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Identification of four latent classes 
of acute respiratory distress 
syndrome using  PaO2/FIO2 ratio: 
an observational cohort study
Calvin Loewen 1, Brenden Dufault 2,3, Owen Mooney 4, Kendiss Olafson 4 & Duane J. Funk 1,4,5*

Biological phenotypes in patients with the acute respiratory distress syndrome (ARDS) have 
previously been described. We hypothesized that the trajectory of  PaO2/FIO2 ratio could be used to 
identify phenotypes of ARDS. We used a retrospective cohort analysis of an ARDS database to identify 
latent classes in the trajectory of  PaO2/FIO2 ratio over time. We included all adult patients admitted 
to an intensive care unit who met the Berlin criteria for ARDS over a 4-year period in tertiary adult 
intensive care units in Manitoba, Canada. Baseline demographics were collected along with the daily 
 PaO2/FIO2 ratio collected on admission and on days 1–7, 14 and 28. We used joint growth mixture 
modeling to test whether ARDS patients exhibit distinct phenotypes with respect to both longitudinal 
 PaO2/FIO2 ratio and survival. The resulting latent classes were compared on several demographic 
variables. In our study group of 209 patients, we found that four latent trajectory classes of  PaO2/
FIO2 ratio was optimal. These four classes differed in their baseline  PaO2/FIO2 ratio and their trajectory 
of improvement during the 28 days of the study. Despite similar baseline characteristics the hazard 
for death for the classes differed over time. This difference was largely driven by withdrawal of life 
sustaining therapy in one of the classes. Latent classes were identified in the trajectory of the  PaO2/
FIO2 ratio over time, suggesting the presence of different ARDS phenotypes. Future studies should 
confirm the existence of this finding and determine the cause of mortality differences between classes.

The mortality of ARDS remains between 37 and 48%1,2. The disappointing results of many clinical trials is possibly 
due to different ARDS phenotypes resulting from the heterogeneous causes of ARDS. Identifying these different 
ARDS groups early may result in an improved treatment effect within randomized  trials3,4.

Several studies have attempted to identify ARDS phenotypes by using biological  markers5–7. These studies have 
identified several ARDS phenotypes and, in reanalyzing some of the previous interventional ARDS trials, found 
outcome differences based on the underlying phenotype. In the Fluid and Catheter Treatment Trial, the intention 
to treat trial found no difference in  survival8. However, when data from this trial were re-analyzed comparing 
patient groups based on a two class sub-phenotype model of ARDS, a mortality difference was  present9. Similarly, 
in a trial comparing simvastatin with placebo in ARDS patients, the initial trial was negative for a mortality dif-
ference, but with re-analysis of the data utilizing the two-phenotype model, the hyperinflammatory phenotype 
showed a reduced mortality with simvastatin  administration10,11.

These recent studies of ARDS phenotypes have utilized a statistical technique called latent class analysis 
(LCA). LCA is a type of mixture modeling used to find hidden clusters among multivariate data, based on 
the hypothesis that the observed variance and patterns are caused by several unobserved groups or classes. 
We hypothesized that longitudinal lung function data may also demonstrate latent groupings (trajectories) in 
patients with ARDS.

Our hypothesis was that there are phenotypes that can be discovered using  PaO2/FIO2 ratio over time in 
patients with ARDS. We conducted a retrospective cohort analysis of our institutional ARDS database to 
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determine, as our primary outcome, if there were latent classes present in the trajectories of  PaO2/FIO2 ratio. 
Secondary outcomes were to determine what, if any, differences were present between the different classes that 
were discovered.

Results
Two hundred and nine (209) patients met inclusion criteria and had complete data for analysis. Baseline demo-
graphics of the patients are presented in Table 1 and are grouped as those who survived and those who died. 
There were 121 survivors and 88 patients who died for a mortality rate of 42.1%.

Patients who died were older and had a higher APACHE II score than those who survived, although the 
Charlson co-morbidity score was similar between patient classes.  PaO2/FIO2 ratio and pulmonary compliance 
on day 1 were slightly lower in the group who died. Ventilatory parameters (tidal volume/kg ideal body weight, 
PEEP, and plateau pressure) were similar between groups, and consistent with current ARDS ventilator manage-
ment guidelines. The dominant etiology of ARDS was pneumonia, with non-lung sepsis comprising the next 
largest etiological category.

