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Dysregulation of RNA splicing 
in early non‑alcoholic fatty liver 
disease through hepatocellular 
carcinoma
Nicholas J. G. Webster 1,2,3*, Deepak Kumar 2 & Panyisha Wu 2

While changes in RNA splicing have been extensively studied in hepatocellular carcinoma (HCC), no 
studies have systematically investigated changes in RNA splicing during earlier liver disease. Mouse 
studies have shown that disruption of RNA splicing can trigger liver disease and we have shown 
that the splicing factor SRSF3 is decreased in the diseased human liver, so we profiled RNA splicing 
in liver samples from twenty‑nine individuals with no‑history of liver disease or varying degrees of 
non‑alcoholic fatty liver disease (NAFLD). We compared our results with three publicly available 
transcriptome datasets that we re‑analyzed for splicing events (SEs). We found many changes in SEs 
occurred during early liver disease, with fewer events occurring with the onset of inflammation and 
fibrosis. Many of these early SEs were enriched for SRSF3‑dependent events and were associated with 
SRSF3 binding sites. Mapping the early and late changes to gene ontologies and pathways showed 
that the genes harboring these early SEs were involved in normal liver metabolism, whereas those 
harboring late SEs were involved in inflammation, fibrosis and proliferation. We compared the SEs 
with HCC data from the TCGA and observed that many of these early disease SEs are found in HCC 
samples and, furthermore, are correlated with disease survival. Changes in splicing factor expression 
are also observed, which may be associated with distinct subsets of the SEs. The maintenance of these 
SEs through the multi‑year oncogenic process suggests that they may be causative. Understanding 
the role of these splice variants in metabolic liver disease progression may shed light on the triggers of 
liver disease progression and the pathogenesis of HCC.

Alternative RNA splicing is a crucial post-transcriptional process that plays a fundamental role in the regula-
tion of gene expression and protein diversity. It allows a single gene to generate multiple mRNA transcripts by 
selectively including or excluding exons, or portions of exons, during processing of the primary RNA transcript. 
Alternative splicing has emerged as a key mechanism influencing the development and progression of liver 
 diseases1. Understanding the intricate interplay between alternative splicing and liver pathology is essential for 
uncovering novel therapeutic targets and advancing personalized medicine approaches for these  conditions2. 
Liver disease encompasses a wide range of conditions, such as viral hepatitis, non-alcoholic fatty liver disease 
(NAFLD), alcoholic liver disease (ALD), and  cirrhosis3–6. Alternative splicing has been implicated in the regu-
lation of critical genes and pathways associated with liver  diseases7–10. For instance, aberrant splicing events in 
genes involved in hepatic lipid metabolism can contribute to the pathogenesis of NAFLD and  ALD11. Addition-
ally, dysregulation of splicing factors, which control the splicing process, has been observed in liver diseases, 
indicating their potential as diagnostic markers or therapeutic  targets12.

Liver cancer, predominantly hepatocellular carcinoma (HCC), is a major global health concern with limited 
treatment options and poor prognosis. Alternative splicing also plays a significant role in the development and 
progression of HCC by generating transcript isoforms that contribute to tumor heterogeneity and altered cel-
lular  functions13–18. Abnormal splicing events can affect genes involved in cell cycle regulation, apoptosis, cell 
adhesion, and angiogenesis, all of which are crucial processes for tumor growth and  metastasis19. Furthermore, 
alternative splicing can lead to the production of tumor-specific antigens or fusion proteins that have potential 

OPEN

1Jennifer Moreno VA Medical Center, San Diego, CA 92161, USA. 2Division of Endocrinology and Metabolism, 
Department of Medicine, University of California, San Diego, CA 92093, USA. 3Moores Cancer Center, University of 
California, San Diego, CA 92093, USA. *email: nwebster@health.ucsd.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-52237-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2500  | https://doi.org/10.1038/s41598-024-52237-7

www.nature.com/scientificreports/

diagnostic or therapeutic implications. Targeting splicing events associated with liver cancer holds promise for 
developing novel precision medicine approaches and improving patient outcomes.

Recent advancements in high-throughput sequencing technologies and bioinformatics tools have facilitated 
comprehensive analyses of transcriptional changes in liver disease and liver cancer. Moreover, the integration 
of transcriptomic, proteomic, and genomic data has provided valuable insights into the pathogenesis of liver 
 disease20–22. Most of these studies, however, have focused on gene or protein level expression and have ignored 
transcriptional or protein isoforms and their  complexities23–26. Recent studies in mice have shown that RNA splic-
ing is crucial for liver maturation and function but studies in humans are  lacking27–29. These studies have revealed 
complex splicing patterns, unique splice variants, and splicing factor dysregulation specific to the  liver11,30–33. 
However, further investigation is necessary to decipher the regulatory mechanisms underlying alternative splic-
ing in liver diseases in humans and identify potential therapeutic targets. A deeper understanding of the role 
of alternative splicing in liver disease and cancer will pave the way for the development of precision medicine 
strategies tailored to individual patients. To this end, we profiled alternative splicing during early liver disease in 
patients with non-viral, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH).

