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Therapy‑induced modulation 
of tumor vasculature 
and oxygenation in a murine 
glioblastoma model quantified 
by deep learning‑based feature 
extraction
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Glioblastoma presents characteristically with an exuberant, poorly functional vasculature that causes 
malperfusion, hypoxia and necrosis. Despite limited clinical efficacy, anti‑angiogenesis resulting 
in vascular normalization remains a promising therapeutic approach. Yet, fundamental questions 
concerning anti‑angiogenic therapy remain unanswered, partly due to the scale and resolution gap 
between microscopy and clinical imaging and a lack of quantitative data readouts. To what extend 
does treatment lead to vessel regression or vessel normalization and does it ameliorate or aggravate 
hypoxia? Clearly, a better understanding of the underlying mechanisms would greatly benefit 
the development of desperately needed improved treatment regimens. Here, using orthotopic 
transplantation of Gli36 cells, a widely used murine glioma model, we present a mesoscopic approach 
based on light sheet fluorescence microscopic imaging of wholemount stained tumors. Deep learning‑
based segmentation followed by automated feature extraction allowed quantitative analyses of the 
entire tumor vasculature and oxygenation statuses. Unexpectedly in this model, the response to both 
cytotoxic and anti‑angiogenic therapy was dominated by vessel normalization with little evidence 
for vessel regression. Equally surprising, only cytotoxic therapy resulted in a significant alleviation of 
hypoxia. Taken together, we provide and evaluate a quantitative workflow that addresses some of the 
most urgent mechanistic questions in anti‑angiogenic therapy.

Glioblastoma multiforme (GBM), the most aggressive malignant primary tumor of the central nervous system, 
is characterized by high levels of pro-angiogenic growth factors that induce microvascular proliferation and 
development of dysfunctional, structurally abnormal  vessels1. Resulting poor perfusion leads to formation of 
hypoxic areas, a hallmark of this tumor type, which favor malignant progression and contribute to therapy 
 resistance2. Standard multimodality treatment, comprising surgery plus the alkylating cytotoxin temozolomide 
(TMZ) and radiotherapy (chemoradiation), only poorly extends the overall low survival  rate3,4. Tumor-induced 
angiogenesis as an essential prerequisite for tumor growth, and consequently anti-angiogenesis as a treatment 
modality, was first proposed by  Folkman5 and became feasible after identification of the endothelial-selective 
growth factor vascular endothelial growth factor A (VEGF-A)6,7. Notoriously high VEGF-A expression in GBM 
raised high hopes for anti-angiogenic therapy (AAT), however treatment of recurrent GBM by combination 
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of chemoradiation and the monoclonal, humanized VEGF-A binding antibody bevacizumab (BVZ) failed to 
prolong overall  survival6–8. Like for other tumor entities also in GBM, counterintuitively, the combination of 
AAT and chemotherapy was more effective than monotherapy. This is at odds with the initial model of AAT-
mediated blood vessel regression and tumor dormancy and resulted in the development of a modified concept, 
vascular normalization. Central to vascular normalization is the neutralization of excessive tumor-derived pro-
angiogenic activity, resulting in vessel stabilization and improved  perfusion9. However, the relative contribution 
of vascular regression and vessel stabilization to vascular normalization remains unclear. Comprehensive data, 
whether BVZ induces vessel regression, promotes hypoxia formation and therefore malignant progression or 
if it acts preferentially via improved perfusion and alleviates tumor hypoxia, are  lacking10. The situation is even 
more complex for additional AAT targets. A prime example is cilengitide (CIL), a cyclic RGD-peptide designed 
to interfere with αvβ3- and αvβ5-integrin-mediated angiogenesis and to suppress tumor  growth11. Unfortunately, 
treatment with highly dosed CIL (hd CIL; also in combination with TMZ) failed to improve patient  survival12 
and showed only a poor anti-angiogenic effect in several clinical  trials13,14. Most interestingly, even adverse effects 
were observed in tumors treated with low dosed CIL (ld CIL), which induced VEGF-A mediated vascular pro-
motion and hyper-vascularization as an effect of compensatory VEGF-receptor 2 (VEGFR-2) up-regulation15,16.

To achieve a higher level in understanding AAT and vascular normalization mechanistically, novel, quantita-
tive approaches to assess tumor vascular networks that complement conventional histological and cell biological 
analysis, are  required17,18. Over the last decades, the transition from analyzing tissue sections to tissue volumes 
became possible through the introduction of disruptive technologies in image acquisition and  evaluation19,20. 
Light sheet fluorescence microscopes and the development of bespoke wholemount staining and tissue clearing 
protocols now allow the rapid recording of cubic centimetre-sized image stacks representing entire organs at 
cellular  resolution21–24. Hence, light sheet fluorescence microscopy (LSFM) allows collection of a high amount 
of data points within a volume of one specimen, which drastically increases the statistical basis when compared 
to datasets derived from sections. Therefore, LSFM is optimally suited to comprehend the tumor microenviron-
ment and vascular networks of unsectioned tissue volumes. Yet, analysis of image volume information becomes 
substantially more difficult with growing size and resolution, making manual quantitation infeasible. There-
fore, processing and evaluating LSFM datasets of hundreds of gigabytes requires automated high-throughput 
algorithms and workflows for the extraction and quantification of biological features. In contrast to 2D images, 
analyzing image volumes bears additional computational complexity and challenges. Recently, several methods 
for automatic feature extraction of vascular structures from large 3D image volumes, based on segmentation 
and network structure identification, were  introduced25–30. Segmentation by classical methods usually requires 
manual feature engineering and parameter  adjustments23,30,31, to which supervised, automated machine learn-
ing offers an alternative 27,28,32,33. Due to high variability of LSFM data, manual feature engineering often fails, 
hence machine learning has gained increasing  popularity34. Once segmentations are computed, the underlying 
network structure can be quantified by classical approaches such as  skeletonization35, which benefit from explicit 
parameterizations allowing to extract statistical yet interpretable characteristics.

Here, we report an extensive computational analysis of the architectural features of the vascular network and 
the associated hypoxia microenvironment in orthotopically transplanted glioblastoma xenografts. Pivotal to the 
approach is a quantitative description of the vascular bed of the entire tumor, while at the same time the effects 
of different treatment regimens comprising AAT mono- or AAT/cytotoxic combination therapy are assessed. To 
visualize sites of tumor hypoxia, a modified, genetically encoded UnaG-based hypoxia-sensor (HRE-dUnaG-
3ALFA, Supplementary Figure S1) was  utilized36,37. Newly inserted ALFA-epitope  tags38 in combination with a 
hyperhydration step for improved tissue permeabilization permitted detection of intratumoral hypoxia by who-
lemount staining. The workflow for the analysis of entire tumor volumes of LSFM image stacks included machine 
learning-based segmentation of the vascular network by applying a customized training procedure to target large 
and abnormal vessels, followed by skeletonization and feature extraction of the obtained graph representations 
and concluded by identification of the differentially oxygenated tumor regions. Using this pipeline to quantify 
the vasculature of brain tumors, unexpectedly revealed that the response to both cytotoxic and anti-angiogenic 
therapy was dominated by vessel normalization with little evidence for vessel regression. Equally surprising, 
only cytotoxic therapy resulted in a significant alleviation of hypoxia. Therefore, we are here providing a model 
and roadmap to dissect the vascular modulating mechanisms of AAT and their influence on tumor oxygenation 
patterns in preclinical tumor models.

