeness, MNC, Radiality, Stress, 

Table 1.  Dataset characteristics.

Dataset Platform Type No. of samples Sample source Age Gender female: male Country

GSE7621 GPL570 Microarrays 25 (9 HCs, 16 PDs) Substantia nigra – 8:17 United States

GSE20141 GPL570 Expression profiling by 
array 18 (8 HCs, 10 PDs)

Dopaminergic neuron and 
substantia nigra transcrip-
tomes

– – United States

GSE20159 GPL6947 Expression profiling by 
array 33 (17 HCs, 16 PDs) Snap-frozen human sub-

stantia nigra HC (40-95y); PD (56-103y) 16:17 Britain

GSE20163 GPL96 Expression profiling by 
array 17 (9 HCs, 8 PDs) Substantia nigra HC (52-84y); PD (70-84y) – Britain

GSE20164 GPL96 Expression profiling by 
array 11 (5 HCs, 6 PDs) Substantia nigra HC (72-90y); PD (74-89y) 6:5 Britain

GSE20292 GPL96 Expression profiling by 
array 29 (18 HCs, 11 PDs) substantia nigra HC (41-94y); PD (67-84y) 10:19 United States

Figure 1.  Flowchart for bioinformatics analysis in this study.

https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/RobustRankAggreg/index.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://cn.string-db.org/
https://cn.string-db.org/
https://cytoscape.org/


4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2167  | https://doi.org/10.1038/s41598-024-52276-0

www.nature.com/scientificreports/

andBetweenness. By synthesizing the results obtained from these diverse approaches, the top 39 hub genes were 
identified, representing a collective selection based on their high-ranking positions across the ten methods.

Identification of PD biomarkers via Lasso Cox regression analysis.
The Lasso Cox regression analysis, a penalized regression technique, is effective for predicting outcomes and has 
low correlations, making it suitable for selecting the most relevant features in datasets with various variables. 
The ‘glmnet’ package(https:// cran.r- proje ct. org/ web/ packa ges/ glmnet/) was used to extract and fit the consensus 
DEGs expression profiles into the Lasso Cox regression model. To identify the DEGs between HC and PD patients 
after Lasso Cox regression analysis, a heatmap and volcano map were drawn in the training set.

Evaluation of the diagnostic model in verification set.
A heatmap and a violin map were drawn to identify the differentially expressed hub genes between HC and PD 
patients in the verification set. Then, the efficacy of distinguishing between HC and PD patients was tested by 
receiver operating characteristic (ROC) curve analysis.

Immune cell infiltration analysis.
The R package ‘CIBERSORT’ (https:// github. com/ Moone rss/ CIBER SORT) was used to calculate the fractions 
of immune infiltrating cells in the training set, which were visualized using the boxplot. The Violin Plot was 
used to identify statistically significant differences in immune cells between HC and PD patients (P value < 0.05).

RT-qPCR
Independent peripheral blood samples from PD patients were used to assess the practical efficacy of our diag-
nostic model. Clinical whole blood samples were collected from both HC and PD patients, and total DNA were 
extracted using the FastPure Blood DNA Isolation Mini Kit V2. The β-Actin primer pair was used as the internal 
control. Relative gene expressions were calculated and normalized via the Ct technique and ΔΔCt method. Clini-
cal information for PD patients used in the RT-qPCR is detailed in Supplementary Table S1. Primer sequences 
are detailed in Table 2.

Statistical analysis
Data preparation, functional analysis, and modeling were performed using R software (https:// cran.r- proje ct. org/, 
v4.1.3). All P values were two-sided and differences with P < 0.05 and log |FC|< 0.585 were considered significant. 
Cytoscape was utilized to visualize the PPI network. ROC curves analysis was derived using ‘pROC’ packages 
(https:// cran.r- proje ct. org/ web/ packa ges/ pROC/). Intergroup comparisons were performed via the Wilcox test.

Ethical approval
In this study, we confirm that all experiments and methods were conducted strictly in accordance with relevant 
guidelines and regulations. The experimental protocols have been approved by the ethics committee to ensure 
the legality and ethical compliance of the research. Hereby declare that informed consent was obtained from 
all human participants, including the use of tissue samples, involved in our research study. The human tissue 
sample collection for this study have obtained approval from the following institution: The first affiliated hospital 
of guangxi medical university. The number of the approving: 2023-E258-01.

Table 2.  Primer sequences used in RT-qPCR.