Results
Changes in alternative splicing are enriched for SRSF3‑dependent splicing events
We have previously reported that the splicing factor Ser/Arg-rich splicing factor 3 (SRSF3) is proteolytically 
degraded in fatty liver  disease29, so we obtained 43 frozen liver samples of individuals with no known history of 
liver disease, or histologically verified non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis 
(NASH) from the University of Minnesota Liver Tissue and Cell Distribution Service. We were able to extract 
high-quality RNA from 29 of these samples (13 no history, 7 NAFLD, 9 NASH) which was then subjected to 
high-throughput short-read sequencing. The histology of the samples was confirmed by a pathologist or assessed 
for those samples without pathology information (Table S1). This resulted in the identification of 8 samples with 
normal liver histology, 8 samples with NAFLD and 13 samples with NASH. Reads were aligned to the human 
hg38 genome with STAR and gene count and splice junction files analyzed with  Psichomics34. Principal compo-
nent analysis (PCA) of the splicing data (percent-spliced-in or PSI index) indicated the presence of three clusters 
of samples. One cluster contained three normal samples and one NAFLD, the second was a mixture of 5 normal 
and 6 NAFLD samples, and the third 1 NAFLD and 13 NASH (Fig. 1A). The clusters were labeled Normal, Early 
and Late disease, respectively, for further analysis. The contribution of PC1 and PC2 were modest (only 12.5% 
and 6.2%) on a dataset that contained 78,156 alternative splicing events (SEs) derived from 753,516 splice junc-
tions, which was likely due to the sparsity of values for many SEs. So, we used dimension reduction to filter out 
SEs with more than 5 missing values reducing the dataset to 6797 SEs. When these were used for PCA analysis 
the relative contribution of PC1 increased to 29.2% indicating that the major difference was related to the pro-
gression from normal/early disease to late disease (Fig. S1A). We also plotted the PCA data by SRSF3 expression 
level, which we had previously measured by western  blot29 (Fig. 1B). The Normal cluster showed high SRSF3 
expression, whereas the Late cluster showed predominantly low SRSF3 expression, with the Early cluster showing 
mixed expression. The SRSF3 protein level was significantly lower in the Late cluster than the Normal cluster 
(Fig. S1B). We assessed which SEs contributed to the PCA distribution (Table S2) and quantification of the top 
two contributing SEs indicated the use of an alternative first exon in the Late cluster in the TPM1 and SLCO2B1 
transcripts (Fig. S1C). To visualize the variation in splicing across the samples we used unsupervised clustering 
of the top 500 SEs with < 5 missing values and a PSI variance > 0.01 (Fig. 1C). The samples clustered the same way 
as the PCA analysis with the Late cluster showing greatest dissimilarity to the Normal and Early clusters. The SEs 
clustered into six groups: two large groups 1 and 2 were SEs that were different in the Late cluster representing 
changes that occur in later disease; two groups 3 and 4 were SEs different in the Normal cluster representing 
changes that occur in early disease (Fig. S1D); and two small groups 5 and 6 which contained SEs that were only 
different in the Early cluster representing SEs that changed early in disease but were not maintained through 
later disease (Fig. S1E). To identify which SEs were significantly altered we performed a statistical comparison 
of all three clusters using the Kruskal–Wallis rank sum test (Table S3, 4652 significant SEs), and then compared 
individual clusters using t-test and Wilcoxon rank sum tests (Tables S4–6). We also analyzed a dataset from the 
ENCODE consortium, in which SRSF3 had been knocked down in human HepG2 hepatoma cells, to provide 
a list of SRSF3-dependent events (Table S7)35. The SEs were filtered to only analyze events that were detected in 
both human liver and HepG2 cells (2872 sig SEs, 37,426 total SEs). SEs that were significantly different between 
pairs of clusters (p < 0.05) were then overlapped with each other and with SRSF3-dependent events from HepG2 
cells (Fig. 1D). SRSF3-dependent SEs were significantly enriched in the overall cluster data (2872 SE, odds ratio 
OR 1.54, p < 0.0001 by χ2) and were also enriched in the individual cluster comparisons, with enrichment being 
greatest for the Early cluster compared to the Normal cluster (OR 1.75, p < 0.0001). Changes in exon skipping 
were the predominant form of alternative splicing in all three comparisons followed by alternative 3′ splice sites 
and first exons (Fig. 1E).

To gain an understanding of the functional effect of these changes we mapped the genes affected by the SEs 
to pathways and gene ontologies using  Metascape36. The genes affected by these SE changes also showed consid-
erable overlap between clusters (Fig. S1F). Nineteen of the top 20 enriched terms were shared between clusters 
with RNA metabolism, response to stress, protein catabolism and transport being the most significant (Fig. 1F). 
We also created protein–protein interaction networks out of these genes using the Molecular Complex Detec-
tion algorithm (MCODE) and the STRING and BioGRID  databases37–39. Three of the top 8 MCODE interaction 
networks were involved in mRNA splicing, 3′ end processing and translation (Fig. 1G). Other networks involved 
organelle fusion and vesicle transport, carbohydrate metabolism, MAPK signaling and cell cycle (Fig. S1G). 
Inspection of the networks involved in RNA processing highlighted several splicing factors that were themselves 
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Figure 1.  RNA splicing is altered in NAFLD and NASH: (A) PCA plot based on the analysis of alternative splicing events in RNA 
from liver samples from 8 individuals with normal liver (blue), 8 individuals with NAFLD (magenta) and 13 individuals with NASH 
(green). The percent-spliced-in (PSI) value for each event was calculated with Psichomics. K-means clustering highlighted three 
distinct clusters that are circled, which we have labelled Normal, Early or Late. (B) PCA plot color-coded for SRSF3 protein expression 
by western blot. SRSF3 expression below the mean is colored red, high expression above the mean is labeled cyan. (C) Heatmap of the 
top 500 SEs with < 5 missing values and PSI variance > 0.01. The samples clustered into the same three groups as the PCA. Red indicates 
high PSI and blue low PSI. (D) Venn diagram showing overlap of the statistically different SEs from the pairwise clusters comparisons 
and the set of SRSF3-dependent SEs from shRNA knockdown of SRSF3 in HepG2 cells. Enrichment for SRSF3-dependent SEs is 
indicated by the odds ratio (OR, χ2 p value). (E) Pie charts showing distribution of splicing event types between clusters: alternative 3′ 
splice site (A3SS), alternative 5′-splice site (A5SS), alternative first exon (AFE), alternative last exon (ALE), mutually-exclusive exons 
(MXE) and skipped exons (SE). (F) Heatmap showing enriched GO ontology terms from genes harboring the SEs. Color coding shows 
-log10 p-value for enrichment. NvsE, Normal vs Early; NvsL Normal vs Late; EvsL Early vs Late cluster. (G) Protein–protein MCODE 
interaction networks based on spliced genes. Nodes are shown as circles, interactions as lines.
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subject to alternative splicing including SRSF3, SRSF6 and SRSF7, which contain poison exons causing non-
sense mediated decay of the transcript, the spliceosome component SNRNP70, the ribosome subunit RPS24, 
and SRRM1 that bridges SR proteins to the snRNP complex (Fig. S1H).