Results
Comprehensive visualization of tumor hypoxia in a murine glioblastoma model
The vasculature of GBM is structurally highly abnormal, containing convoluted large diameter vessels, lead-
ing to poor perfusion and hypoxia. We aimed to analyze the impact of vascular normalization on tumor vessel 
structure and hypoxia in the widely used Gli36 mouse glioma model. For intratumoral hypoxia, we applied 
our recently published genetically encoded hypoxia sensor HRE-dUnaG, which labels hypoxic cells in a HIF 
(hypoxia-inducible factor)-dependent  fashion36. This sensor, designed for live cell and intravital microscopy, 
is not applicable for LSFM analysis of organically cleared samples, where fluorescence of the reporter protein 
UnaG-fluorescence is lost. To asses tumor hypoxia in organically cleared brains, we fused three copies of the 
ALFA-epitope  tag38 to UnaG, resulting in the modified sensor HRE-dUnaG-3ALFA. The tag was detected by an 
ATTO542-directly labelled bacterially-expressed α-ALFA-nanobody and specificity of the approach was dem-
onstrated in transfected Gli36 cells (Supplementary Figure S1). Also in confocal images of cyrosections from 
constitutively dUnaG-3ALFA expressing intracranial tumors, the UnaG fluorescence and the immunostained 
AFLA-tag colocalized (Supplementary Figure S2a). In a first step, we approached the development of a whole-
mount staining protocol for entire brains by analysis of 1 mm vibratome sections that were fully penetrated by 
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the nanobodies as demonstrated by LSFM. As expected, UnaG fluorescence was lost during optical clearing and 
refractory index-matching with BABB, while the ATTO-labelled α-ALFA nanobodies were readily detectable 
(Supplementary Figure S2b).

For wholemount immunostaining of an entire brain hemisphere, harbouring a constitutively dUnaG-3ALFA 
expressing tumor, we applied our previously developed protocol based on Triton X-100 permeabilization. How-
ever, LSFM analysis revealed insufficient penetration of the GBM tumor by α-ALFA nanobodies, which only 
decorated a surface layer of approx. 200 µm, but failed to reach deeper tumor tissue (Fig. 1a). Albeit not stained 
due to absence of the cognate epitope, we conclude that the surrounding brain tissue was readily penetrated 
by the α-ALFA-nanobodies, which then were unable to enter the significantly denser tumor tissue. Aiming to 
develop an improved wholemount staining protocol for the dense glioma tissue, we introduced incubation in 
the reagent CUBIC-L for efficient permeabilization, delipidation and decolorization before proceeding to nano-
body  staining39. CUBIC-L, which contains the tertiary amine N,N-Bis(2-hydroxyethyl)butylamine, efficiently 
delipidates and decolorizes lipid-rich samples like human brain, while preserving proteins and their antigenicity. 
After perfusion fixation, dissection and sagittal separation of the tumor bearing and contralateral hemispheres, 
samples were incubated in CUBIC-L, where they swelled due to the reagent’s hyper-hydrating properties (Fig. 1b, 
tumor location: green asterisk). Blocking of non-specific epitopes was followed by immunostaining, applying our 

Figure 1.  Wholemount staining of constitutively dUnaG-3ALFA-expressing intracranial tumors (Gli36). Prior 
to dissection, labelled α-PECAM-1 antibodies (cerebral and tumor vasculature: white) were intravenously 
injected into tumor bearing SCID mice, while tumors were wholemount stained for dUnaG-3ALFA expression 
levels post-mortem. (a) Triton X-100 based permeabilization prior to immunostaining with α-ALFA targeting 
fluorophore-labelled nanobodies (red) analyzed by light sheet fluorescence microscopy (scale bars: 400 
µm (central plane); bars correspond to 1 mm in x/y plane (3D rendering)).(b) Stereomicroscopic view of a 
mouse brain after dissection, splitting of the hemispheres and division of the right hemisphere in two pieces. 
Subsequent panels show the same specimen after incubation in CUBIC-L, blocking and staining, dehydration 
and clearing in BABB (green asterisk indicates site of tumor). (c) Light sheet microscopic visualization of 
tumor wholemount stained following the procedure outlined in (b) (scale bars: 400 µm (central plane); bars 
correspond to 1 mm in x/y plane (3D rendering)).
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original wholemount staining protocol, and finally optical clearing in BABB. Applying this modified protocol to 
intracranial tumors that constitutively expressed dUnaG-3ALFA, resulted in satisfactory staining of the reporter 
throughout the entire volume (Fig. 1c).

Combining intravenous (i.v.) injection of direct-labelled α-PECAM-1 antibodies prior to euthanasia allowed 
us to correlate the intratumoral vascular network (Supplementary Video S1) with hypoxia-detection, based on 
the genetically encoded dUnaG-3ALFA reporter. Thus, we were able to visualize the entire tumor vessel bed 
and to correlate its structure with the hypoxia status of the adjacent tissue (Fig. 2a,b; Supplementary Video S2). 
We validated the LSFM-derived α-PECAM-1 signals by paraffin embedding (PE) of cleared tissue samples after 
LSFM, followed by alternating hematoxylin/eosin (H&E) or immunohistochemical PECAM-1 staining of 5 µm 
sections, using a different α-PECAM-1 antibody. For a rough correlation of sections and LSFM volumes, we 
aligned the H&E staining pattern with the tumor outline, already providing a good match of the larger vessels 
(Supplementary Figure S3). Having established the orientation of LSFM and PE tissue volumes, we were able to 
precisely match the vascular pattern in LSFM and α-PECAM-1 immunohistochemical staining, demonstrating 
the validity of the LSFM-based volumetric vessel assessment (Fig. 2c).