Gene Primer direction Sequence

SLC18A2
Forward TGC TCA CTG TCG TGG TCC C

Reverse TGT GCT GTG TGG CGG TCT 

TAC1
Forward ACC AGA GAA ACT CAG CAC CCC 

Reverse ACA AGA AAA AAG ACT GCC AAGG 

PCDH8
Forward CCT CTG CTG GGT GCT CTC A

Reverse ACT CTC GTG GGT CGT CTC C

KIAA0319
Forward CTC ACA CCT TCC CTG TCG TAGA 

Reverse GAG CCC CTG TTC AGC ATC A

PDE6H
Forward ACA ACA CTA CTC TGC CTG CTCC 

Reverse CAT CTC CAA ATC CTT TCA CACC 

AXIN1
Forward GAC CTG GGG TAT GAG CCT GA

Reverse GGC TTA TCC CAT CTT GGT CATC 

AGTR1
Forward ATT GCC TGA ATC CTC TTT TTT ATG 

Reverse ATT ATC TGA GGG GCG GTA GG

https://cran.r-project.org/web/packages/glmnet/
https://github.com/Moonerss/CIBERSORT
https://cran.r-project.org/
https://cran.r-project.org/web/packages/pROC/
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Results
Identification of DEGs.
Five datasets (GSE7621, GSE20141, GSE20159, GSE20163 and GSE20164) with a total of 104 samples were 
included as the training set. Batch correction based on the ‘sva’ R package was performed to diminish the poten-
tial for bias to be introduced by batch effects on subsequent analyses. Boxplot and PCA revealed the differences 
before and after batch correction, indicating the successful removal of batch effects (Fig. 2A–D). The R package 
‘RobustRankAggreg’ was used to perform the RRA analysis (Fig. 3A). Batch correction was performed on the 
training set (Fig. 3B). A total of 80 DEGs (nine upregulated and 71 downregulated) between HC and PD patients 
were identified via RRA and batch correction. Based on the R package of ‘venn’ (https:// cran.r- proje ct. org/ web/ 
packa ges/ venn/), There are 62 DEGs were detected between RRA analysis and batch correction. (Fig. 3C). In 
conclusion, by integrating the datasets and treating them as the training set, we were able to filter out 62 DEGs 
using RRA and batch correction, thereby laying the foundation for subsequent analyses.

GO and KEGG pathway functional enrichment analysis of DEGs.
The GO and KEGG enrichment analyses were performed to determine the functions of the 62 significant DEGs 
(Fig. 4A,B). The enriched GO terms were nerve conduction, dopamine (DA) metabolism, and DA biosynthesis. 
The enriched KEGG terms included PD and the cycle of nerve conduction. Association of proteins and the top 
five GO and KEGG terms were visualized using a cnetplot (Fig. 4C,D). Based on our analysis, it is possible that 
the identified DEGs are closely associated with the nervous system and may potentially impact PD pathogenesis.

PPI network analysis and hub genes selection
The PPI networks were analyzed in the STRING online database to elucidate on protein interactions among the 
DEGs (Fig. 5A). Subsequently, the main regulatory network was constructed and visualized using Cytoscape 
Consequently, a total of 39 genes were identified (Fig. 5B). Ranked and networks of the genes for each approach 
were listed in Supplementary Table S1 and Supplementary Figure S1. Expression profiles of the hub genes were 
extracted and integrated into the Lasso Cox regression model to identify the possible biomarkers for PD. To build 
a model that facilitates quantification of each patient with accuracy, seven of the 39 DEGs, including SLC18A2, 
TAC1, PCDH8, KIAA0319, PDE6H, AXIN1, and AGTR1 were retained by application of the Lasso Cox regression 
model with a minimum of λ (Fig. 5C). The distribution of these genes is presented in the volcano plot (Fig. 5D). 
Expression levels of the above genes significantly differed between the two sets as shown in the heatmap (Fig. 5E). 
These findings imply that the hub genes may have pivotal functions in biological mechanisms underlying PD 
and are promising therapeutic targets.

Figure 2.  The datasets were normalized, and the batch effects removed. (A,B) Boxplot of batch effects of 
combined sets before and after normalization. (C, D) A two-dimensional PCA cluster plot of datasets before and 
after batch effects removal.

https://cran.r-project.org/web/packages/venn/
https://cran.r-project.org/web/packages/venn/
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Immune cell infiltration analysis.
Progression of neurodegenerative processes in PD may be sustained by changes in immune cell markers that 
induce or worsen  neuroinflammation6,16. Therefore, to establish the constitution of immune cells in PD samples 
for the purpose of obtaining the difference between HC and PD patients in relative abundance of immune cells, 
the immune status was evaluated. Constituent ratios for 22 infiltrating immune cell types were as shown in 
Fig. 6A. The PD patients exhibited higher counts of plasma cells compared with HC (Fig. 6B). The intensity of 
plasma cell expressions, as evidenced by the image, was closely associated with PD.

