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Improving long‑term 
multivariate time series 
forecasting with a seasonal‑trend 
decomposition‑based 
2‑dimensional temporal 
convolution dense network
Jianhua Hao  & Fangai Liu *

Improving the accuracy of long‑term multivariate time series forecasting is important for practical 
applications. Various Transformer‑based solutions emerging for time series forecasting. Recently, 
some studies have verified that the most Transformer‑based methods are outperformed by simple 
linear models in long‑term multivariate time series forecasting. However, these methods have some 
limitations in exploring complex interdependencies among various subseries in multivariate time 
series. They also fall short in leveraging the temporal features of the data sequences effectively, 
such as seasonality and trends. In this study, we propose a novel seasonal‑trend decomposition‑
based 2‑dimensional temporal convolution dense network (STL‑2DTCDN) to deal with these issues. 
We incorporate the seasonal‑trend decomposition based on loess (STL) to explore the trend and 
seasonal features of the original data. Particularly, a 2‑dimensional temporal convolution dense 
network (2DTCDN) is designed to capture complex interdependencies among various time series 
in multivariate time series. To evaluate our approach, we conduct experiments on six datasets. The 
results demonstrate that STL‑2DTCDN outperforms existing methods in long‑term multivariate time 
series forecasting.

Long-term series forecasting of multivariate time series has already played a significant role in numerous prac-
tical fields, such as  transportation1,  meteorology2, energy  management3,  finance4,  environment5, etc. In these 
practical application scenarios, we can explore a mass of historical data to forecast the future value for making 
decisions and planning in advance. The task of time series prediction is divided into multivariate and univariate 
based on the number of temporal variables involved. Multivariate time series forecasting tasks holds extremely 
challenges when dealing with long-term setting, yet they hold crucial practical significance. Hence, we are 
dedicated to developing appropriate methods to improve the forecasting performance of models in long-term 
multivariate time series.

Many scholars have proposed various methods for time series forecasting. Traditional statistic-based methods 
are mainly applied in univariate time series forecasting tasks, for example, Autoregressive (AR)6, Autoregressive 
Integrated Moving Average (ARIMA)7, Exponential Smoothing (ES)8, and more. However, these traditional 
methods encounter challenges in capturing intricate nonlinear dependencies within long-term multivariate 
time series. For the past few years, deep learning has made great progress in the field of time series forecasting. 
Recurrent Neural Network (RNN) is an important model in the area of sequence modeling and are widely used 
in natural language  processing9. Given the sequential nature of time series data, numerous RNN-based models 
and their variants are employed for time series  forecasting10–13. Furthermore, Convolutional Neural Network 
(CNN) and its variants, such as Temporal Convolutional Network (TCN), are combined with RNN to enhance 
the model’s capability in capturing local temporal  features14,15. Additionally, to enhance the robustness and reli-
ability of forecasting results, some works propose ensemble models for  prediction16–18.
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In the past few years,  Transformer19 has demonstrated remarkable effectiveness in the domains of picture 
 processing20 and language  processing21. Transformer-based models exhibit superior performance in exploring 
long-term dependencies compared to RNN models. Therefore, numerous works have designed various prediction 
methods with the Transformer architecture. Nevertheless, the quadratic complexity of the calculating self-atten-
tion in both memory and time has been the limitation of applying Transformer to time series forecasting problem 
in long-term. Some studies meticulously design effective modules to address these challenges. By combining 
causal convolution with the Transformer architecture, the  Logtran22 introduces a novel attention mechanism 
called LogSparse self-attention. In this innovative method, the queries and keys for self-attention are generated 
through causal convolution.  Reformer23 replace self-attention with a novel locality-sensitive hashing and uses 
reversible residual to replace the standard residual.  Informer24 introduces the ProbSparse self-attention mecha-
nism, focusing on extracting important queries.  Autoformer25 designs the auto-correlation and combines the 
sequence decomposition with Transformer architecture.  Fedformer26 applies Fourier to enhance the performance 
of Transformer.  PatchTST27 uses patches of time series data as tokens for the Transformer.  CNformer28 proposes 
a CNN-based encoder-decoder attention mechanism to replace the vanilla attention mechanism.  Triformer29 
presents a triangular structure with the Patch Attention. While Transformer-based solutions have made great 
success in long-term time series forecasting, recent studies have indicated that most of Transformer-based 
methods can be outperformed by simple linear models. For instance, Zeng et al.30 introduce a simple linear 
model and achieve remarkable performance on forecasting benchmarks. Das et al.31 design a novel Time-series 
Dense Encoder (TiDE) model to solve time series prediction tasks in long-term, which can explore non-linear 
dependencies and enjoys the speed of linear models.