Representative thin planes taken from digitally rendered LSFM-derived image volumes illustrate enhanced 
dUnaG-3ALFA expression in poorly vascularized regions, distant to tumor blood vessels, suggestive of limited 

Figure 2.  Visualization of hypoxic tumor regions. An intracranial tumor (Gli36) expressing dUnaG-3ALFA 
under the control of a hypoxia-inducible (HRE) synthetic promotor, was intravenously (i.v.) labelled by 
α-PECAM-1 antibodies (cerebral and tumor vasculature: white) and immunostained with α-ALFA nanobodies 
(hypoxic tumor regions: red) (a) Volume rendering of the tumor imaged by light sheet fluorescence microscopy 
(LSFM; bars correspond to 1 mm in x/y plane). (b) Visualization of hypoxic regions in individual optical 
sections across the tumor shown in (a), tumor margins are indicated by yellow dotted lines (scale bars: 200 µm). 
(c) Correlation of tumor vasculature in the same specimen either visualized in optically cleared tissue volumes 
by i.v. injected α-PECAM-1 antibodies or in paraffin-embedded microtome sections by immunohistochemical 
staining (IHC) (scale bars: 100 µm). A mask (green) generated from the LSFM signal was overlaid onto the 
IHC staining to indicate the position of blood vessels. (d) Colocalization of dUnaG-3ALFA protein expression 
and neoepitopes formed by the hypoxia marker pimonidazole in wholemount stainings of a 1 mm vibratome 
section. Comparatively low pimonidazole signals are highlighted by yellow arrowheads (scale bars: 200 µm).
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oxygen availability (Fig. 2b). Reliable detection of hypoxic tumor volumes by the UnaG-based hypoxia-reporter 
was confirmed, in agreement with a recent  study40, by colocalization of neoepitopes formed by the bioreductive 
pimonidazole-derivative Hypopxyprobe and sites of UnaG-3ALFA expression (Fig. 2d and Supplementary Video 
S3). Taken together, a newly established wholemount staining protocol allowed nanobody-mediated detection 
of a genetically encoded hypoxia-reporter throughout complete murine intracranial gliomas.

Analysis of large light sheet microscopic datasets using computational image‑analysis 
pipelines
Next we addressed the impact of different treatment modalities on vessel structure and tumor oxygenation. 
Therefore, we xenografted 5 ×  104 Gli36 cells, stably transfected with HRE-dUnaG-3ALFA, intracranially into 
SCID mice and euthanized the animals after 21 days, as previous experimentation had established that these 
parameters would preclude development of a severe health burden in the control groups. Sample preparation 
and LSFM image acquisition followed stereotypically the workflow outlined in Supplementary Figure S4. Size 
and complexity of the tumor vasculature precluded manual annotation and required to develop an automated 
computational analysis (Fig. 3) to capture quantitative features in different sample regions. Our pipeline aims 
to accurately segment strongly varying vessel sizes, requiring (i) the elimination of false positive signals due to 
autofluorescence (AF) and (ii) a robust segmentation including the lumen of large vessels that lack a luminal 
PECAM-1 signal. Subsequently, (iii) geometric features have to be extracted from the vasculature segmentation 
and (iv) tumor volumes as well as contained hypoxic regions need to be identified.

Vessel processing and segmentation
Addressing (i), AF present in subregions of some image volumes was captured in the 525/50 nm channel (Sup-
plementary Figure S5) and subtracted from both the dUnaG-3ALFA and PECAM-1 signal. Differences in overall 
absolute signal intensity and the presence of intensity gradients in the imaged volumes prohibited the use of a 
global subtraction method (Supplementary Figure S5). Instead, we took an approach based on the appearance 
of AF in all channels with the same relative spatial distribution albeit with different intensity. AF signal peaks 
were detected using the nearest neighborhood for comparison. After normalization of both AF and target signal, 
subtraction revealed previously hidden structures (Supplementary Figure S5). For (ii), the segmentation of the 
vascular network, a machine learning model was trained on manually annotated data to segment the vascular 

Figure 3.  Overview of the pipeline for region-based feature analysis. For preprocessing, autofluorescence 
was subtracted from the PECAM-1 and UnaG-3ALFA channels, after intensity normalization. A full binary 
segmentation of the vascular volume, including the lumen, was derived from the PECAM-1 signal using 
a 3D-Unet based refined machine learning model. The graph representation and according features of the 
extracted vessel segments were implemented in Voreen. In parallel, both signals were used to delineate hypoxic 
tumor regions. Two coarse segmentations of the tumor volume were calculated using first, thresholding on 
the UnaG-ALFA signal and second, a simple 3D-Unet based segmentation model operating on the PECAM-1 
signal. After combination, both segmentations were corrected manually. Hypoxic tumor regions were identified 
using intensity thresholding on a smoothed version of the UnaG-3ALFA signal. Finally based on their location, 
vessel segments and features were assigned to the resulting regions (healthy, normoxic and hypoxic) within the 
volume.
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structure and was specially tuned to identify the lumen of large, irregular vessels (Supplementary Figure S6; 
Supplementary Video S4). To this end, we extended established state of the art methodology for segmentation 
of vessel-like  structures32 with an additional lumen loss term, using the Euclidean Distance Transformation of 
the ground truth segmentation as a weight map to focus big vessels in the proposed loss. Specifically, a small 
3D-Unet41 with approx. 1.7 million parameters was trained using a weighted combination of three loss terms, 
normal dice loss together with the clDice proposed by Shit et al.32 for accurate centerline prediction, as well 
as the new lumen-centered loss (for details see Methods Section Deep-Learning based vessel segmentation). 
Evaluation of the proposed method on unseen, manually annotated test data showed a clear improvement of the 
segmentation quality in comparison to off-the-shelf methods like nnU-Net33 (Fig. 4a), raising the dice score from 
0.757 to 0.858. Albeit deploying the lumen loss does not lead to a substantial improvement in terms of standard 
metrics (Fig. 4a), in comparison to only using the dice and centerline dice loss, a better lumen reconstruction 
was observed for vessels with larger diameter (Fig. 4b–d). Increasing the size of the model by multiplying the 
number of channels in each convolution slightly decreased the segmentation quality, nevertheless, both archi-
tectures outperformed the established nnU-Net substantially (Fig. 4a). Further increasing the size of the network 
to approx. 45 million parameters yielded similar training losses, but overfitting could be observed based on the 
increasing test loss.

Feature extraction and tumor region segmentation
After calculating the segmentation, a graph and feature extraction was performed using the algorithm by Drees 
et al.29 implemented in  Voreen42, to address challenge (iii). The robust design and inherent scalability of this 
algorithm are ideally suited for the analysis of the large image volumes obtained by LSFM. The excerpt and zoom 
shown in the pipeline overview (Fig. 3, top right) demonstrate reliable graph construction for vessels of all scales. 
For each vertex in the graph representation, a set of features describing the corresponding vessel segment was 
calculated, allowing comparison of different sample regions based on their vessel segments and calculated feature 
distributions. Available features included the average cross section, radius, volume, minimum and maximum 
radius, as well as length and curveness of the segments.

For region-specific analysis, addressing (iv), tumors were segmented semi-automatically, by manual combina-
tion of two segmentations. Specifically, to capture the distinct vessel morphology of tumor regions, a 3D-UNet 
based segmentation model using a downscaled version of the PECAM-1 signal as an input was trained. A 
second, threshold-based segmentation calculated on the dUnaG-3ALFA signal was deployed, complementing 
the first segmentation. In contrast to the complex vasculature, tumor regions can easily be annotated such that 
manual inspection and corrections were combined with the segmentations when necessary, using  VASTLite43. 