The Bayesian Information Criteria (BIC) suggested that a 4-class model provided the best fit. Table 2 shows 
the BIC and the posterior classification probabilities for each class. The 4-class model had the lowest BIC with a 
5-class model demonstrating a slightly higher BIC.

The posterior classification probability is a key indicator of model fit and is shown in Table 3. This is each 
subjects’ estimated probability of belonging to each latent class, based on their unique observations of  PaO2/FIO2 
ratio and survival. If the model has extracted well-separated and predictive latent classes, each subject should 
map with high probability to one latent class only and have low probability elsewhere. As can be seen in Table 3, 
the classes seem well separated, with average posterior classification probabilities for all classes exceeding 0.8.

Figure 1 shows the  PaO2/FIO2 ratio trajectory for the 4 latent classes. All the classes have an initial  PaO2/
FIO2 ratio consistent with moderate to severe ARDS. Two of these three classes (class 1, black and 2, red) have 
an increase in their  PaO2/FIO2 ratio over time, with one (black) having a significant increase in  PaO2/FIO2 ratio 
within the first 3 days. One class has a  PaO2/FIO2 ratio that fails to improve during the hospital stay (class 4, blue). 
The final class (class 3, green) began with a  PaO2/FIO2 ratio that would be defined as moderate (borderline mild) 
ARDS and fails to show an improvement in their  PaO2/FIO2 ratio over time.

The survival probability of the different classes is shown in Fig. 2. Class 4 (blue), the class with the second 
lowest  PaO2/FIO2 ratio, the highest APACHE score, and which showed no improvement over time had the low-
est survival probability of all 4 classes. The hazard ratio for this class was highest within the first 5 days and then 

Table 1.  Baseline demographics in the cohort of ARDS patients, by those who died and who survived. Days 
ventilated refers to mechanical ventilation only. APACHE acute physiology, age and chronic health evaluation 
score, PEEP positive end expiratory pressure.

Alive (121) Dead (88) p value

Age (years) 46 [36–61] 60 [49–71]  < 0.01

APACHE II score 21 [16–26] 27 [22–34]  < 0.01

Charlson co-morbidity score 2 [1–3] 2 [2–4] 0.267

PaO2:  FIO2 ratio day 1 114 [83–158] 119 [73–170] 0.56

Compliance (day 1) (ml/cmH2O) 32 [25–38] 26 [22–32] 0.01

Vt/Kg day 1 (ml) 5.8 [4.6–7.7] 6.2 [5.3–7.9] 0.37

PEEP day 1  (cmH2O) 10 [8–14] 10 [8–12] 0.04

Plateau pressure day 1  (cmH2O) 28 [23–30] 30 [26–32] 0.13

Days ventilated 11 [6–17] 7 [2–14]  < 0.01

ARDS etiology (%)

 Pneumonia 81% 66.3% 0.01

 Non-lung sepsis 9.5% 15.6% 0.20

 Other 9.5% 18.1% 0.11

Table 2.  Bayesian Information Criterion (BIC) and percentage of patients delegated to that class. The optimal 
BIC predicted a four-class model.

Number of classes BIC % Class 1 % Class 2 %Class 3 %Class 4 % Class 5

1 14717 100.00

2 14555 79.90 20.10

3 14509 11.48 57.42 31.10

4 14490 11.96 24.40 46.89 16.75

5 14500 22.01 16.27 20.10 10.05 31.58
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Table 3.  Posterior classification probabilities. Numbers represent each subject’s estimated probability of 
belonging to each latent class, based on their unique set of observations. If the model has extracted well-
separated and predictive latent classes, each subject should map with high probability to one latent class only 
and have low probability elsewhere.

Probability of each class

Class number 1 2 3 4

1 0.9300 0.0151 0.0011 0.0538

2 0.0132 0.8586 0.0652 0.0630

3 0.0087 0.0430 0.9256 0.0228

4 0.0591 0.0648 0.0729 0.8032

Figure 1.  Estimated latent trajectories for the 4 different classes based on  PaO2/FIO2 ratio. Values are plotted 
with their 95% confidence interval. Class 1: black; class 2: red; class 3: green; class 4: blue.