The Psichomics algorithm analyzes individual splicing events but does not quantify more complex splicing 
variation. To assess more complex splicing patterns, we took two approaches based on the generation of complex 
splice graphs. These approaches use graph theory to derive alternative routes to generate known and novel splic-
ing isoforms. Analysis of the clusters using  MAJIQ40 highlighted a smaller number of local splicing variations 
(LSVs) that were derived from the mapping of multiple splice junctions to the splice graphs (Tables S8–10). 
Out of 78,179 LSVs, 887 were significantly altered between the clusters and they were significantly enriched for 
SRSF3-dependent events as before (OR 1.58, p = 0.0039) (Fig. 2A). Comparison of the Early and Late clusters 
showed significant enrichment (p = 0.011) of SRSF3-dependent splicing events, but the other comparisons did 
not (p = 0.068 and 0.065). As an example, the TPM1 splicing event that contributed most to the PCA analysis was 
also found in the LSVs showing a switch in splicing of upstream exons in the Late cluster using a more proximal 
first exon (Fig. 2B). Gratifyingly, known SRSF3-dependent events were also found. Splicing of exon 13 in the 
SLK1 gene was altered with greater skipping of this exon in the Late cluster (Fig. 2C). The genes affected by these 
LSVs also showed overlap with the greatest number of changes occurring between the Normal and Late clusters 
(Fig. S2A). The functional effect of the genes harboring these splicing events was again assessed using Metascape. 
Early changes were enriched for genes in metabolic pathways and networks including blood clotting, nitrogen and 
organic acid metabolism, hormone stimulation and cell shape (Fig. S2B and C) whereas later changes between 
the Normal or Early clusters and the Late cluster showed enrichment for genes in RNA processing including 
splicing, miRNA production, ribonucleoprotein complex assembly, and nucleocytoplasmic transport, and genes 
involved in regulating cell shape including morphogenesis, actin cytoskeletal rearrangement and cell-substrate 
interactions. Protein–protein interaction network analysis highlighted networks involved in mRNA splicing, 
cytoskeletal rearrangement, vesicle trafficking, mitotic centrosomes and xenobiotic metabolism (Fig. S2D).

A similar splice graph analysis was performed using  Whippet41 and comparison with the ENCODE data again 
showed enrichment for SRSF3-dependent events in the overall dataset (Fig. 2D, Tables S11–13). Interestingly, 
this approach found more differences between the Normal and Early clusters (Figs. 2D and S2E). This analysis 
identifies alternative transcription start and termination sites in addition to the other SEs, and these events were 
more frequent than cassette exon skipping that was the major class in the Psichomics analysis (Fig. 2E). The 
analysis also provides a measure of splicing entropy that is related to the complexity of the splicing event. Inter-
estingly, the splicing events that showed the greatest change in PSI had lower entropy, i.e. simpler splicing events 
tended to show greater changes (Fig. 2F). Functional analysis highlighted terms and pathways involving lipid 
metabolism, phospholipase signaling, and small molecule hydroxy acid metabolism in the early changes, with 
enrichment of immune response, vesicle transport, complement, chromatin modification, and mitosis in later 
changes (Fig. S2F and G). Protein–protein interaction network mapping with the genes harboring high entropy 
splicing events highlighted interaction networks incorporating proteins with known functions in the liver. The 
largest network included proteins involved in meta-phase progression and was centered on beta-catenin, which 
is the most frequently mutated gene in HCC (Fig. S2H). Other networks involved PI3K-Akt signaling, mRNA 
splicing and translation. These analyses showed that changes in early disease samples tended to be in metabolic 
pathways suggesting that changes in liver metabolism are some of the early steps, whereas changes in later disease 
reflected cytoskeletal and matrix changes as well as immune responses. Some of these may reflect changes in 
the hepatocytes but could also be indicative of the increased immune cell infiltration, stellate cell activation and 
fibrosis that occurs in later disease. We were not able to compare the three sets of predicted splicing events directly 
as each algorithm uses a different naming system and chromosomal coordinates. We could, however, compare the 
genes containing the alternatively spliced events; Psichomics detected the greatest number of alternatively spliced 
genes (2912), which included 48% of the genes detected by Majiq but only 20% of the genes detected by Whippet.