Figure 4.  Qualitative and quantitative representation of the proposed vessel segmentation approach for lumen 
segmentation of large vessels. (a) Quantitative results: All metrics were calculated on binarized segmentations 
using a threshold of 0.5, with test data derived from image volumes not seen during training. The proposed 
method is marked with *, bold values indicate best performance per criterion. Results from nnU-Net are 
obtained using the official repository. All rows except the last are trained using a 3D-UNet with the training 
procedure described in the methods section. (b) Single optical plane depicting the intratumoral PECAM-1 
signal. (c) Segmentation result of a model trained with both Dice loss and Centerline Dice loss. Missing lumen 
in the segmentation is indicated by red arrowheads. (d) Lumen segmentation after inclusion of the lumen loss.
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The resultant tumor volume was then clustered into normoxic and hypoxic regions via a threshold for the dUnaG-
3ALFA specific signal intensity, which was set to 1.5σ of the mean AF intensity (MFI) of the brain parenchyma, 
individually considering the sample background (Fig. 5a). This approach accounts for normoxic background 
expression of the dUnaG-3ALFA mCMV-promoter by assigning low dUnaG-3ALFA expression to normoxia. 
Allocation of the resulting clusters to an optical section of an LSFM volumetric dataset verified the assignment 
of high dUnaG-3ALFA expression and the designated hypoxia-cluster (Fig. 5b; Supplementary Video S4).

Extracted features reveal a distinct vascular morphology in normoxic and hypoxic tumor 
regions
The extracted vascular features allowed a robust discrimination of healthy brain parenchyma and tumor tissue 
(Fig. 5c). Of a range of parameters the average cross section area most robustly reported differences between 
hypoxic and normoxic tumor regions (Fig. 5d–k). The average cross section area was more than threefold 
increased in blood vessels of untreated tumors, reflecting the highly abnormal vessel architecture. To correlate 
features of the divergent vessel architecture to differently oxygenated tumor regions, we assigned them to the 
different tumor oxygenation clusters or healthy tissue and plotted the distribution of vessel cross section area, 
radius, volume, minimum radius and maximum radius (Fig. 5d–h), revealing differences of the vascular network 
in healthy parenchyma and normoxic or hypoxic regions of untreated tumors (PBS). Vessels with a smaller cross 
section area were more frequent within normoxic tumor regions (red; highest frequency: 200 µm2), whereas 
hypoxic tumor regions contained predominantly enlarged vessels (blue; highest frequency: 370 µm2) (Fig. 5d). 
Similarly, other vessel parameters based on luminal size like radius and volume distinguished normoxic and 
hypoxic tumor regions (Fig. 5e–h). Statistically significant shifts between the distributions of all extracted vas-
cular features, including curveness and length, were revealed between all clusters of the vehicle-cohort (PBS) 
(Fig. 5d–k; Supplementary Table S1), healthy tissue/normoxic region, healthy tissue/hypoxic region, normoxic/
hypoxic region), demonstrating the statistical power of the approach.

Tumor volumes and oxygenation patterns are altered in response to systemic therapies
To obtain a comprehensive view of the vascular normalization brought about by AAT, we subjected our murine 
Gli36-tumor model to treatment using BVZ, ld or hd CIL and the corresponding combination therapies with 
TMZ (Fig. 6a). Therapeutic response, modulation of the tumor vascular architecture and determination of the 
oxygenation state were visualized for the entire tumors by LSFM (Fig. 6b; Supplementary Figure S7, S8) and 
features of the tumor vessel beds after treatment with TMZ, BVZ and CIL as well as the combination therapies 
(BVZ + TMZ, ld CIL + TMZ, hd CIL + TMZ) were compared to vehicle-treated tumors (Fig. 6b; Supplementary 
Figure S7, S8).

In agreement with a large body of preclinical studies, TMZ and BVZ monotherapy resulted in a highly 
significant reduction of tumor growth (Fig. 7a). TMZ showed the strongest effect, reducing the tumor vol-
ume 63-fold from 12 to 0.2  mm3, followed by a 24-fold reduction by BVZ from 12 to 0.5  mm3. Monotherapy 
with ld CIL or hd CIL was largely inefficient concerning tumor size (Fig. 7a), mirroring observations in other 
xenograft models and clinical trials, where tumor growth also was refractory to αvβ3-/αvβ5-integrin inhibitor 
 monotherapy15. Combination of BVZ + TMZ showed no additivity and was most likely dominated by the effect 
of TMZ. Unexpectedly and irrespective of its dosage in combination therapy, CIL diminished the efficacy of TMZ 
in tumor growth reduction. In untreated tumors, the majority comprising approx. 2/3 of the tumor tissue was 
hypoxic (Fig. 7b,c), which remained largely unaltered after AAT monotherapy. Within the three AAT treatment 
groups, BVZ showed the lowest hypoxia/normoxia ratio, suggestive of a mild but insignificant improvement of 
hypoxia. In contrast, cytotoxic TMZ monotherapy, significantly alleviated hypoxia, indeed even reversed the 
hypoxia ratio, which surprisingly was also the case for all AAT combination therapies with TMZ (Fig. 7b,c and 
Supplementary Figure S7 a,e–g).

Correlation of the modulation of tumor vascular architecture and oxygenation patterns in 
response to systemic anti‑angiogenic and cytotoxic therapies
Assuming that the number of vessel segments per volume  (mm3) provides a proxy for vascularization or vessel 
density, our quantitative feature extraction allowed the desired assessment of vessel regression after treatment, 
independently of the total tumor volume and oxygenation status (Fig. 7d,e and 8; Supplementary Figure S9). 
BVZ and TMZ monotherapy led to a significant increase in vessel segments per  mm3, indeed arguing against 
vessel regression. Furthermore while the vessel volume per tumor volume was unchanged in the BVZ treatment 
group, the density of segments increased, suggesting an increase of smaller vessels, again supporting the concept 
of vessel stabilization (Fig. 7d,e). CIL monotherapy or had little to no effect on vascular density, irrespective of 
the treatment dose. In addition, combination therapy (CIL + TMZ) did not impact vessel density irrespectively of 
the CIL concentration (Fig. 7d,e). Like observed for the hypoxia ratio, TMZ appeared to dominate all combina-
tion treatments leading to an increase in vascular volume and density, which was in agreement with the overall 
reversion of the hypoxia ratio (Fig. 7b–e). Counterintuitively, we measured the highest vascular density in all 
TMZ treated tumors in dUnaG-3ALFA expressing tumor regions (Fig. 7d).