Performance of the diagnostic model in SN datasets and samples.
To assess the clinical efficacy of our diagnostic model, we assessed it using SN datasets (GSE20292). Then, we 
developed a heatmap and a violin plot between HC and PD patients for the seven hub genes (Fig. 7A,B). Hub 
gene expression levels in the dataset were calculated using the ROC curves to identify the corresponding area 
under the curve (AUC). In Fig. 7C, AUCs for SLC18A2, TAC1, PCDH8, KIAA0319, PDE6H, AXIN1, and AGTR1 
in HC and PD patients were 0.864, 0.652, 0.863, 0.934, 0.65, 0.722, and 0.773, respectively. When the seven hub 
genes were combined into a single variable, their predictive value improved; the AUC for the model was 0.965 
(Fig. 7D). Thus, the hub genes have a high predictive accuracy for diagnosis.

Validation of expression level of the seven hub genes in peripheral blood samples.
The RT-qPCR assay was performed to validate the efficacy of the prediction model. Relative expressions of TAC1, 
PDE6H, KIAA0319, AGTR1, SLC18A2, and PCDH8 in HC were significantly higher than those in PD patients, 
while those of AXIN1 were significantly lower in HC, relative to PD patients (Fig. 8). These results from periph-
eral blood samples are consistent with the GSE20292 dataset performed on SN, indicating that these genes hold 
promise as prospective therapeutic targets for PD patients.

Discussion
The gold standard for diagnosing PD relies on the presence of SN pars compacta degeneration and Lewy pathol-
ogy, as confirmed by post-mortem pathological  examination23,24. Pathologically, PD is a slowly progressing 
neurological disease that begins years before a  diagnosis25. Diagnostic examinations that allow for clear diagnosis 
during the initial phases of the disease, in particular, do not exist. Therefore, there is a need to develop suitable 

Figure 3.  Identification of DEGs. (A) RRA analysis identified the DEGs. P value-based heatmap showing the 
top 35 upregulated and downregulated genes. (B) Heatmap of DEGs in HC and PD patients. (C) Venn diagram 
of DEGs between RRA analysis and batch correction.
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diagnostic approaches for early diagnosis. Through bioinformatics analyses, we aimed at identifying diagnostic 
genes that are related to the disease.

In previous studies, we acknowledge that some datasets were utilized in prior research by Zheng et al.26 and 
Kelly et al27. Zheng ’s study conducted a genome-wide meta-analysis of gene sets in PD, identifying 10 gene sets 
associated with the disease. Key findings include defects in mitochondrial electron transport, glucose utilization, 
and glucose sensing occurring early in disease pathogenesis. In Kelly’s study, DEGs were found to be associ-
ated with perturbed pathways, including mitochondrial dysfunction and oxidative stress. In our study, based 
on GSE7621, GSE20141, GSE20159, GSE20163, and GSE20164, RRA and batch correction were performed to 
identify the consensus DEGs, which were 80 in number. Among them, 71 genes were downregulated while nine 
genes were upregulated. Functional enrichment analysis revealed that the enriched GO terms were mainly in 
nerve conduction, DA metabolism, and DA biosynthesis. Pathologically, PD is associated with both neuronal 
dysfunction and inflammation of the central nervous system, consistent with nerve conduction  disorders28. Dys-
regulated DA is more likely to play a crucial role in early onset of PD, thus, early identification of dysregulated 
DA should be a  priority29. The enriched KEGG terms were also mainly in nerve conduction. Analysis of the PPI 
network revealed 39 hub genes, which were visualized by Cytoscape. The Lasso Cox regression model was used 
to assess the diagnostic genes with a high accuracy, which were SLC18A2, TAC1, PCDH8, KIAA0319, PDE6H, 
AXIN1, and AGTR1. CIBERSORT was used to assess immune cell infiltrations in PD. Plasma cells were found to 
be differentially expressed between HC and PD patients. Compared with previous studies, our study integrates 
multiple datasets and employs advanced methods such as RRA analysis and immune cell infiltration analysis, 
we believe that our work contributes to a more comprehensive understanding of the molecular mechanisms 
underlying PD.