Changes in gene expression are not enriched for SRSF3‑dependent events
We also analyzed changes in gene expression in these samples (Table S14). PCA analysis did not reveal the same 
separation as was observed with the splicing events (Fig. 3A) nor the same dependence on SRSF3 protein levels 
(Fig. S3A). Hierarchical clustering of the expression data, however, did show a separation of the NASH samples 
versus the Normal/NAFLD samples (Fig. 3B). The genes that contributed most to the PCA were distinct from 
the splicing events with many genes involved in inflammation and the immune response (Fig. S3C, Table S15). 
We also used t-distributed stochastic neighbor embedding (tSNE) (Fig. S3D) based on the expression levels and 
this confirmed that the samples split into two groups, the NASH group equivalent to the Late splicing cluster, 
and a normal/NAFLD group equivalent to the Normal and Early splicing clusters (Fig. S3B). Interestingly, six 
of the 20 most significant up-regulated genes in NASH encoded proteins involved in the extracellular matrix 
(MMP7, ITGBL1, LUM, CCDC80, CDH6, MUC6) consistent with fibrosis (Fig. 3C), whereas eight of the twenty 
top down-regulated genes (ORM1, SAA1, CRP, SAA2, LRG1, HAMP, SPINK1, FCN2) encode for secreted pro-
teins suggesting impaired hepatocyte secretory function (Fig. 3D). We analyzed the changes in gene expression 
between the Normal/NAFLD group and the NASH group then compared those to the SRSF3-dependent gene 
expression changes from the ENCODE dataset in HepG2 cells (Table S16). The transcriptomes of the liver 
samples and the HepG2 cells only showed partial overlap with 82% of liver genes being detected in HepG2 cells 
but only 34% of HepG2 genes being detected in primary liver samples (Fig. 3E). Unlike the splicing events, 
SRSF3-dependent gene expression changes were not significantly enriched in the NASH-dependent genes (42% 
SRSF3-dep, p = 0.98 by χ2 test). We subjected the top 1000 genes that were over-expressed or under-expressed 
in NASH to pathway and network mapping. The genes that were higher in the Normal/NAFLD group were 
enriched for genesets and pathways involved in liver function or were decreased in hepatoblastoma, whereas 
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Figure 2.  Changes in RNA splicing by splice graph. (A) Venn diagram showing overlap of local splicing 
variants (LSV) by MAJIQ (78,179 total LSVs, 887 significant LSVs). Overlap and enrichment χ2 p-value with 
LSVs from SRSF3 shRNA knockdown in HepG2 cells is shown for individual cluster comparisons (Normal, 
Early or Late) and overall. (B) Change in upstream exon utilization in TPM1 RNA. Use of upstream exon splice 
site is shown in green, downstream exon in orange. Graphs underneath show PSI values for each event in the 
three clusters. (C) Skipped exon 13 in the SLK RNA. Exon skipping is shown in red, inclusion in blue. Green 
indicates a cryptic splice exon. (D) Venn diagram showing overlap of alternative splicing by Whippet (148,360 
total SEs, 1773 significant SEs). Overlap and enrichment χ2 p-value with SEs from SRSF3 shRNA knockdown 
in HepG2 cells is shown for individual cluster comparisons and overall. (E) Distribution of significant splicing 
events across cluster comparisons. AA alternative splice acceptor, AD alternative splice donor, AF alternative 
first exon, AL alternative last exon, CE cassette exon, RI retained intron, TE transcriptional termination exon, 
and TS transcriptional start site. NvsE, Normal vs Early; NvsL Normal vs Late; EvsL Early vs Late cluster. (F) 
Graph of splice event entropy (complexity) versus PSI for significant SEs. Dotted line is quadratic curve fit 
(p < 0.0001).
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Figure 3.  Transcriptional changes in liver disease. (A) PCA plot based on gene expression levels from gene-
wise linear model fit and moderated t-test by empirical Bayes. Individuals with no history of liver disease (blue), 
individuals with NAFLD (magenta) and individuals with NASH (green). (B) Heatmap from unsupervised 
clustering of gene expression data. Red indicates high and blue low expression. Samples (C) Relative mRNA 
expression of the top twenty genes showing increased expression in the NASH cluster (green) versus the 
Normal/NAFLD cluster (blue). (D) Relative mRNA expression of the top twenty genes showing decreased 
expression in the NASH cluster (green) versus the normal/NAFLD cluster (blue). (E) Venn diagram showing 
overlap of gene expression showing total and significant liver genes (NASH vs Normal/NAFLD) and total 
and significant gene from SRSF3 shRNA knockdown in HepG2 cells. -log10 P value is shown on x axis, color 
indicates level of significance. (F) Geneset and pathway enrichment for gene higher in Normal/NAFLD vs 
higher in NASH. (G) Disease enrichment using DisGenNet for genes higher in NAFLD/Normal vs higher in 
NASH. (H) Transcription factors driving altered gene expression in Normal/NAFLD vs NASH from TRRUST.
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the genes increased in NASH were enriched for cancer, stem cell, and extracellular matrix pathways (Fig. 3F). 
Mapping the differential expression to the DisGenNet disease signature  database42 showed that the Normal/
NAFLD genes were enriched for signatures of complement deficiency and fatty liver disease, whereas the NASH 
genes were enriched for neoplastic signatures (Fig. 3G) and analysis of the altered genes for transcription factor 
drivers showed that genes in the Normal/NAFLD group were driven by metabolism related transcription factors 
such as C/EBPα/β, ATF6 and SREBP2, whereas genes in the NASH group were driven by inflammatory pathways 
such as NFκB, and RelA (Fig. 3H).

At the cell level, the genes that were higher in Normal/NAFLD were enriched for hepatocyte or hepatoblast 
cell signatures whereas those higher in NASH were enriched for stromal, immune, and stellate cell signatures 
(Fig. 4A). To confirm the identity of the clusters, the expression data was deconvoluted using CIBERSORT to 
predict immune cell  composition44. The total predicted immune cell count was greater in the NASH cluster 
than the Normal/NAFLD, with an increase in CD8 and CD4 T cells and dendritic cells, and a decrease in M2 
macrophages and mast cells confirming the hepatitis that is characteristic of NASH (Fig. 4B). The immune cell 
changes were maintained if the data were analyzed according to the splicing clusters (Fig. S3E). We also decon-
voluted the expression data using a signature matrix generated from a single cell sequencing study of human liver 
(Fig. 4C)43. All livers showed predominance of hepatocytes (Hepatocytes_6) that are characterized by expression 
of ALB, ALDH1L1, ADH1B, XIST and APOC3 (Figs. 4D and S3F). The Normal/NAFLD cluster samples also 
showed the presence of hepatocytes that have high expression of CYP2A6, CYP2A7, CYP2B6, CFHR1/3 and 
GSTA1 (Hepatocytes_14) and are characteristic of hepatocytes involved in xenobiotic, steroid, fatty acid and drug 
metabolism (Figs. 4D and S3F). This cluster of hepatocytes decreases in the NASH samples and is replaced by a 
population of hepatocytes with high expression of HMGCS1, SCD and FABP1 (Hepatocytes_5) characteristic of 
Zone 1 hepatocytes (Figs. 4D and S3F). Similar cell populations were identified when a cell signature matrix was 
derived from the human normal Liver Cell Atlas sequencing study (Fig. S3G)45. These results indicate that the 
samples from NASH patients have higher immune cell infiltration, greater fibrosis, impaired secretory function, 
and higher neoplastic gene expression. Gene expression in the Normal/NAFLD samples is driven by liver-specific 
transcription factors but NASH samples are driven by inflammatory signaling transcription factors.