The robust differences detected in vehicle-treated tumors for average cross section area (Fig. 5d) prompted us 
to evaluate this parameter in all treatment groups (Fig. 8). In the control and the two CIL monotherapy groups, 
average vessel cross section area (Fig. 8a) distinctly differed between healthy parenchyma (grey), normoxic (red) 
and hypoxic (blue) tumor tissue (Fig. 8b–d; Supplementary Table S1). In hypoxic areas, large caliber vessels were 
particularly prominent, while in normoxic tissue the vessel cross section was about half-fold lower, but still more 
than twofold the value of healthy tissue (Fig. 8b–d). Treatment with TMZ reduced the vessel diameter in nor-
moxic and hypoxic tumor tissue to values close to healthy tissue, although the differences in vascular morphology 
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Figure 5.  Analysis of the cerebral and tumor vascular architecture and classification of tumoral oxygenation patterns within vehicle-
treated (PBS) mice. (a) Intensity distribution within dUnaG-3ALFA fluorescence channel. Based on the autofluorescence of the 
brain parenchyma (grey), a hypoxia threshold was defined at 1.5σ (black dotted line) above the mean. (b) Representation of tumor 
(delimited by green dotted line) oxygenation clusters in an optical sectional plane of an LSFM image stack (left panel: immunostaining 
of dUnaG-3ALFA-positive tumor regions (red); right panel: normoxic (low UnaG-3ALFA, red) and hypoxic (high UnaG-3ALFA, 
blue) tumor tissue; scale bars: 100 µm). (c) Distribution of the average cross section area (vessel volume / length) of cerebral (grey) and 
tumor (green) blood vessels in the segmented vessel beds (n = 4). (d–k) Analysis of architectural vascular features including average 
cross section area (d; volume / length), average radius (e), vessel volume (f), minimum radius (g) and maximum radius (h), curveness 
(j) and vessel length (k) in the surrounding cerebral parenchyma and normoxic and hypoxic oxygenation clusters of the tumor blood 
vessel bed (% in terms of (i.t.o.) total lumen; n = 4). Variations of the obtained vascular features are significant between all clusters 
(healthy tissue/normoxic region, healthy tissue/hypoxic region, normoxic/hypoxic region; Kolmogorov–Smirnov test; Supplementary 
Tables S1). Dotted lines represent maxima of the respective normal distributions (a, c–k).
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were still significant between parenchymal and tumoral vessels (Fig. 8e; Supplementary Table S1). BVZ treatment 
resulted in near vessel normalization in normoxic tumor tissue, while the vessels in hypoxic regions of the tumor 
had about the cross section area of vessels in normoxic parts of untreated tumors, i.e. about twice the area of 
healthy parenchyma (Fig. 8f). Combination therapies showed a vessel normalizing effect that was most likely due 
to TMZ, but did not fully reach the extent of TMZ monotherapy (Fig. 8g–j). Most importantly, although vessel 
cross section areas appeared normalized for some treatment groups, there remained a significant morphological 
difference between the tumor and parenchymal blood vessel architecture (Supplementary Table S1).

Taken together, in all treatment groups except TMZ monotherapy, tumor vessels with a reduced average cross 
section area (Fig. 8a), which should potentially favor perfusion and oxygenation, were predominantly localized 
within normoxic tumor regions (red). Surprisingly, the shift in vessel diameter had only a minor impact on the 
overall tissue oxygenation.

Discussion
In this study, we applied LSFM-based volume imaging of complete, unsectioned tumors to quantitatively analyze 
the vascular changes caused by AAT, with the aim to unravel underlying mechanisms and consequences of AAT. 
The central question we wanted to address concerns the relative contribution of vessel normalization versus vessel 
regression to the effects caused by AAT. Furthermore, does vessel normalization result in improved perfusion, 
leading to a relief of tumor hypoxia? We addressed these questions using the established, orthotopic Gli36 glioma 
cell xenograft tumor model in conjunction with a genetically encoded hypoxia sensor, which allowed us to deter-
mine activation of the hypoxia response pathway as a proxy for tissue oxygenation. We applied the AATs BVZ, ld 
CIL and hd CIL either alone or in combination with the cytoxtoxic drug TMZ, while TMZ monotherapy provided 

Figure 6.  Assessment of the vascular architecture and hypoxia status in a murine glioblastoma model 
after different tumor therapies. (a) Between day 5 and 12 after intracranial injection of Gli36 cells, stably 
transfected with a construct for the hypoxia-inducible expression of dUnaG-3ALFA, SCID mice were treated 
intraperitoneally with temozolomide (TMZ) and/or low-dosed cilengitide (ld CIL), and/or high-dosed 
cilengitide (hd CIL) and/or bevacizumab (BVZ). Animals were euthanized 21 days later and tumor-bearing 
brains were dissected, immunostained and optically cleared for light sheet fluorescence microscopy. (b) Digital 
volume renderings of cerebral and tumor vessels (PECAM-1: white) and the hypoxic intratumoral regions 
(UnaG-3ALFA: red) were analyzed to reveal apparent alterations in tumor growth, hypoxia and the vascular 
network in response to treatment.
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a baseline for the activity of chemotherapy. Surprisingly, we found solid indication for vascular normalization in 
all treatment groups, most pronounced for TMZ monotherapy, while none of the treatment groups, including 
all AATs regimen, provided significant evidence for vascular regression.

The comprehensive quantitative analysis presented here is based on the consequent use of 3D volume data 
to evaluate the vessel bed in entire tumors. This requires efficient wholemount staining, which is frequently 
obstructed by high tumor tissue density, limiting antibody penetration. We dealt with this obstacle by developing 
an improved wholemount staining protocol, which includes an additional hyperhydration and permeabilization 
step in CUBIC-L39 reagent prior to immunostaining and detection of a triple ALFA-tag with a directly-labeled 
high affinity nanobody. This protocol provides improved permeabilization for the enhancement of nanobody 
penetration, but retains mild staining conditions compatible with a large host of antibodies and nanobodies and 
ensures optimal tissue transparency after clearing. We adapted our computational pipeline specifically for the seg-
mentation of large diameter vessels that were frequently present within tumor tissue. This combination of wet-lab 
and computational advances enabled us for the first time to visualize the complete vessel bed and hypoxia status 
of the microenvironment of entire tumors treated with different modalities with cellular resolution. An imme-
diate advantage of the approach is the high statistical power gained from the evaluation LSFM imaging-based 
volume data, where each image stack correspond to thousands of traditional histological sections. For instance, 
established features of tumor vessels, like increased  tortuosity44 and enlarged diameter were robustly reflected 
in our data sets. The later was best represented by the average cross section area that markedly distinguished 
healthy brain parenchyma from tumor tissue, but intratumorally also the normoxic and hypoxic tumor clusters.