Figure 2.  Class specific event free survival probability for the different classes. Class 4 (blue), the class with 
the second lowest  PaO2/FIO2 ratio, the highest APACHE score, and which showed no improvement over time 
had the lowest survival probability of all 4 classes. The two classes that showed significant improvement in 
their  PaO2/FIO2 ratio within the early phase of their ARDS (class 1 black and class 2, red) showed the best 
survival. Class 3 (green) had the least severe form of ARDS based on initial  PaO2/FIO2 ratio and did not show 
an improvement in their  PaO2/FIO2 ratio and showed a survival trend that mimicked the patient class with the 
most severe form of ARDS (class 4 blue). The hazard function for this class increased exponentially past day 10.
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began to level off. The two classes that showed significant improvement in their  PaO2/FIO2 ratio within the early 
phase of their ARDS (class 1 black and class 2, red) showed the best survival, with their hazard ratio for death 
showing low initial rates that continued throughout the study period.

The final class (class 3 green) was the class that began with what appeared to be the least severe form of ARDS 
based on initial  PaO2/FIO2 ratio. This class did not show an improvement in their  PaO2/FIO2 ratio and showed a 
survival trend that mimicked the patient class with the most severe form of ARDS (class 4 blue), based on  PaO2/
FIO2 ratio. The hazard function for this class increased exponentially past day 10.

To determine if there were any clinical differences between the groups, we analyzed patient demographics 
between the 4 latent classes. The goal was to determine how the classes differed with the hope of explaining and 
predicting class membership.

We first calculated each subject’s posterior classification probability, which tells us their chance of belonging 
to each latent class, given their longitudinal and survival data. We then assigned each subject to their likeliest 
class, and treated it as observed. This process is known as modal assignment. Since the posterior probabilities are 
high for each likeliest class, this imparts tolerable amounts of error for this process. The results of this analysis 
including key variables is presented in Table 4.

The most interesting class to examine in this regard is class 3 (green). This is the class that initially had a  PaO2/
FIO2 that would be categorized as moderate (borderline mild) ARDS and was higher than all the other classes 
yet failed to improve during their ICU stay. This class had the lowest APACHE II score of all 4 classes (Fig. 3), 
and the distribution of this variable differed significantly between latent classes (Kruskal–Wallis chi-squared 
p = 0.008). This suggests a greater severity of non-pulmonary disease than the other classes. This class was also 
older than the other classes (data not shown; Kruskal–Wallis chi-squared p = 0.02).

The number of days intubated did differ between classes, with class 1 (black) showing the shortest length of 
intubation amongst the classes (Fig. 4, Table 4, Kruskal–Wallis p = 0.003). However, this difference in days intu-
bated disappeared if class 1 was excluded. This suggests that class 1 had a milder form of ARDS that improved 
rapidly. This is confirmed by the  PaO2/FIO2 trajectory and hazard ratio in Figs. 1 and 3.

When examining other demographic variables, there was no difference between the classes with respect to 
distribution of sex (Fisher’s exact test p value = 0.2). There was a significant difference between classes, how-
ever, with respect to the rate at which care was withdrawn. Patients in class 4 (blue) experienced withdrawal of 
life-sustaining therapies at a significantly higher rate than those in the other latent classes (Fisher’s exact test 
p < 0.001). When comparing class 4 (blue) with class 2 (red, the class with the lowest baseline  PaO2/FIO2 ratio) 
the unadjusted odds ratio of having care discontinued was 11.2 times higher in class 4 than in class 2 (95% CI 
2.7–52.5, p < 0.001). The reason for what precipitated the decision to withdraw life sustaining therapies in patients 
in this study was not available to us. However, when using multivariable logistic regression using latent class, 
day 1  PaO2/FIO2 ratio, day 1 compliance, APACHE II score, age and Charlson co-morbidity score as predictor 
variables we found that the odds ratio of withdrawal of care were not different between the 4 groups, utilizing 
the black class as the baseline. In fact, none of the predictor were significantly associated with withdrawal of care.