Although various Transformer-based models and linear models have made valuable contributions to time 
series forecasting, they often fall short when capturing complex interdependencies among components in long-
term. Additionally, they have not effectively leveraged the temporal characteristics of the data sequences, such 
as seasonality and trends. To mend these gaps, we propose the STL-2DTCDN to deal with long-term multivari-
ate time series forecasting tasks. STL-2DTCDN use the  STL32 to decompose original series into three different 
subseries. The primary contributions of this paper can be summarized as follows:

1. We present the STL-2DTCDN for long-term multivariate time series forecasting. It follows a hybrid structure 
similar to most recent studies but incorporates enhanced component methods. The STL-2DTCDN achieves 
the state-of-the-art performance on six practical multivariate time series datasets, with a significant improve-
ment in prediction accuracy.

2. Different from canonical TCN designed for single time series, we present a 2-dimensional temporal con-
volution dense network (2DTCDN) for multivariate time series forecasting. The 2DTCDN, employing 2D 
convolutional kernels, casual convolution, dilated convolution, and a dense layer, making it highly effective 
at capturing complex interdependencies among various time series in multivariate time series.

3. To enhance the model’s ability in capturing seasonal and trend features, we integrate STL as the processing 
method. The original time sequence data is decomposed into different subseries with STL: seasonal, trend, 
and residual. These derived subseries can effectively illustrate the seasonal and trend characteristics inhered 
in the primitive data.

Related works
Methods for time series forecasting
Given the time series prediction tasks hold paramount significance in real world applications, numerous meth-
ods have been meticulously developed. Many traditional time series prediction models begin with statistical 
 methods33,34.  ARIMA7 adopts the Markov process to constructs the autoregressive model for iterative sequential 
forecasting. Nevertheless, an autoregressive process is incapable when handling complex sequence with nonlin-
earity and non-stationarity. As the evolution of neural networks over the past decades,  RNN9 has been specially 
designed for processing sequential data. To address the challenge of gradient vanishing, many studies propose 
various modifications of RNN such as  LSTM12 and GRU 13.  TCN14 is a neural network that employs dilated causal 
1D convolution layers tailored for 1D data. However, as the convolution kernel with limited receptive field, the 
vanilla TCN is unable to explore interdependencies among various time series in multivariate time series data.

As a single model may fall short in learning complex features, some works pay attention to integrate various 
methods to one framework and present many ensemble models for time series forecasting. Ensemble models 
have been used in many practical applications successfully, such as traffic  forecasting17, financial  forecasting18, 
and energy  management35,36. Moreover, ensemble learning methods hold robustness and reliability. Therefore, 
ensemble models have advantages in the field of medical  applications37,38.