The alkylating cytostatic drug TMZ either alone or in combination with BVZ showed the strongest effect on 
tumor growth, also clearly surpassing the growth inhibition by achieved BVZ monotherapy. CIL as monotherapy 
was ineffective, while concomitant with TMZ, tumor growth was inhibited. Surprisingly however, CIL dimin-
ished the capacity of TMZ to inhibit tumor growth. In all treatment groups, growth inhibition was accompanied 
by a reduction in vessel average cross section area, strongly suggestive of vessel normalization. This was also 
the case for the CIL combination groups. Indeed in the ld CIL + TMZ group, the reduction of the average cross 

Figure 7.  Tumor volumes and differential oxygenation patterns in Gli36 transplanted SCID mice after different 
therapies. Total volume and normoxic and hypoxic areas were identified in tumors treated with temozolomide 
(TMZ) and/or bevacizumab (BVZ), and/or low-dosed cilengitide (ld CIL) and/or high-dosed cilengitide (hd 
CIL). (a) Tumor volumes after the indicated treatment. (b) Relative hypoxic and normoxic tumor volumes and 
(c) hypoxia ratios (hypoxic/normoxic volume) in the indicated treatment groups. (d) Vascularization index 
as indicated by the number of vessel segments per  mm3 in the tumor volumes and the contained oxygenation 
clusters. For statistical analysis, treatment groups were individually compared to vehicle controls (PBS, 
PBS + DMSO) if not indicated otherwise. (a, c, d; unpaired two-tailed Student’s t-test with Welch’s correction; 
p > 0.05, not significant (ns); *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001). Number of animals: TMZ: n = 5, BVZ: n = 5, ld 
CIL: n = 5 (a) or 4 (b–d), hd CIL: n = 3, BVZ + TMZ: n = 5, ld CIL + TMZ: n = 5, hd CIL + TMZ: n = 5, PBS: n = 4, 
PBS + DMSO: n = 6.
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section area was comparable to the BVZ + TMZ group, suggesting that an effect other than simple sensitization 
to VEGF-A must be responsible for the reduced growth inhibition in these groups. In addition, TMZ mono and 
combination therapy resulted in a significant increase in the number of vessel segments per  mm3 tissue, and 
concordantly a reduction of the hypoxic over normoxic tumor area ratio. Unexpectedly in the same groups, we 
noted the highest vessel segment density in the hypoxic tumor regions, potentially indicating reactive vasculari-
zation. Reasons could involve poorly functional vessels or development of escape mutants with unphysiological 
HIF-stabilization during the treatment regime, which would impair validity of the hypoxia clustering.

Taken together, while our analysis provided clear evidence for vessel normalization in all investigated therapy 
modalities that resulted in effective inhibition of tumor growth, we detected no indication of vessel regression, 
in particular not in the BVZ treatment group. Instead, after TMZ mono- and combination therapy with BVZ, 
curveness of tumor vessels approached the values of vessels from the surrounding parenchyma, further sup-
porting the notion of normalized vascular structure in response to these therapies. Clearly, these statements are 
based on a single tumor model and require analysis of a variety of xenograft models, ideally with cell lines freshly 
established from patient material to derive more universally applicable insights. Also, our hypoxia clustering is 
based on activation of the physiological hypoxia response-pathway, which could potentially become impaired 
if tumor cells developed mechanisms of HIF1-stabilization independent of hypoxia. Nevertheless, our study 
demonstrates feasibility of a quantitative analysis of the vessel bed and microenvironment of entire tumors, 
paving the way to a better understanding of treatment modalities, in particular AAT.

Figure 8.  Specific changes of tumoral vessel architecture in relation to GBM oxygenation clusters (hypoxic and 
normoxic regions). (a) Quantification depicted as average cross sectional area (volume/length) between the 
treatment groups after systemic tumor treatments (b–j; % in terms of (i.t.o.) total lumen). Changes of average 
cross section area are significant between all clusters (healthy tissue/normoxic region, healthy tissue/hypoxic 
region, normoxic/hypoxic region) within each treatment group (Kolmogorov–Smirnov test; Supplementary 
Tables S1). Dotted lines represent maxima of the respective normal distributions. Number of animals: 
PBS + DMSO: n = 6, ld CIL: n = 4, hd CIL: n = 3, TMZ: n = 5, BVZ: n = 5, ld CIL + TMZ: n = 5, hd CIL + TMZ: 
n = 5, BVZ + TMZ: n = 5.
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Methods
Plasmids
For generation of the hypoxia-sensor construct HRE-dUnaG-3ALFA, a triple ALFA-epitope  tag38 was inserted 
C-terminally of the UnaG cDNA into HRE-dUnaG36. For constitutive expression of dUnaG-3ALFA, the hypoxia-
responsive promotor element in HRE-dUnaG-3ALFA, comprised of five hypoxia-responsive elements (HREs) 
fused to a minimal human cytomegalovirus (mCMV)-promoter (Addgene #46,926)45, was replaced by a CMV-
promoter element resulting in CMV-dUnaG-3ALFA (Supplementary Figure S1). The functional sensor protein 
is destabilized (dUnaG-3ALFA) by a PEST-degradation motif, derived from the murine ornithine carboxylase 
 gene46.

Generation of stably hypoxia‑expressing tumor cell lines
Human glioma Gli36 cells (RRID:CVCL_RL88)47 were obtained from Andreas Jacobs, EIMI, University of 
Münster. Cells were transfected with the HRE-dUnaG-3ALFA or CMV-dUnaG-3ALFA plasmids by calcium 
phosphate co-precipitation. For isolation of stable transfectants, cells were selected in the presence of geneticin 
(1 mg/ml G418) for 2 weeks. Following culture under hypoxia (1% ambient  O2) cell bulks with intermediate 
expression level were isolated by FACS.

Intracranial tumor  induction48

Gli36 cell lines stably expressing dUnaG-3ALFA were intracranially injected into SCID mice (CB17/lcr-Prkdcscid/
lcrlcoCrl (Charles River Laboratories, Wilmington, USA), 20–23 weeks, female). After anesthetization with car-
profen and midazolam (intraperitoneal (i.p.)), anesthesia was maintained by inhalation of 1.5% isoflurane  (O2 
flow ~ 0.8 L/min). The shaved head was stereotactically fixed and the skull cap exposed. After orienting at bregma 
and moving the dental drill 0.5 mm rostral and 2 mm to the right, a hole was introduced into the calvaria of the 
right hemisphere. Using a micro-syringe, 5 ×  104 cells of a single cell suspension were injected 3 mm deep into 
the cortex, the hole was sealed with bone wax and the scalp closed with 3–4 interrupted stitches.