Discussion
Our study demonstrated that when assessing the trend of  PaO2/FIO2 ratio over time, 4 latent classes of ARDS 
were present. The 4-class model proved the most robust based on the BIC (Table 2). These 4 classes had differing 
trajectories in their  PaO2/FIO2 ratio (Fig. 1). Class 1 (black) had a rapid increase in their  PaO2/FIO2 ratio over 

Table 4.  Comparison of baseline demographic and physiological parameters between the 4 latent classes. 
APACHE II score acute physiology, age and chronic health evaluation II, P/F ratio  PaO2/FIO2 ratio, PEEP 
positive end expiratory pressure  (cmH2O), Pplat plateau pressure  (cmH2O), Vt/kg tidal volume (cc)/kilogram 
ideal body weight (kg), ICU LOS intensive care unit length of stay.

Class

1 2 3 4 Test

Number (%) 25 (12.0%) 50 (23.9%) 34 (16.3%) 100 (47.8%)

APACHE II score 23 [16–31] 22 [18–26] 20 [15–26] 25 [20–32] 0.008

Charlson_Score 3 [2–5] 2 [1–3] 3 [2–4] 2 [1–4] 0.076

P/F ratio day 1 111 [66–138] 99 [70–139] 185 [173–228] 102 [72–143]  < 0.001

PEEP day 1 10 [10–12] 11 [10–14] 8 [5–10] 10 [8–12] 0.003

PPlat day 1 29 [23–32] 28 [26–30] 27 [23–30] 29 [26–31] 0.556

Vt/kg day 1 6 [5, 6] 5 [4–7] 8 [6–9] 6 [5–7]  < 0.001

Compliance day 1 23 [16–35] 31 [26–38] 26 [25–32] 26 [23–34] 0.243

ICU LOS 8 [6–13] 15 [11–24] 15 [7–20] 12 [3–20]  < 0.001

Days intubated 5 [3–10] 12 [9–16] 10 [5–15] 10 [3–17] 0.003

Age (years) 46 [28–55] 48 [42–60] 59 [41–72] 56 [39–67] 0.035

Withdrawal of care 2 (8.0%) 2 (4.0%) 10 (29.4%) 50 (50.0%)  < 0.001

28 day mortality 1 (0.5%) 2 (1%) 9(4.3%) 42 (20%)  < 0.001

Female 14 (56.0%) 30 (60.0%) 14 (41.2%) 45 (45.0%) 0.224
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the first 5 days of mechanical ventilation. Class 2 (red) had a slow, but demonstrable increase in their  PaO2/
FIO2 ratio, but this increase was not as high as class 1 (black). Class 3 (green) started off with the mildest form of 
ARDS based on  PaO2/FIO2 ratio but failed to show an increase for the duration of the study. Class 4 (blue) failed 
to improve their  PaO2/FIO2 ratio throughout the observation period.

Figure 3.  Acute physiology, age and chronic health evaluation II (APACHE) score between classes. Class 3 
(green) had the lowest score of all classes, suggesting reduced severity of disease. p = 0.008 Kruskal–Wallis rank 
sum test. This is despite this class having a decreased survival probability when compared with class 1 and class 
2.

Figure 4.  Difference in days intubated between classes. There was a significant difference between classes 
(p = 0.003, Kruskal–Wallis rank sum test), with class 1 having the shortest intubation time. When class 1 was 
removed from analysis, the difference became non-significant between classes (data not shown).
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The prevalence of each class was different with the rapid improvement class (class 1, black) having the lowest 
frequency of at 12%. The most common class (class 4, blue) comprised 47% of the patient population.

The survival probability between these 4 classes were also different (Fig. 2). For classes 1 (black) and 2 (red, 
early improvement in  PaO2/FIO2 ratio), the hazard ratio for death was low throughout the observation period. 
This contrasts with class 4 (blue) who had a high risk of death early in their ARDS course, presumably due to 
early worsening of their condition, with a subsequent decrease and then plateau in their hazard ratio for death. 
The most interesting class (class 3, green) had an exponential increase in their hazard of death beginning at day 
10. This is interesting as this class had the highest  PaO2/FIO2 ratio at baseline yet failed to show an improvement 
in this ratio throughout the duration of the observation period.