SLC18A2, the vesicular monoamine transporter 2, is important in neurotransmitter transportation. It pack-
ages histamine into vesicles in preparation for neurotransmitter release from the presynaptic  neuron30. The 
gene, which is important in the monoaminergic signaling pathway, has been extensively researched on. In the 
absence of this monoaminergic transporter, histamine immunoreactivity is significantly suppressed in neuronal 
cell bodies of the  brain31. Reduced histamine metabolism in the central nervous system is a preventative measure 
against PD  onset32. Further elucidation of the involved mechanisms will contribute to a better understanding of 
the disease. Substance P (SP) dysregulation is associated with the etiology of PD. Mice lacking endogenous SP 
(TAC 1-/-) exhibited greater resistance to nigral dopaminergic neurodegeneration than wild-type controls. The 
neuroinflammatory and dopaminergic neurodegenerative effects of SP are mediated by microglial  NOX233, thus, 
they may shed new light on PD pathophysiology. Protocadherins, which contain PCDH8, are calcium-dependent 

Figure 4.  The GO analysis and KEGG pathway analysis of DEGs. (A) Dot plot showing GO analysis of DEGs. 
(B) Dot plot showing KEGG pathway analysis of DEGs. (C) Circle graph showing the DEGs that were enriched 
in the top 5 GO categories of BPs. (D) Circle graph showing the DEGs that were enriched in KEGG pathway 
analysis.
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adhesion molecules that have drawn interest for their potential functions in development of neural circuits and 
their potential effects on neurological illnesses. Physiologically, PCDH8 is involved in development and mainte-
nance of intrahippocampal  circuits34. However, the association between PCDH8 and PD has yet to be established. 
KIAA0319 is associated with extracellular signaling  pathways35,36. Extracellular signaling pathways and endo-
cytosis are both necessary to control  neurogenesis37. As a pivotal upstream gatekeeper, KIAA0319 plays crucial 
roles in neurogenesis by arresting cellular progression at the neural progenitor cell stage. Cell cycle progression 
is deregulated in PD, and key regulators of the G1/S transition checkpoint are significantly  altered38. Moreover, 
the cell cycle is enriched in GO terms. Even though there is no conclusive proof that KIAA0319 is directly asso-
ciated with PD, our findings shed light on the subject. PDE6H is associated with changes in circadian rhythms 
that are involved in  aging39, however, the association between PDE6H and PD has not been determined. AXIN1 
was overexpressed in hippocampus tissues and cells from MPTP-lesioned mice models of PD. AXIN1 suppres-
sion in PD suppressed hippocampus neuron apoptosis. AXIN1 downregulation suppresses DA neuron death 
via miR-12840. These outcomes suggest a therapeutic potential for AXIN1 in treatment of PD. AGTR1 encodes 
the angiotensin II type 1 receptor (AT1R), whose expressions decreases in dopaminergic neurons of the SN as 

Figure 5.  PPI network and hub gene selection. (A) The top 62 hub genes in the PPI network of DEGs based on 
node degree. (B) Hub genes were identified by taking the interplay of the first 39 genes in the ten classification 
methods of cytoHubba. (C) Hub gene selection in the Lasso Cox regression model. Vertical lines were drawn at 
optimal values by the minimum criteria and the 1–SE criteria. (D) The hub gene landscape in the volcano map.  
© The heatmap of hub genes in HC and PD patients.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2167  | https://doi.org/10.1038/s41598-024-52276-0

www.nature.com/scientificreports/

PD  advances41. In contrast, AT1R upregulation induces the release of pro-inflammatory cytokines, leading to 
inflammation that culminates in dopaminergic cell death and dysfunction. Blocking AT1R with its antagonist can 
attenuate neurotoxin-induced degeneration of dopaminergic neurons in the  SN42,43. These findings underscore 
the complex nature of AGTR1’s role in PD and highlight the need for further research.