With the Transformer’s impact on natural language processing and computer vision in recent years, there has 
been a surge in discussions, adaptations, and applications of Transformer-based solutions in time series forecast-
ing. As for network modifications, various adaptations of Transformer for time series can be summarized into 
two levels: architectural and  modular39. Some approaches, including  Informer24,  Autoformer25, and  FEDformer26, 
modify the vanilla positional encoding of Transformer to leverage timestamps of time series and redesign the 
attention calculation methods to reduce complexity. Besides adapting individual modules within Transformer 
for time series modeling, approaches like  Informer24 and  Pyraformer40 aim to reconfigure Transformer at the 
architectural level. Notably, recent studies by Zeng et al.30 and Das et al.31 have demonstrated that linear models 
possess a strong capability for temporal relation extraction. In many cases, these linear models outperform most 
Transformer-based models in the area of time series forecasting.
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Decomposition of time series
Entangled temporal features in multivariate time series forecasting present significant challenges when it comes 
to effectively exploring local and long-range dependencies among time points and  variables41. Many methods 
identify temporal dependencies with entangled temporal patterns, but they often can hardly fully leverage the 
inherent complex features of time series data, such as seasonality and trends. Therefore, various studies adopt 
time series decomposition to analyze time series. These decomposition methods can be divided into three cat-
egories: frequency domain decomposition, time domain decomposition, and time–frequency domain decom-
position. The Fourier transform (FT)25,26 is a widely-recognized frequency domain decomposition technique in 
time series analysis. FT and its modifications can transform an original sequence from time domain to frequency 
domain, but they ignore trends shifts of time series. The STL is an important time domain decomposition 
method, which can effectively decompose a time series data into three distinct subseries. These three compo-
nents represent different underlying categories of patterns that exhibit higher predictability. Wavelet transform 
(WT)42,43 and empirical wavelet transformation (EWT)44,45 are time–frequency domain decomposition methods 
that are particularly well-suited for the analysis of non-stationary series, as they can provide enhanced local 
time–frequency information.

Methodology
We begin by introducing the formulation representation of multivariate time series forecasting. Subsequently, 
all involved components and the architecture of the proposed STL-2DTCDN model are presented. Finally, we 
detail the objective function and the evaluation metric employed for model training.

Problem statement
The formulation is articulated as follows: Given one historical time data denoted as Y1:L =

{
yt1, y

t
2, ..., y

t
c

}L
t=1

 for 
t = 1 to L, where L is the fixed look-back window, c (c > 1) is the number of variates, and yti  denotes the value 
of the ith variate at the tth time. The multivariate time series prediction tasks aiming to figure out the predicted 
series ŶL+1:L+H =

{
ŷt1, ŷ

t
2, ..., ŷ

t
c

}L+H

t=L+1
 , where c (c > 1) denotes the number of variates, ŷti  is the predicted result 

of the ith variate at the time step t  , and H (H > 1) denotes the number of forecasting time steps. The ground truth 
for the time period from L + 1 to L + H is denoted as YL+1:L+H =

{
yt1, y

t
2, ..., y

t
c

}L+H

t=L+1
 . Long-term multivariate 

time series forecasting aims to forecast Ŷ  with a larger value of H ( H ≫ 1).
Multi-step forecasting can be categorized into two types: iterated multi-step (IMS)46 forecasting and direct 

multi-step (DMS)47 forecasting. IMS forecasting iteratively predicts each time step, but it suffers from error 
accumulation effects. Compared to IMS forecasting, DMS forecasting can directly learn all prediction results at 
once. Consequently, DMS forecasting can outperform IMS forecasting in long-term forecasting tasks.

Seasonal‑trend decomposition based on loess (STL)
STL is an effective approach that can decompose an original time sequence data into three different subseries, 
which can be formulated as:

where t = 1, 2, ..., n represents time steps, Yt denotes the original time series data, Tt , St , and Rt represents the 
trend, seasonal, and residual components, respectively. In contrast to traditional decomposition methods, STL 
provides much more robust components for effectively decomposing time series sequence, especially in the 
presence of outliers. STL methodology consists of two iterative processes, known as the inner loop and the 
outer loop. Seasonal smoothing and trend smoothing during a single iteration are conducted in the inner loop, 
updating both the seasonal and trend components. Suppose Tt

k and Stk are the trend and seasonal components 
at the end of the kth iteration of the inner loop, respectively. Steps of computing Tt

k+1 and Stk+1 for the (k + 1)th 
inner loop are detailed as follows:

Step 1: Detrending. Computing the detrend series Ydetrend
t = Yt − Tk

t  . If there is a missing Yt at a time step, 
then the Ydetrend

t  of that time step is also missing;
Step 2: Seasonal smoothing. Smoothing the Ydetrend

t  with a smoother using Loess to figure out the initial 
seasonal component Ŝk+1

t ;
Step 3: Filtering with low-pass. Processing Ŝk+1

t  with a filter with low-pass and a subsequent using Loess to 
figure out any residual trend component T̂k+1

t ;
Step 4: Detrending. The seasonal elements Sk+1

t  of the (k + 1)th inner loop is calculated by Ŝk+1
t − T̂k+1

t ;
Step 5: Deseasonalizing. Subtract the seasonal elements from the original sequence Yt to get the deseasonal-

ized time series Ydetrend
t = Yt − Sk+1

t ;
Step 6: Trend smoothing. The trend component Tt

k+1 is obtained by smoothing Ydetrend
t  the with a Loess 

smoother.
After finishing the inner loop, the initial sequence is decomposed into the trend elements and the seasonal 

elements, the residual elements are calculated by in the outer loop: Rk+1
t = Yt − Tk+1

t − Sk+1
t .

The parameters of STL were explored in previous  experiments41. In this study, we set relevant parameters refer 
to the recommended defaults. Figure 1 presents the decomposition results of STL with the default parameter 
values, using data from the Centers for Disease Control and Prevention of the United States.

(1)Yt = Tt + St + Rt
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2‑Dimensional temporal convolution dense network (2DTCDN)
TCN is an effective approach proposed for modeling long sequence. Different from traditional RNN, TCN 
leverage the concept of CNN to explore complex dependencies in time sequences. The TCN architecture is pre-
sented in the Fig. 2, which consists of various layers, and an optional 1 × 1 convolution. Notably, dilated causal 
convolutions are used in TCN to increase the receptive field, enabling the capture of features at different time 
scales in time series data. For one 1-D sequence X ∈ RM , and the filter Kd with dilation rate d , the operation of 
the dilated causal convolution is defined as

where X̂(t) is the tth element of the output processed by the dilated causal convolution, X(t − (d · τ)) represents 
the (t − (d · τ))th element of the input sequence X , Kd(τ ) denotes the τth element of the filter, l  is the length of 
the filter.

As illustrated in the Fig. 3, one framework of the dilated causal convolution with a filter size of l = 3 and 
dilation rate is set to d = 1, 2, 4. However, it’s important to note that TCN’s filter is one-dimensional (1D) and 
can only convolve along the time dimension of the time series. Consequently, TCN has limitations in capturing 
interdependencies among various time series in multivariate time series data. To better adapt TCN for multivari-
ate time series forecasting tasks, we make some adjustments to the vanilla TCN and introduce the 2DTCDN. 
Figure 4 shows the architecture of 2DTCDN.

(2)X̂(t) =
∑l

τ=1
X(t − (d · τ)) · Kd(τ )

Figure 1.  The decomposition results of STL. (a) Original data. (b) Decomposition of Original Data.

Figure 2.  The architecture of TCN.
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Causal convolution is an important concept, which limits that the output at time t is influenced by elements 
no later than t, ensuring that the future cannot influence the past. This concept is called information leakage, 
which is crucial in time series forecasting and it was initially proposed more than 30 years ago by Waibel et al.48. 
To maintain consistent dimensionality with the input layer and enable convolutions, zero padding is applied in 
the hidden layers. However, since we are using 2D convolutional kernels in the proposed 2DTCDN, the padding 
method and convolution process differ from that of the 1D dilated causal convolution. For one 2D sequence 
X ∈ RM×N , and the 2D filter Kd with dilation rate d, the operation of the 2D dilated causal convolution is for-
mulated as

Figure 3.  The dilated causal convolution.