The patients in class 3 (green) comprised the second fewest number of patients in our study (16%). These 
patients were older than patients in the other classes but had the lowest mean APACHE score. The patients in 
class 4 (blue) did not have a significant difference in the number of days intubated when compared to the other 
classes (in exclusion of class 1, black) but had withdrawal of life sustaining therapy at a significantly higher rate 
than those patients in the other classes. However, when multivariable logistic regression was performed, there 
was no difference between groups in the odds ratio of withdrawal of care when correcting for latent class, day 1 
 PaO2/FIO2 ratio, day 1 compliance, APACHE II score, age and Charlson co-morbidity score.

Clinicians caring for patients with ARDS have long recognized that ARDS is not a homogenous  disease12,13. 
Over the past 5 years there have been numerous studies that have utilized latent class analysis to determine if there 
are differing ARDS  phenotypes5–7,10. These studies have primarily used biomarkers and baseline physiologic and 
demographic parameters to delineate their latent classes. These studies, in aggregate, have demonstrated either 
2 or 3 different phenotypes, and can be broadly categorized as either hyperinflammatory/hypotensive or lower 
inflammatory/hemodynamically stable phenotypes. In these studies, which were secondary analysis of earlier 
ARDS trials, a differential response to therapeutic interventions (notably fluid administration, simvastatin use 
and PEEP) were found, even though in the initial trials the intervention was not shown to be  beneficial7,9,10,14. 
These findings have led to the hope that ‘personalized medicine’ for ARDS may be  forthcoming3,4,15.

Our study differed from those done previously in that it utilized longitudinal data with a readily available 
bedside measurement  (PaO2/FIO2 ratio). This allowed us to leverage the full information in our data and focus 
on the association between the longitudinal lung function measures and survival, which is treated not as binary 
but true time-to-event. Previous studies have shown that the baseline  PaO2/FIO2 ratio has not been useful in 
discriminating between the different ARDS  phenotypes6. Our longitudinal data of this parameter, however, does 
delineate 4 different classes of ARDS, suggesting the importance of the  PaO2/FIO2 ratio trend versus baseline 
values. Our results demonstrate a more real-world experience of the clinical trajectory of ARDS patients, as 
compared to the previous studies that utilized data from clinical trials. The ventilatory management of ARDS at 
our institutions was in keeping with the latest consensus strategies for the management of  ARDS16.

Previous work utilizing plasma biomarkers and latent class analysis to determine different ARDS phenotypes 
has the goal of personalizing the management of ARDS with respect to fluid, PEEP levels and other therapeutic 
interventions. The longitudinal  PaO2/FIO2 ratio data from our study and its relation to mortality does not have 
a specific therapeutic intervention option, but it does show that there are latent classes in the trajectory of ARDS 
patients. This information is biologically interesting in that it shows that the trajectory of ARDS, with respect 
to the  PaO2/FIO2 ratio was not significantly different between the 4 classes after approximately the 5th day after 
admission. This suggests that any clinical intervention for this disease should be administered early in the course 
to have maximum therapeutic benefit.

Limitations to our study, including a smaller sample size than previous latent class ARDS work, are those 
expected with any retrospective study. These include the retrospective nature of the data collection, missing data, 
reason for withdrawal of life sustaining therapy and classification bias of ARDS. Previous work has not identi-
fied latent classes of ARDS classes based on PF ratios. This ratio can be altered by many factors that may not be 
related to underlying biological phenotypes. Further work with a larger sample size needs to be conducted to 
ensure the veracity of our findings. The strengths of our study are that is a more ‘real world’ scenario for ARDS 
phenotypes, which differentiates it from previous work that was a secondary analysis from carefully controlled 
randomized trials.