Treatment modalities
Mice were administered with eight doses with either 10 mg/kg Bevacizumab (BVZ)49, 50 μg/kg (ld CIL)16,50 or 
5 mg/kg Cilengitide (hd CIL)16 via i.p. injection every second day starting from day 5 after tumor implantation. 
For combination treatment, additional three doses of 10 mg/kg Temozolomide (TMZ)51 in DMSO were admin-
istered on day 13, 15 and 17. For single therapy, three doses of 10 mg/kg TMZ were administered on day 12, 14 
and 16. Vehicle control mice were injected with 150 µl of PBS every second day, starting from day 5 after tumor 
implantation (PBS) or additionally with 25 µl of DMSO on day 13, 15 and 17 (PBS + DMSO). The transplanted 
cell number and the stereotypic experimental endpoint, 21 days after GBM xenotransplantation, were defined 
by the maximal time, control animals survived without developing a severe health burden. Health status was 
monitored by daily scoring of parameters including body weight, fur condition, breathing, bodily discharge, 
behavioral and neurological deficits or loss of coordination.

Wholemount staining of intracranial tumors
After i.v. injection of Alexa Fluor™ 647-labelled rat monoclonal α-mouse PECAM-1 antibody (clone 5D2.6 and 
1G5.152), mice were perfused with isotonic saline solution followed by 4% (wt/vol) paraformaldehyde (PFA)/
PBS under deep anesthesia. Brains were dissected and postfixed in 4% PFA for 2 h at room temperature (RT). 
Subsequently, hemispheres were cut sagittally and further reduced to the tumor containing volume (rostral right 
hemisphere, Fig. 1b). Specimen were washed in 1X PBS at RT (approx. 12 h), before transfer into CUBIC-L 
(10% (wt/vol) N-butyldiethanolamine, 10% (wt/vol) Triton X-100 in  H2O)39 for delipidation and decoloriza-
tion. Incubation in CUBIC-L lasted for one week at 37 °C while gently shaking and refreshing the reagent daily. 
After washing in 1X PBS for 24 h at RT, samples were placed in PermBlock solution (3% (wt/vol) bovine serum 
albumin, 0.1% (vol/vol) Tween20 in PBS) and further incubated at RT for 3 days. The ATTO 542-labelled recom-
binant single-domain antibody FluoTag®-X2 α-ALFA (NanoTag Biotechnologies GmbH, Göttingen, GER) was 
diluted in PermBlock (1:500) and added to the tumor bearing specimen for 3 weeks, while gently shaking at 
37 °C in the dark. Final washing was performed in 1X PBS-T (0.1% (vol/vol) Tween20 in PBS) for 3 days with 
multiple changes of the medium.

Immunohistochemical analysis of paraffin‑embedded tissue samples after optical clearing
The optically cleared tissue samples were immersed in anhydrous methanol (2 × 99.8% (vol/vol) for 3 h at RT) to 
remove the BABB clearing solution after LSFM acquisition. Specimen were then processed to paraffin-embedded 
tissue blocks and immunohistochemistry (α-PECAM-1 (diluted 1:1000), ab124432, Abcam plc., Cambridge, 
UK) was performed on microtome sections. Paraffin sections were imaged with a Nikon Ti2-E epifluorescence 
microscope (Nikon BV, Amsterdam, NL), 20 × Plan Fluor objective (NA = 0.45) and a color camera (Nikon 
DS-Ri2). For image analysis Nikon NIS–Elements and FIJI by  ImageJ53 were used.

Hypoxia detection via pimonidazole
For bioreductive labelling of hypoxic tissue areas, tumor bearing mice were i.v. injected with 60 mg/kg body-
weight pimonidazole (Hypoxyprobe™-1), diluted in isotonic saline. After 30 min, animals were perfused. To 
counterstain intracellular pimonidazole-adducts, wholemount staining of 1 mm vibratome sections or an intact 
BVZ-treated tumor xenograft was performed via an ATTO 594-labelled rat monoclonal α-pimonidazole antibody 
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(clone 11.23.22.R; Hypoxyprobe Inc., Burlington, USA). Optically cleared, stained tissue samples were visual-
ized by LSFM.

Optical tissue clearing of brain  specimen23

The immunostained specimen were incubated in an ascending methanol series (50% (vol/vol) in  H2O, 70% (vol/
vol) in  H2O, 2 × anhydrous (99.8% (vol/vol))), allowing 6 h for each step. Subsequently, the dehydrated samples 
were transferred to an anhydrous mixture of equal volumes of MeOH and BABB (1:2 (vol/vol) benzyl alcohol 
: benzyl benzoate). After complete equilibration, indicated by loss of buoyancy, the sample was finally moved 
into BABB.

Light sheet microscopy
Optically cleared brain specimen were imaged using a LaVision UltraMicroscope II with Super Plan configuration 
and a 4 × objective (NA 0.35) (Milteny Biotec, Bergisch Gladbach, GER) equipped with a NKT supercontinuum 
white light laser (SuperK EXTREME FIU-15; NKT Photonics, Birkerød, DEN) and band-pass excitation filters 
(470/40 nm (AF), 546/10 nm (ATTO 542), 640/20 nm (Alexa Fluor™ 647). Acquisitions were performed using 
mono- or bidirectional illumination and dynamic focus positioning while applying a z-step size of 3 µm and 
a digital magnification of 0.6X. For emission detection, band-pass filters (525/50 nm (AF), 577/25 nm (ATTO 
542), 690/50 nm (Alexa Fluor™ 647) were used and signals recorded with a sCMOS sensor camera (Excelitas 
PCO, Kelheim, GER).

Preprocessing of reconstructed volumes
Image stacks were rendered using the Voreen (volume rendering engine) open-source volume visualization library 
and development platform (https:// www. uni- muens ter. de/ Voreen/). After volume reconstruction, 3D images 
were digitally trimmed to the tumor-containing region and its immediate surrounding. For subsequent removal 
of AF, we evaluated the AF channel (525/50 nm) assuming a constant ratio of the relative AF intensity ratio in 
all channels. Peaks in the 525/50 nm band were detected using a neighborhood-based approach, specifically, the 
local average signal intensity was calculated by convolving the volume with a constant kernel of radius k (k = 32 
in all conducted experiments). This local approach was necessary due to the inhomogeneity of the overall signal 
intensity throughout a volume. Using the obtained local average, signal intensities higher than 0.05 – 0.4 stand-
ard deviations (value chosen individually for every volume) above average were considered peaks to subtract. 
Due to the different intensity regimes of the AF and target signal, the peak signal was normalized by subtracting 
the (local) mean and dividing by the standard deviation first, and was then rescaled to fit the target signal by 
multiplying with its own standard deviation. In cases with more severe AF, the peak signal was amplified by fac-
tor of 1.2 before subtraction. During this stage, any bigger regions containing extremely high AF overpowering 
the target signal caused by effects like haemorrhages are masked for exclusion from the analysis at later stages.

Deep‑Learning based vessel segmentation
Data annotation
The segmentation model was trained based on a subset of the acquired volumes as training data, using only the 
PECAM-1 channel as input. In total, 4 volumes from different treatment modalities were used. Despite the low 
number of specimens, given the extensive size of each acquired image volume, a full manual annotation of the 
training set was infeasible. Instead, a pre-segmentation was obtained using classical methods (see below) and 
subsequently manually corrected and extended using  VASTLite43 as annotation tool. For the initial segmentation, 
the image volume was first normalized based on the local average intensity, using the convolution operation from 
the AF preprocessing step. Then, hysteresis thresholding was used to create a segmentation, which subsequently 
got checked and corrected manually, with a particular focus on filling the lumen of bigger vessels.