Figure 4.  The architecture of 2DTCDN.
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where X̂
(
i, j
)
 is the (i, j)th element of the output processed by 2D dilated causal convolution, 

X(i − (m− 1) · d, j − (n− 1) · d) represents the (i − (m− 1) · d, j − (n− 1) · d)th element of the input 2D 
matrix X , Kd(m, n) denotes the (m, n)th element of the 2D filter, h and w respectively denote the height and 
width of the 2D filter.

Figure 5 presents the padding of 2DTCDN, the kernel size is set to 3 × 3, dilation is set to 1. The pad-
ding of in the time dimension is similar to the 1D causal convolution, with the padding length calculated as (
filter_size−1

)
× dilation . In the feature dimension, the first ’padding length’ features are duplicated and placed 

after the last feature to serve as padding data.
Dilated convolution is a variant of traditional convolutional operations used in deep  learning49. In a standard 

convolution, a filter slides over the input data with a fixed stride, and each weight in the filter interacts with a 
neighboring input pixel. Different from the standard convolution, dilated convolution introduces gaps between 
the weights of the filter, allowing it to capture information from a broader receptive field while retaining the 
original resolution. For example, Fig. 6 illustrates a 2D dilated causal convolution process, the filter size is set to 
3 × 3, dilation and stride are both set to 1.

Residual connections
Residual connections are a fundamental architectural component in deep neural networks proposed by He 
et al.50. These connections are employed to mitigate the vanishing gradient. The main idea behind residual con-
nections is to add the skip connection between different layers, creating a shortcut path for the gradient during 
backpropagation. We adopt the dense layer as the residual connection in the proposed 2DTCDN.

(3)X̂
(
i, j
)
=

h∑

m=1

w∑

n

X(i − (m− 1) · d, j − (n− 1) · d) · Kd(m, n)

Figure 5.  The padding method of 2DTCDN.

Figure 6.  A dilated causal convolution process of 2DTCDN.
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Dense layer
Recent studies by Zeng et al.30 and Das et al.31 have demonstrated the remarkable capabilities of simple linear 
models in time series prediction tasks. Essentially, only one simple one-layer linear model can explore complex 
interdependencies within the sequence data effectively, allowing the neural network to explore intricate features 
that are important for the task. In our proposed 2DTCDN, we integrate the residual block of TiDE with 2D 
dilated causal convolution.

Overview of the STL‑2DTCDN framework
Figure 7 illustrates the entire framework of the STL-2DTCDN. We use Ft to denote the time features at time 
step t. These time features include the holidays, the day of week, or other specific to a particular time step. The 
time series are first decomposed into three sub-series: trend ( Tt ), seasonal ( St ), and residual ( Rt ) using STL. 
Subsequently, these three sub-series, concatenated with time features, are separately processed by an encoder 
architecture with the 2DTCDN block. Next, the processed sub-series are concatenated to form the input data 
of the next decoder architecture. Finally, outcomes of the decoder layer concatenated with time features are 
delivered to a dense layer to generate the predictions.

Objective function
The squared error is a loss function frequently employed in time series prediction tasks. It evaluates the squared 
differences between the real values and predicted values. The optimization objective is formulated as:

where Train denotes a set of training time steps, t  represents the time step, H represents the horizon of predic-
tion, c is the number of subseries, ‖‖F is the Frobenius norm.

Evaluation metrics
Mean absolute error (MAE) and mean square error (MSE) are adopted as the evaluation metric to assess the 
performance models. they are defined as:

(4)Loss = min
t∈Train

c∑

j=1

H∑

i=1

�y
j
t+i − ŷ

j
t+i�

2

F

Figure 7.  The framework of the STL-2DTCDN.
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where t  represents the time step, H indicates the horizon of prediction, and c is the number of subseries.