The GO function analysis revealed that the DEGs were primarily enriched in nerve conduction, DA metab-
olism, and DA biosynthesis. Nerve conduction is divided into sensory nerve conduction and motor nerve 
 conduction44. Regarding nerve conduction, Toth reported that individuals with PD exhibited slower motor 
conduction velocities, when compared to HC. Toth hypothesized that peripheral neuropathy in PD could be 
attributed to levodopa exposure and elevated levels of methylmalonic  acid45. Thus, motor nerve transmission 
abnormalities maybe present in PD  patients46. Pathologically, PD is characterized by degeneration of the nigros-
triatal dopaminergic system. In 1988, Gotham et al. proposed the ‘dopamine overdose’  hypothesis47. The hypoth-
esis, which proposes an impact on cognitive functions in PD, suggests that the medication doses required to 
restore DA functions in the most severely affected regions may be too high for less affected areas. According to 
this theory, the ventral striatum, which remains relatively intact, can become excessively stimulated when DA 
replacement therapy is administered. Subsequently, this overstimulation affects the limbic system, leading to 
impaired executive functions mediated by the limbic and orbitofrontal systems, such as learning and risk-taking. 
Empirical evidence from literature and clinical observations, particularly in relation to DA agonists, provides sup-
port for this theory and the emergence of impulse control  disorders48. The enriched KEGG terms also included 
the PD and cycle of nerve conduction. The diagnostic gene, SLC18A2, is also associated with neurotransmitter 
transport, synaptic vesicle cycle, and dopaminergic synapses. In terms of neurotransmitter transport, mutations 
in SLC18A2 will impact the transmission of monoamine neurotransmitters, leading to a phenotype that shares 

Figure 6.  CIBERSORT tumor-infiltrating immune cell analysis. (A) The proportion of 22 immune cells 
infiltrating the samples. (B) A violin plot of differential abundance of infiltrating immune cells between HC and 
PD patients.
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Figure 7.  Validation of hub genes. The heatmap (A) and violin plot (B) of hub genes in HC and PD patients in 
the GSE20292 dataset. *P < 0.05, ** P < 0.01, *** P < 0.001. (C) Diagnostic value of 7 hub genes with ROC curves 
in GSE20292 dataset. (D) AUC area under the ROC curve.

Figure 8.  Expression level of SLC18A2, TAC1, PCDH8, KIAA0319, PDE6H, AXIN1, and AGTR1 in peripheral 
blood of HC and PD patients.
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characteristics with all monoamine-related  disorders49. In terms of the relationship between SLC18A2 and DA, 
SLC18A2 is a vesicular monoamine transporter that is essential in DA regulation. Suppressed SLC18A2 activities 
might reduce DA  release50.

Studies have reported on significantly changed B cell subpopulation structures in  PD51. Given that plasma 
cells are derived from B cells, the abundance of plasma cells is associated with PD development. Plasma cells 
may affect PD pathogenesis by influencing the immune microenvironment. However, the relationship between 
plasma cells and PD has not been fully defined. Systematic studies should be performed to elucidate on possible 
mechanisms of plasma cells in PD.

Recognizing the practical challenges of obtaining brain tissue for routine diagnosis, we considered the more 
accessible and commonly used sample type, namely peripheral blood. Our intention was to validate the identi-
fied hub genes, derived from PD patients’ brain tissues, in peripheral blood. This approach is motivated by the 
fact that obtaining brain tissue for diagnosing suspected PD patients is impractical in routine clinical settings. 
Peripheral blood, being a commonly used and less invasive sample, is more feasible for routine diagnostic checks. 
We aimed to assess whether the gene expression patterns in blood align with those in brain tissues, with the goal 
of reducing diagnostic complexity and improving efficiency. However, our study has some limitations. First, even 
though we combined the datasets due to the lower number of samples in PD, studies with bigger sample sizes 
should be performed to confirm our findings. Second, we utilized RT-qPCR to validate the conclusions in blood 
samples of PD patients. Other experimental verification methods should be used to verify our results. Nowadays, 
larger-scale single cell RNA sequencing analysis and multi-omics with more clinical samples is needed to further 
elucidate the exact mechanism of the disease. We can make it realize in PD in the further research.

In conclusion, the developed diagnostic model provides new insights for early stage PD diagnosis. Plasma 
cells were found to be differentially expressed between HC and PD patients. Elucidation of the genetic and 
immunological mechanisms that underlie the initial signs of PD will unlock new therapeutic avenues. These 
insights will empower clinicians to effectively intervene with innovative or repurposed anti-inflammatory and 
immunomodulatory treatments, with the aim of slowing down the progression of this disease.

Conclusion
The SLC18A2, TAC1, PCDH8, KIAA0319, PDE6H, AXIN1, and AGTR1 are associated with PD pathology, and 
are potential diagnostic markers for PD. Besides, immune cell infiltrations might play an important role in PD. 
These findings hold promising implications for PD diagnosis and treatment.

Data availability
All sequencing data generated in this study are deposited in the GEO database. (GSE7672, GSE20141, GSE20159, 
GSE20163, GSE20164, and GSE20292).
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