Training details
For segmentation of the vascular network, we trained a basic 3D-UNet41 architecture on chunks of 1283 voxels. 
For inference, chunks were created with 50% overlap in all dimensions and stitched back together using Hann 
window  stitching54. The four annotated volumes yielded 1705 chunks for training and validation. Best hyper-
parameters were chosen using a 20% validation set sampled randomly from all available chunks and the final 
model was trained using all available data. The training loss comprised three terms, specifically the normal 
dice  loss55 together with the centerline dice loss introduced by Shit et al.32 and a novel loss term focusing on 
segmenting the lumen of bigger vessels. The latter is based on the Euclidean Distance Transform of the ground 
truth segmentation. Each voxel was assigned the closest distance to any background voxel, resulting in higher 
values inside bigger vessels, down to zero in the background region. To ensure equal weighting for the innermost 
lumen, this distance was clipped to a given maximum radius r and then normalized using a shifted sigmoid func-
tion. Experimental evaluations of the radius r yielded good results for r = 10 in our setting. The shifted sigmoid 
function was calculated as

with σ(5) ≈ 1 . To calculate the loss, both predicted and ground truth segmentation were weighted using the 
obtained distance map, and normal dice loss was applied afterwards. Altogether, the total loss was calculated as

σshifted(x, r) = σ(x − (r − 5)), σ(x) =
1

1+ e−x

L = (1− β)((1− α) · LDice + α · LclDice)+ β · LLu m e n

https://www.uni-muenster.de/Voreen/
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with α = β = 0.5 for the final model. The standard 3D-UNet architecture with 8 channels in the first layer, 
doubling after every down-sampling step for a total of 5 hierarchy levels, was trained for 150 epochs with an 
initial learning rate of 0.0001 after 5 epochs of warmup, applying an exponential learning rate decay of 0.99 after 
every epoch. For data augmentation, random contrast change and additive gaussian noise were used, as well as 
applying a random bias field creating a global intensity gradient for 75% of training samples, randomly chosen. 
As post-processing, the probabilistic segmentation maps were threshold using a confidence of 0.5 and finalized 
by morphological hole filling to clear small gaps in the segmentation.

Feature graph extraction
The obtained segmentation volumes were rescaled to isotropic resolution by super-sampling in the z-dimen-
sion before being further processed. Voreen’s42 implementation of Drees et al.’s algorithm for graph and feature 
 extraction29 was used to create a graph representation of the vessels. As a result, vessel networks were extracted 
with nodes corresponding to branching points in the vascular network, connected by vessel segments represented 
as vertices. For each segment, a set of features describing the morphology of the vessel were calculated. In order 
to correctly identify abnormally deformed vessels in tumoral regions as contiguous, the bulge size parameter 
was set to 1 allowing for relatively large bulges.

Tumor region segmentation and hypoxic region identification
To separate the tumoral region from the surrounding healthy tissue, a combination of two segmentation methods 
was applied. First, a basic 3D-UNet based machine learning model was trained to identify tumor regions based 
solely on the morphology of vessels using the PECAM-1 signal as input. Training data for this model was acquired 
from five manually annotated sample volumes by chunking them into cubes, analogous to the proposed vessel 
segmentation pipeline, with the addition of an upstream downsampling by a factor of two. This doubled the 
effective receptive field without increasing the required computational resources. In total, 406 cubes were used 
for training. Training parameters including epochs and learning rate were kept the same, using a standard binar 
cross entropy loss. Due to misclassifications for samples with small tumors, especially for samples with combina-
tion therapies, a second segmentation based on thresholding the average dUnaG-3ALFA signal expression level 
was introduced. Manually, a threshold delineating the higher background signal intensity in the tumoral region 
in comparison to the healthy tissue was determined. Both segmentations were then superimposed and manu-
ally corrected using VASTLite. To extract the hypoxic regions inside the tumor, a threshold based on the mean 
fluorescence intensity (MFI) histogram is deployed. Specifically, using the obtained tumor region segmentation, 
the threshold is set to 1.5σ above the mean intensity of the healthy tissue MFI. Since the overall signal intensity 
distribution for the healthy tissue is more stable, this results in a comparable yet sample-specific threshold for 
delineating normoxic from hypoxic regions.

Region‑based analysis
Each vessel segment identified by the graph extraction algorithm was assigned to its corresponding region that is 
healthy tissue, normoxic or hypoxic tumor region, based on the spatial location of both vertices in the graph. Seg-
ments with end points on the border of the processed image volume were excluded. Finally, feature distributions 
are plotted as histograms. To account for the different sized vessel segments, the histograms do not show relatively 
frequency, which would have biased the distribution towards smaller vessels. Instead, each vessel segment was 
weighted according to its lumen (measured as the sum of all voxels allocated to this segment) in relation to the 
total volume (short: % in terms of (i.t.o.) total lumen) occupied by the vascular network.

Statistical analysis
Statistical significances of datasets presented in Fig. 7 were calculated by unpaired two-tailed Student’s t-test with 
Welch’s correction due to unequal sample sizes and/or the assumption of unequal variances, using GraphPad 
Prism software. Statistical analysis of the distributions of the extracted vascular features (Figs. 5 and 8; Sup-
plementary Figure S9) was performed by nonparametric Kolmogorov–Smirnov test, calculating with 64-bit 
precision. Results of the latter are summarized in Supplementary Tables S1, pooling samples from the same 
treatment group. For each feature, regions of interest (healthy tissue, normoxic tumor, hypoxic tumor) were 
compared pairwise. A 95% confidence level (p < 0.05) was set, representing significances by asterisks: p > 0.05, 
not significant (ns); *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 (NEJM-formatted).

Approval for animal experiments
All procedures, scoring and monitoring involving animals were carried out in strict accordance with the German 
Animal Welfare Act (TierSchG). Procedures were reviewed by an anonymous ethics committee and approval 
was granted by the LANUV, the Federal State Agency for Nature, Environment and Consumer Protection of 
North Rhine-Westphalia (Recklinghausen) and is documented in the animal license TVA 81–02.04.2023.A019 
(Münster). We comply with the ARRIVE guidelines.

Data availability
All data is available in the main text, the supplementary information or will be provided on demand. Code and 
an exemplary LSFM volume will be publicly available at https:// zivgi tlab. uni- muens ter. de/ cvmls/ brain_ tumor_ 
analy sis.

https://zivgitlab.uni-muenster.de/cvmls/brain_tumor_analysis
https://zivgitlab.uni-muenster.de/cvmls/brain_tumor_analysis
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