Experiments
Datasets
The proposed STL-2DTCDN is tested on six datasets. All datasets are split into three segments in a chronological 
order: training, validation, and test sets, with a split ratio of 7:1:2 for Traffic and Electricity. ETT dataset are split 
with the ratio of 6:2:2, as recommended by  Informer24 and  Autoformer25. Table 1 presents statistical informa-
tion of the datasets.

• ETT (Electricity Transformer Temperature)24 including two datasets in 1-h-level (ETTh1, ETTh2) and two 
datasets in 15-min-level (ETTm1, ETTm2). Each dataset consists of seven electricity transformer attributes.

•  Traffic30 collects data from the California.
• Electricity (ECL)30 describes the electricity consumption (Kwh) of 321 clients.

Methods for comparison
At present, deep learning-based methods are the predominant approach in time series forecasting. We select 
six baseline methods for comparison with the STL-2DTCDN. These selected baseline methods including three 
categories: the  TCN14 model, the Transformer-based methods  (Informer24,  Autoformer25, PatchTST/6427, and 
 FEDformer26), and the linear models  (DLinear30and  TiDE31). TCN is designed for processing sequence data, and 
the adoption of causal convolution enhances its capacity in exploring dependencies of long-term. Transformer-
based methods have made great success in time series forecasting tasks recently. In addition, linear models have 
been demonstrated that they can achieved promising results in various forecasting tasks.

The TiDE conducts experiments with the fixed look-back window 720 for all prediction lengths. Other com-
pared models set the look-back windows as recommended. The results of baseline methods are reported from 
 TiDE31 and  PatchTST27.

Experimental settings
The proposed STL-2DTCDN is trained using the L2 loss function and optimized with the  ADAM51, initialized 
with a learning rate of  10–4. The look-back window for prediction lengths {96, 192, 336, 720} is all set to 720, 
following the TiDE. The batch size is set to 32 for training and experiments are repeated five times. Experiments 
are conducted using two NVIDIA GeForce RTX 2080 Ti GPUs, with the implementation in PyTorch. Table 2 
presents the range of involved hyper-parameters. We tune these hyper-parameters by leveraging the rolling 
validation error on the validation dataset.

Since the size of the look-back window is significantly different from the number of subseries for all datasets, 
the two dimensions of the convolution kernel are designed separately for the time and feature dimension. Spe-
cifically, considering the varying number of subseries in different datasets, such as ECL and Traffic with a larger 
number of time series, we utilize larger parameters [4, 8, 12, 16] in the feature dimension, while for datasets 

(5)MAE =
1

c ×H

c∑

j=1

H∑

i=1

∣∣∣yjt+i − ŷ
j
t+i

∣∣∣

(6)MSE =
1

c ×H

c∑

j=1

H∑

i=1

(
y
j
t+i − ŷ

j
t+i

)2

Table 1.  Statistical information of six datasets.

Datasets ECL ETTh1 ETTh2 ETTm1 ETTm2 Traffic

Features 321 7 7 7 7 862

Timesteps 26,304 17,420 17,420 69,680 69,680 17,544

Frequency 1 Hour 1 Hour 1 Hour 15 Minute 15 Minute 1 Hour

Table 2.  Range of hyper-parameters.

Parameter Range

Number of Encoder [1, 2, 3]

Number of Decoder [1, 2, 3]

Kernel size (time dimension) [6, 12, 24, 48]

Kernel size (feature dimension) [1, 2, 3, 4] or [4, 8, 12, 16]

Hidden size [256, 512, 1024]

Time features hidden size [16, 32, 64, 128]
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with fewer time series like ETT datasets, smaller parameters [1, 2, 3, 4] are employed in the feature dimension. 
Table 3 reports the chosen hyper-parameters for six datasets.