Alternative splicing events correlate with SRSF3 binding
As SRSF3-dependent SEs were enriched in the changes in RNA splicing during early liver disease, we sought to 
understand how SRSF3 could contribute to the changes in RNA splicing. We performed eCLIP with antibodies 
to SRSF3 in mouse primary  hepatocytes46. Most of the binding peaks mapped to the coding-region of genes 
(Fig. 5A) and within 100 nucleotides of the intron splice sites (Fig. 5B). We assessed SRSF3 binding to three 
known target genes Fn1, Slk and Myo1b (Fig. 5C): SRSF3 represses inclusion of exon 32 in the Fn1 gene and 
SRSF3 showed binding to the flanking exons 31 and 33 but not to exon 32; SRSF3 also represses inclusion of 
exon 23 in the Myo1b gene and SRSF3 shows a strong binding peak to the upstream exon 22; in contrast SRSF3 
stimulates incorporation of exon 13 in the Slk1 gene and SRSF3 showed binding to all three exons 12, 13 and 
14. Analysis of the SRSF3 eCLIP data using  Pureclip47 identified 13,119 crosslink sites encompassing 8,859 
binding regions (Table S17). Sequences enriched at the crosslink sites were analyzed using  DREME48 to iden-
tify conserved motifs and  FIMO49 to find individual occurrences (Table S18). The top scoring motif CU/AUC 
was found in 1418 binding sites (p = 1.3e−14). Other motifs found include additional pyrimidine-rich motifs 
(UUU CUA /GC, UUU/CAUC, GGU/AUUUG) and purine-rich motifs (GAA GGA , GGUG/AAG) (Fig. 5D). The 
pyrimidine-rich motifs match the SRSF3 consensus motif found by SELEX (WCWWC), whereas the purine rich 
motifs are similar to motifs bound by other SR proteins such as SRSF1. To investigate whether SRSF3 binding 
correlated with SRSF3-dependent splicing we analyzed RNAseq data from mouse Srsf3-flox hepatocytes with 
Adenoviral-CRE mediated deletion of SRSF3. The RNAseq data were analyzed using the same approach used for 
the human samples. Splicing events were called as SRSF3-dependent if altered in the SRSF3 knockout hepato-
cytes with p < 0.05, and an SRSF3 binding peak had to map to < 1000 nucleotides from a splicing event for it to 
be called positive. SRSF3-dependent splicing events were significantly enriched for SRSF3 binding peaks (OR 
2.2, p < 0.0001, Fig. 5E). We had previously published that SRSF3 protein is reduced in livers of obese mice on 
high-fat diet (HFD) and we recently showed that multiple lipid components of the diet can lead to proteosomal 
degradation of SRSF3 (Fig. S4). Consequently, we found that SRSF3-dependent splicing events were enriched in 
livers from the HFD mice (OR 2.65, p < 0.0001, Fig. 5F). SRSF3 peaks were also enriched in the altered splicing 
events in the HFD livers (OR 1.3, p = 0.0007, Fig. 5G). These results indicate that SRSF3 binding is enriched near 
both SRSF3- and HFD-dependent splicing events.

Changes in alternative splicing with degree of liver disease
Our data suggested that changes in SRSF3-dependent splicing events could be observed in early liver disease, so 
we investigated alterations in RNA splicing in three other liver transcriptome datasets to see if SRSF3-dependence 
correlated with early versus late disease. Suppli et al. investigated the transcriptional profile of livers from 14 
healthy lean individuals, 12 obese individuals without liver disease, 15 individuals with biopsy-proven NAFLD 
and 16 individuals with biopsy-proven  NASH26. We reanalyzed their data (38,732 total SE) to identify changes 
in RNA splicing between the four groups (Table S19) and compared the splicing events to SRSF3-dependent 
events derived from HepG2 cells (Fig. 6A). SRSF3-dependent SE were almost twofold enriched in the obese group 
compared to the lean healthy group (OR 1.88, p = 0.0003), but were very significantly depleted in NAFLD and 
NASH groups (OR 0.19, p < 0.0001 and OR 0.00, p < 0.0001, respectively). Hoang et al. profiled 78 individuals with 
varying degrees of biopsy-proven NAFLD and stratified them by steatosis, fibrosis, ballooning, and inflamma-
tion  scores24. We analyzed this dataset (80,172 total SE) for changes in SEs with each of these scores (Table S20) 
and compared to the SRSF3-dependent SEs from HepG2 cells. SEs that were altered with steatosis or ballooning 
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were significantly enriched for SRSF3-dependent SEs (OR 1.43, p = 0.0018; OR 1.31, p = 0.021; respectively) but 
were not enriched when analyzed by fibrosis or inflammation scores (Fig. 6B). In the largest study, Govaere et al. 
analyzed 206 individuals with liver disease (51 NAFLD, 155 NASH) and 10 healthy  controls25. SEs that were 
significantly altered (out of 85,026 total SE) in the comparison between groups (Table S21) or between NAS 
scores were enriched for SRSF3-dependent SEs (OR 1.55, p < 0.0001 and OR 1.38, p = 0.0007, respectively) but 
no enrichment was seen based on fibrosis scores (Fig. 6C). In all three studies, enrichment of SRSF3-dependent 

Figure 4.  Liver and immune cells signatures. (A) Enrichment of cell-type signatures in gene higher in 
Normal/NAFLD vs higher in NASH. -log10 P value is shown on x axis. (B) Immune cell score and immune 
cell composition in Normal/NAFLD and NASH groups using CIBERSORT. Pie charts show relative immune 
cell composition. Asterisks indicate statistical significance difference in NASH vs Normal/NAFLD by t-test, 
****p < 0.0001, *p < 0.05. (C) Heatmap showing unsupervised clustering of liver cell composition of each sample 
using CIBERSORT and the cell signatures from the Bader Lab Liver  Atlas43. Samples cluster into Normal/
NAFLD and NASH groups as before. Blue indicates low relative cell content, red high. (D) Pairwise comparisons 
of gene expression in hepatocyte clusters 6, 5 and 14 or a comparison of stellate cells vs cholangiocytes. Graphs 
plot -log10 FDR-adjusted P value against log2 gene expression ratio. Top differentially expressed genes are 
shown.
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Figure 5.  eCLIP analysis of SRSF3 binding sites in mouse hepatocytes. (A) Metagene plot showing distribution 
of SRSF3 binding peaks by eCLIP relative to gene 5-UTR, coding region or 3′UTR. (B) Metaintron plot showing 
position of SRSF3 binding peaks relative to exon/intron boundaries. (C) SRSF3 binding peaks in the Fn1, 
Myo1b and Slk compared to expression in flox and SRSF3 knockout hepatocytes. Transcript structures are 
shown above, sashimi plot of RNAseq reads are shown in red for SRSF3 KO and green for Flox mice, SRSF3-
CLIP peaks are shown underneath in blue. (D) SRSF3 binding motifs from Pureclip analysis of the cross-linking 
sites. Enrichment p value and number of sites is given. (E) Overlap of SRSF3 CLIP peaks with SRSF3-dependent 
(Kruskal p < 0.05) and independent SEs. (F) Overlap of SRSF3-dependent and HFD-dependent liver splicing 
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Figure 6.  Confirmation of altered RNA splicing and SRSF3-dependence in three other NASH datasets. (A) Analysis of RNA splicing 
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SEs was seen with NAFLD (NAS, steatosis, ballooning) but not in NASH (fibrosis, inflammation) suggesting 
that changes in SRSF3-dependent splicing occur early in liver disease. We then compared the significant SEs 
between the four studies (Fig. 6D). Of the 30,436 SEs that were detected in the four datasets, only 9 SEs were 
common to all four studies, but 136 were significantly altered in at least three studies. For many of these, the SE 
did not quite reach significance for one out of the four studies. For example, alternative splicing of an upstream 
exon in the TPM1 gene was significantly increased in three datasets but did not quite reach significance in the 
Suppli dataset (p = 0.053), whereas that in the PANK1 did not reach significance in the Govaere dataset (p = 0.055) 
(Fig. S5A and B). In contrast, alternative splicing of a mutually exclusive exon in the IRF3 gene was significant 
in three datasets but was not detected in our dataset (Fig. S5C).