Methods
Research ethics board approval from The University of Manitoba Biomedical Research Ethics Board was obtained 
(H2017:129(HS20716)). All methods were carried out in accordance with relevant institutional guidelines and 
regulations. As all the data were collected anonymously and deidentified, the research ethics board (The Univer-
sity of Manitoba Biomedical Research Ethics Board, reference number: H2017:129(HS20716)) waived written 
informed consent from participants. Our primary data sources were the Winnipeg Regional Health Authority 
(WRHA) Critical Care Database and the WRHA ARDS audit database, an ongoing audit project that contains 
information on adult ICU patients in our health region who were given a diagnosis of ARDS, using the Berlin 
 criteria17. This database provided the longitudinal measures of gas exchange and respiratory mechanics data.

The PaO2/FIO2, (PF) ratio was calculated using daily  PaO2 and  FIO2 from the morning arterial blood gas. We 
chose this time period to sample arterial blood to calculate the PF ratio for consistency. As part of institution 
protocol blood gases are ordered daily for the first 7 days of a mechanically ventilated patients ICU stay, and 
blood gas ordering after this point is at the discretion of the attending clinician. These data were collected daily 
on admission days 1–7, 14 and 28. The database was audited by an independent observer to ensure all patients 
met the Berlin criteria for ARDS. We examined survival to 28 days, with all patients beyond that time treated 
as censored with respect to survival.
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Ethics approval
Research ethics board approval from The University of Manitoba Biomedical Research Ethics Board was obtained 
(H2017:129(HS20716)). All authors contributed equally to this work and meet the requirements for authorship.

Statistical methods
Longitudinal data can be clustered into potential phenotypes using growth mixture models (GMMs), which 
assume that growth characteristics such as the intercept and rates of change differ between a fixed number of 
unobserved  subpopulations18. Subjects are allowed to vary randomly around their cluster-specific trajectory 
according to conventional linear mixed-effects models, which are estimated alongside the latent clustering  task19. 
Thus, subject-specific information is preserved in addition to obtaining insights about phenotypic trajectories.

Joint latent class mixed models (JLCMM), in which the growth mixture and survival processes are estimated 
simultaneously, offer several important advantages. First, it mitigates missing data  bias20. Secondly, joint models 
are more statistically efficient than other approaches (e.g. Cox survival models) with the longitudinal process 
used as a time-varying  covariate21. Most advantageously, the JLCMM provides unique hazard functions and 
survival curves for each of the latent trajectories in a single framework that does not ignore the uncertainty in 
latent class membership.

JLCMMs were estimated using version 1.7.9 of the R package ‘lcmm’22. Each latent trajectory was fit with a 
quadratic effect for time (days in ICU, described above) and random intercepts for all subjects. Models with a 
cubic effect for time were also explored but provided similar inferences and are not reported. The class-specific 
hazards were modeled using the Weibull distribution, which allows the risk of death to vary non-linearly over 
time. To determine the number of classes, we created models with one to five latent classes and compared them 
using the Bayesian Information Criterion, as well as clinical plausibility and estimated class size; small classes 
may be unreliable and a sign of overfitting. Each of the five competing models was run 15 times with random 
parameter initializations using the ‘grid search’ function to avoid local minima of the log-likelihood23. Residual 
distributions were examined with scatterplots and quantile–quantile plots.

The latent classes were compared with respect to APACHE II score, number of days intubated, sex, and risk 
of withdrawal of life sustaining therapy. Univariate associations between these factors and the latent trajectories 
were tested by adding them as covariates to the JLCMM. We report p-values from these tests, which account 
for class membership uncertainty. We also assigned subjects to their most likely class and plotted them against 
each  covariate18.

As we did not know how many classes may be present, and the nature of LCA, a sample size was not calculated. 
All patients were analyzed on a complete case basis and those cases with missing data were excluded. Data are 
presented as mean ± standard deviation for normally distributed data and as median [Interquartile range] for 
non-normally distributed data. p values are reported as two tailed. Between group comparisons were performed 
using a Students t test or Mann–Whitney test. Categorical data was analyzed using Fisher’s exact test. Normality 
was assessed using the Kolmorgorov–Smirnov test, and logistic regression was performed with robust standard 
errors. P values less than 0.05 were considered significant.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to our local bio-
medical research ethics board restrictions, but are available from the corresponding author on reasonable request.
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