Experimental results
MAE and MSE of the proposed STL-2DTCDN and compared methods on six practical datasets are shown in 
Table 4. Each row in the table corresponds to a comparison of results within a specific window horizon, and each 
column represents the results of a particular model in all cases. The values that highlighted in bold are best results.

Since all models are trained with the squared error, let’s concentrate on the column of MSE column for com-
parisons. From Table 4, we can observe that: (1) The STL-2DTCDN can achieve the best results in most cases 
(as indicated by the count of the best results in the last row). (2) The STL-2DTCDN shows better performance 
than TiDE, and the MSE decreases by 3.2% (at 96), 5.7% (at 192), 5.8% (at 336), 6.9% (at 720) in average. The 

Table 3.  Selected hyper-parameters for six datasets.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 ECL Traffic

Encoder layers 2 2 2 2 2 2

Decoder layers 1 1 1 1 1 1

Kernel size (time dimension) 24 24 6 6 24 24

Kernel size (feature dimension) 3 3 3 3 12 16

Hidden size 512 512 512 512 512 512

Time features hidden size 64 32 64 128 128 64

Table 4.  Results of long-term multivariate time series forecasting on six datasets.

Models STL-2DTCDN TiDE PatchTST/64 DLinear FEDformer Autoformer Informer TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

 96 0.305 0.242 0.336 0.253 0.360 0.249 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410 1.532 0.821

 192 0.317 0.256 0.346 0.257 0.379 0.256 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435 1.550 0.826

 336 0.324 0.246 0.355 0.260 0.392 0.264 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434 1.556 0.834

 720 0.347 0.267 0.386 0.273 0.432 0.286 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466 1.589 0.840

ECL

 96 0.129 0.230 0.132 0.229 0.129 0.222 0.140 0.237 0.186 0.302 0.196 0.313 0.304 0.393 1.103 0.902

 192 0.141 0.238 0.147 0.243 0.147 0.240 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417 1.113 0.898

 336 0.152 0.256 0.161 0.261 0.163 0.259 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422 1.167 0.915

 720 0.169 0.287 0.196 0.294 0.197 0.290 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427 1.334 0.935

ETTh1

 96 0.376 0.404 0.375 0.398 0.379 0.401 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769 1.534 1.079

 192 0.401 0.427 0.412 0.422 0.413 0.429 0.412 0.420 0.423 0.446 0.456 0.457 1.007 0.786 1.566 1.087

 336 0.412 0.426 0.435 0.433 0.435 0.436 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784 1.614 1.077

 720 0.426 0.477 0.454 0.465 0.446 0.464 0.472 0.490 0.469 0.492 0.515 0.517 1.144 0.857 1.657 1.102

ETTh2

 96 0.260 0.331 0.270 0.336 0.274 0.337 0.289 0.353 0.332 0.374 0.332 0.386 1.549 0.952 1.876 1.345

 192 0.314 0.371 0.332 0.380 0.338 0.376 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542 1.547 1.752

 336 0.337 0.395 0.360 0.407 0.363 0.397 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642 1.791 1.749

 720 0.390 0.426 0.419 0.451 0.393 0.430 0.605 0.551 0.412 0.469 0.453 0.490 3.656 1.619 2.501 3.622

ETTm1

 96 0.287 0.325 0.306 0.349 0.293 0.346 0.299 0.343 0.326 0.390 0.510 0.492 0.626 0.560 1.869 1.125

 192 0.315 0.346 0.335 0.366 0.333 0.370 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619 1.453 1.790

 336 0.347 0.368 0.364 0.384 0.369 0.392 0.369 0.386 0.392 0.425 0.510 0.492 1.005 0.741 1.647 1.676

 720 0.408 0.416 0.413 0.413 0.416 0.420 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.854 1.827 2.807

ETTm2

 96 0.164 0.253 0.161 0.251 0.166 0.256 0.167 0.260 0.180 0.271 0.205 0.293 0.355 0.462 1.633 1.258

 192 0.198 0.270 0.215 0.289 0.223 0.296 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586 1.996 1.385