The differences in SEs between the groups, especially those with more advanced liver disease, could be 
explained by the presence of infiltrating immune cells or activation of Kupffer or hepatic stellate cells. So, we 
analyzed the tissue or cell of origin of the genes harboring the 136 common SE changes. The greatest enrich-
ment was for SEs in genes that were specific to liver tissue, HepG2 cells or liver cells (Fig. 6E). We also observed 
enrichment of genes found in adipocytes, which would be consistent with the steatosis. The cell type signatures 
were primarily derived from hepatocytes (Fig. S5D). We confirmed this conclusion by analyzing the transcrip-
tion factors that regulate expression of the genes harboring the 136 SEs. The top four enriched transcription 
factors based on  TTRUST50 are liver specific (NR1H4/FXR, HNF4A, CEBPA, NR1I2/PXR) (Fig. 6F) and the 
top transcription factor targets based on GTRD ChIP-seq data are GTF2A2, TAF9B, ZNF318, and NR1H4/FXR 
(Fig. 6G). To assess which pathways or processes might be affected by the changes in SE, the genes containing 
the 136 common SEs were mapped to gene ontologies then clusters of significant GO terms and their interac-
tions were plotted as a network (Fig. 6H). This analysis highlighted a large network of GO clusters representing 
metabolic functions of the liver, including complement, platelet degranulation, acute phase response, xenobiotic 
and drug metabolism, nuclear receptor and FXR pathways, and NAFLD (Fig. 6H). There were also subclusters 
centered on mRNA transport and translation. Mapping the SEs to DisGeNet highlighted chronic liver disease, 
liver injury, hepatitis, and hypoglycemia among the major disease association (Fig. S5E). From this we conclude 
that the SEs common to multiple studies are likely derived from hepatocytes rather than infiltrating immune cells.

Early versus late disease changes in alternative splicing
As the previous analysis indicated that SRSF3-dependent SEs were more enriched with steatosis rather than 
with fibrosis or inflammation, we created heatmaps for the three additional datasets based on the top 500 SEs. 
For each dataset, the SEs were further filtered to remove SEs found in less than half the healthy control samples, 
or with PSI variances less than 0.001 (0.1% of max PSI). Visual inspection of the heatmaps shows that there is a 
major change in splicing in the transition from control to NAFLD in the Govaere dataset (Fig. 7A), from obese 
to NAFLD in the Suppli dataset (Fig. 7B), or from NAS 0 to NAS 1 in the Hoang dataset (Fig. S6A). We then 
focused on these early changes in splicing by comparing the SEs altered in these transitions (Fig. 7C). Only 145 
early SEs were significantly altered in three or more datasets, and these showed enrichment for genes involved in 
carbohydrate metabolism, gluconeogenesis and glycogen synthesis, protein localization to organelles and mem-
branes, and autophagy and ferroptosis (Fig. 7D) and were also associated with acute drug- or chemical-induced 
liver injury and hepatitis, as well as fibrosis and malignant neoplasms (Fig. 7E). To compare the common early SE 
changes to the total altered early SEs in the four individual datasets, we mapped all the early SEs for each dataset 
(FDR-adjusted) to GO biological processes. The Circos plot shows the overlap of the genes harboring the SEs 
based on shared functions or pathways (Fig. S6B). Mapping to GO terms showed enrichment of vesicle and Golgi 
transport, cellular responses to stress, and lipid metabolism in all four datasets and three of the datasets showed 
enrichment of small molecule metabolism (Fig. S6C). These results suggest that these early splicing alterations 
are involved in normal liver function and response to injury.

To understand which splicing factors might be driving these changes, we then analyzed expression of splic-
ing factors and RNA-binding proteins during the early obese to NAFLD transition (Fig. 7F). Only four splic-
ing factors, A1CF, HNRNPAB, PABPN1 and PCBP2 were altered in early disease in our data (Fig. 7G) and the 
other three datasets (Fig. S6D–F). An additional 24 splicing factors (PCBP1, SFPQ, SRSF8, KHSRP, ESRP2, 
HNRNPH2, KHDRBS1 (Sam68), CELF2, ZCRB1, HNRNPUL1, RBFOX2, RBMS1, MATR3, RBM8A, RBM7, 
RBM38, HNRNPD, CPEB3, SART3, ZC3H14, CELF1, HNRNPM, CNOT4 and SRRM2) were altered in three 
out of four datasets.

We also analyzed the late changes in SEs that occur during the NASH progression with increased inflamma-
tion and fibrosis; NASH_F0/1 vs NASH_F3/4 in the Govaere dataset, NAFLD vs NASH in the Suppli dataset, 
or NAS 1–3 vs NAS 4–6 in the Hoang dataset. Thirty-six SEs were altered in three out of four datasets (Fig. 8A). 
The 36 genes harboring the common late SEs show enrichment in immune response genes and RHO GTPase 
signaling (Fig. 8B) that is not observed in the early SE changes and are associated with chronic liver disease, 
hepatitis, fatty liver disease, NASH, obesity, and many inflammatory and infectious diseases (Fig. 8C). Compar-
ing all the late SEs in the four individual datasets, the Circos plot again shows extensive overlap (Fig. S7A) and 
the enriched terms now include chromatin and cytoskeletal organization and DNA damage in addition to the 
previous metabolic terms (Fig. S7B). These results suggest that the late splicing alterations are also involved in 
cytoskeletal and genomic changes, and DNA damage, indicative of more advanced disease. There were no splicing 
factors that were altered in all four late datasets but HNRNPAB, RBM6, RBM5, SRSF5 and RBFOX2 were altered 
in three out of four (Fig. 8D). HNRNPAB and RBFOX2 were the only genes whose expression was altered in 
both early and late disease, and RBM6, RBM5 and SRSF5 were only altered in late disease (our data in Figs. 7F 
and 8E,F, other datasets in Fig. S7C–E).
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Changes in alternative splicing in hepatocellular carcinoma
The changes in RNA splicing events that we identified occurred mainly during early liver disease (obesity to 
simple steatosis), so we then investigated whether any of the early changes would persist in hepatocellular 
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carcinoma. Analysis of the TCGA LIHC  dataset51 using the same approach identified 159,714 splicing events of 
which 18,118 were altered (Kruskal p < 0.05) in tumors compared to normal adjacent tissue (Table S22). These SEs 
were compared to the significant SEs identified for each of the four NAFLD datasets (Fig. 9A). Thirty percent of 
the significant SEs from this study and Govaere et al. were also significantly altered in the LIHC data compared 
to 55% of the SEs from Suppli et al. and Hoang et al., indicating that many of these NASH-associated SEs are still 
present in HCC. Overall, 22% of the tumor-associated SEs were found in the NASH-associated SEs compared 
to 12% of total SEs, hence tumor-associated SEs were significantly enriched for NASH-associated SEs (OR 2.13, 
p < 0.0001). Looking more closely at early changes, we mapped the common 145 early SEs that were found in 
three or more NAFLD datasets to the HCC data; 75 out of the 145 SEs (52%) were significantly altered in the 
tumors in the TCGA LIHC dataset (Fig. 9B) compared to only 22% for other SEs (OR = 3.9, χ2 p < 0.0001). We 
calculated the survival log-rank p-value for each of these early SEs based on the optimal PSI cut-off. Twenty-eight 
SEs (37%) out of the 75 SEs were significantly associated with survival compared to only 26% of other tumor-
associated SEs. Of the 28 SEs that are associated with survival, 23 SEs cause alterations in the protein sequence 
(Table S23). Six of the top early NAFLD-associated SEs that are conserved in HCC and associated with survival 
are (i) an alternative first exon that deletes a ubiquitin-like domain in the FBXO7 gene, an F-box containing 
protein that interacts with the ubiquitin ligase complex SCF, (ii) an alternative first exon in the EPHX1 gene 
that encodes epoxide hydrolase 1, (iii) an alternative first exon on the myosin-1b (MYO1B) mRNA that leads to 
the production of a protein containing only the myosin head domain, (iv) an alternative 3′ splice site in the first 
exon of the FUOM fucose mutarotase protein, (v) an alternative first exon in the ATP6V0E1 gene that deletes a 
transmembrane helix, and (vi) a profibrogenic cassette exon in the fibronectin 1 (FN1) gene (Fig. 9C).

We also looked at expression of the splicing factors that were altered in the NAFLD datasets in the HCC. The 
four splicing factors HNRNPAB, PCBP2, A1CF and PABPN1, which were altered in all four NAFLD datasets, also 
have altered expression in HCC tumors but only HNRNPAB and PCBP2 are associated with survival (Fig. 9D). 
We extended this analysis to splicing factors conserved in three out of four datasets (Fig. S8). For ten splicing 
factors, SFPQ, KHDRBS1, HNRNPM, HNRNPUL1, RBMS1, MATR3, RBM8A, SRSF8, SART3 and ZCRB1, higher 
expression was associated with poorer survival (Fig. S8A) whereas for six splicing factors, CELF2, CPEB3, SRSF5, 
RBFOX2, ESRP2, and SRRM2, higher expression was associated with better survival (Fig. S8B). Expression of 
PCBP1, KHSRP, HNRNPH2, RBM7, RBM38, HNRNPD, ZC3H14, CELF1, CNOT4, RBM5, or RBM6 was not 
associated with survival, independent of any change in expression in HCC. These results suggest that many early 
alterations in RNA splicing are conserved through disease progression and can influence survival.

Discussion
In this paper, we analyzed changes in RNA splicing in 29 samples of liver tissue from individuals with non-
alcoholic fatty liver disease and found extensive changes in alternative splicing. We compared the splicing results 
to a parallel transcriptome analysis and found that while the transcriptome data showed good separation of 
individuals with NASH from those with NAFLD or normal individuals, there was no separation of normal 
versus NAFLD. The splicing analysis on the other hand allowed separation of the normal and NAFLD samples 
in addition to separating from the NASH samples. We demonstrated alterations in RNA splicing using three 
independent bioinformatic approaches and to test the generality of our findings, we confirmed changes in RNA 
splicing in three large liver transcriptome datasets. Most of the splicing changes in these larger datasets occurred 
with the transition to steatosis, with fewer changes occurring with the onset of fibrosis and inflammation. As 
might be expected, common splicing events that are altered early in liver disease are associated with metabolic 
pathways such as lipid and carbohydrate metabolism and acute liver injury, whereas those in later disease also 
show enrichment of chronic liver injury and inflammation, DNA damage and cytoskeletal reorganization. The 
changes in RNA splicing during early liver disease were significantly enriched for targets of the splicing factor 
SRSF3, which is consistent with our previously published finding that the SRSF3 protein is degraded during lipid 
overload or in NAFLD in both human and mouse  samples29.