 336 0.256 0.311 0.267 0.326 0.274 0.329 0.281 0.342 0.324 0.364 0.343 0.379 1.270 0.871 1.872 1.221

 720 0.341 0.379 0.352 0.383 0.362 0.385 0.397 0.421 0.410 0.420 0.414 0.419 3.001 1.267 2.003 1.438

Count 38 5 4 1 0 0 0 0
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longer the prediction horizon, the better STL-2DTCDN performs. This suggests that STL-2DTCDN is more 
suitable for long-term forecasting. (3) Our proposed model achieves significantly better results than TiDE in 
large datasets for long-term forecasting. The MSE decreases by 10.1% (at 720) and 13.8% (at 720) for the Traffic 
dataset and the Electricity dataset, respectively. However, for four ETT datasets with the prediction length of 
720, the STL-2DTCDN achieves only a 4.4% decrease in MSE on average compared to TiDE. We believe that 
this is because the Traffic and Electricity datasets have a significantly larger number of time series compared to 
four ETT datasets. Consequently, the 2DTCDN can utilize a larger kernel size in the feature dimension to better 
explore interdependencies among different time series.

Figures 8 and 9 present the comparison of forecasting results calculated by STL-2DTCDN and TiDE with 
the ground truth for the Traffic and Electricity datasets. From these figures, we observe that the STL-2DTCDN 
performs better in capturing the temporal repeating patterns and fitting the trend of the curve. This indicates 
that the STL-2DTCDN effectively captures the temporal characteristics of the data sequences, including sea-
sonality and trends.

Ablation studies
The contribution of each involved component of STL-2DTCDN is figured out by ablation studies. Specifically, 
each component is removed in turn from the STL-2DTCDN, and we evaluate the performance of each sub-
framework consists of the remaining components. Each sub-framework is detailed as follows:

• Re/STL: Remove the STL from the originally proposed STL-2DTCDN.
• Re/2DTCDN: Remove the 2DTCDN from the originally proposed STL-2DTCDN.
• Re/Time features: Remove the Time features from the originally proposed STL-2DTCDN.
• STL-2DTCDN → STL-TCN: 2DTCDN is replaced with a vanilla TCN.

Figure 8.  Comparison of the STL-2DTCDN and TiDE on the Traffic dataset (at 720). (a) STL-2DTCDN. (b) 
TiDE.

Figure 9.  Comparison of the STL-2DTCDN and TiDE on the Electricity dataset (at 720). (a) STL-2DTCDN; 
(b) TiDE.
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Table 5 presents the performance of the original STL-2DTCDN and sub-frameworks by removing each com-
ponent. It can be observed from the Table 5 that the combination of STL, 2DTCDN, and Time features delivers 
the most precise forecasts in different datasets, and the removal of any single component leads to a decline in 
performance. Furthermore, we also substitute the 2DTCDN with a standard TCN, and the forecasting results 
demonstrate that 2DTCDN can achieve better performance in long-term multivariate prediction tasks.

Conclusions
We design a STL-2DTCDN model for long-term multivariate time series forecasting in this paper. STL-2DTCDN 
utilizes STL to decompose the original time sequence into three subseries. Time features is used to add additional 
covariates to the model. Furthermore, we adapt the vanilla TCN and introduce the 2DTCDN for long-term 
multivariate time series forecasting. Compared to various Transformer-based methods and linear models, the 
STL-2DTCDN exhibits strong capabilities in capturing various temporal patterns and exploring complex inter-
dependencies between different related subseries for long-term multivariate time series forecasting. In the next 
stage, we will concentrate on: (1) interpreting the model outputs and understanding how a deep neural network 
achieves its forecasting results; (2) exploring alternative approaches to enhance the capability of capturing tem-
poral patterns and exploring complex interdependencies inhered in multivariate time series.

Data availability
All datasets used can be accessed from the corresponding author on request.
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