In contrast, the late splicing changes that occurred with inflammation or fibrosis were not enriched for 
SRSF3 targets. The SRSF3 targets, however, only represented a small fraction of the total changes in splicing so 
other splicing factors might be involved and, indeed, we found that many RNA-binding proteins showed altered 
splicing in the NAFLD and NASH samples suggesting multifactorial dysregulation of RNA splicing. This conclu-
sion is supported by other studies showing dysregulation of components of the splicing apparatus in NAFLD/
NASH1,11,33. The majority of these studies analyzed RNA expression by microarray or RNAseq but interpretation 
of the results is difficult as many RNA binding proteins autoregulate their own expression through inclusion of 
poison  exons52–54. Studies that evaluated splicing factor protein expression are far fewer, but Wang et al. observed 
the upregulation of NONO, SRSF6, HNRNPA2/B1, HNRNPH and confirmed the downregulation of SRSF3 
protein in livers of mice with  NAFLD33. Indeed, DRAK2 prevents nuclear localization of SRSF6, altering RNA 
splicing and aggravating  NAFLD55.

Many of the observed changes in splicing in early NAFLD/NASH are also observed in HCC and associated 
with survival. That these changes are maintained throughout the oncogenic process suggests that they may con-
tribute to cancer development or support tumor growth. A limitation of this study is that it is difficult to predict 
the effect of altered splicing events on cellular or tissue phenotypes as the splicing events in most cases do not 
uniquely define the transcript isoform, and most alternative transcript isoforms have no functional annotation. 
Transcript isoform ratios can be estimated by deconvoluting the data but that only generates known isoforms 
and cannot predict novel transcript isoforms. Furthermore, without knowledge of the function of the protein 
isoforms it is not possible to predict functional changes. Given these limitations, interpretation is limited to 
assessing the functional roles of the genes that harbor the splicing events without knowing whether an event 
increases or decrease gene function. Nevertheless, the top NAFLD-associated splicing events that were conserved 
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Figure 9.  Altered RNA splicing events in early metabolic liver disease are conserved in HCC. (A) Overlap of 
total SEs in the four liver datasets with changes in splicing in the TCGA HCC data (LIHC). (B) Overlap of the 
145 common early SEs with changes in splicing in HCC data. (C) Six of the top common early SEs that correlate 
with survival. Box plot shows individual PSI values for normal liver and tumor in the HCC data. Survival curves 
are based on optimal PSI values for each SE. Log-rank p-value is shown. (D) Expression of the four common 
early splicing factors in the HCC data. Box plot shows individual log2 expression values for normal liver and 
tumor. Survival curves are based on optimal expression cut-off for each gene. Log-rank p-value is shown.
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in HCC and correlated with survival have been implicated in either cellular proliferation or cancer. FBXO7 gene 
regulates ubiquitin-dependent CyclinD/CDK6 degradation and maintains mesenchymal gene  expression56,57 and 
mutations have been associated with Parkinson’s disease but it’s role in the liver has not been determined. EPHX1 
is downregulated in HCC and reduces tumorigenicity in mice but may contribute to  chemoresistance58. FUOM 
isomerizes α- and β-fucose for N- and O-linked fucosylation that is increased in  HCC59. Myosin-1b (MYO1B) 
promotes cancer by targeting HIF1a and SNAI2/cyclinD160,61. ATP6V0E1 encodes the E subunit of the vacuolar 
ATPase that is important for cancer cell survival in pancreatic  cancer62. Lastly, Fibronectin 1 (FN1) can have 
positive or negative effects on cancer growth depending on the  tissue63.

The observed changes in splicing factor expression are also maintained in HCC and are associated with 
survival. Some of these have documented roles in HCC development. For example, A1CF promotes NASH and 
 HCC64, ESRP2 loss promotes HCC and lower expression predicts worse  survival32, HNRNPAB induces EMT 
and promotes HCC  metastasis65, the poly(C)-binding protein PCBP2 is upregulated in HCC and promotes 
 proliferation66, SFPQ and RBM8A mediate resistance to platinum drugs in  HCC67,68, RBMS1 blocks ferroptosis 
in  HCC69, MATR3 promotes HCC  progression70, SART3 is an immunotherapy target in  HCC71, ZCRB1 is a 
signature gene for  HCC72, and down regulation of CELF2 or CPEB3 promotes  HCC73, but the targets for many 
of these splicing factors remain to be determined. The role of these splicing factors in early liver disease is less 
clear but mouse studies have highlighted a potential causative role for some splicing factors in the pathogenesis of 
NAFLD and NASH. KHDRBS1 (Sam68) and SRSF3 regulate  gluconeogenesis9 and loss of SRSF3, A1CF, SRSF2, 
SRSF1, and SRSF10 causes steatosis and changes in lipid  metabolism74 but loss of NONO, the binding partner 
for SFPQ, increases fat catabolism and protects against  steatosis75. Splicing factors are also involved in liver 
maturation as loss of SRSF3, SRSF7, ESRP2 or RBM15 reduces hepatocyte  differentiation9,32,76,77. Indeed, many 
of these factors can have opposing effects. PCBP2 overcomes palmitate-induced insulin resistance in HepG2 
cells via inhibition of HIF1a and  STAT378 but, in more advanced disease, PCBP2 promotes collagen production 
and liver  fibrosis79. The contribution of each of these splicing factors to the dysregulation of RNA splicing in 
human NAFLD and NASH, however, remains to be determined. An alternative approach is to assess the splicing 
of known target genes but that requires identification of direct targets through binding and knockout studies. 
We have shown that known SRSF3 target genes are altered in NAFLD, NASH and HCC suggesting that SRSF3 
splicing function is reduced but that remains to be demonstrated for other factors.

In summary, dysregulated RNA splicing is observed early in metabolic liver disease and many of these 
changes are maintained during disease progression and are even found in HCC. The fact that the altered splic-
ing is maintained through a long disease progression over many years argues for their importance in the disease 
pathogenesis. While the function of the individual transcriptional isoforms is not known for most splicing events, 
the genes themselves have documented roles in liver metabolism, cell proliferation and tumorigenesis support-
ing the importance of these events. Further studies investigating individual mRNA isoforms and the proteins 
produced will be required for a full understanding of the disease process.

Materials and methods
Human tissue samples
Human liver samples were obtained from the Liver Tissue and Cell Distribution Service at the University Min-
nesota, the Department of Pathology at the VASDHS, and the Moores Cancer Center Biorepository. Subject 
characteristics are provided in Supplemental Table 1. Liver and other tissues were harvested at sacrifice for both 
histology and RNA extraction. Livers were fixed in formalin for 24 h followed by washing in 70% ethanol. Paraffin 
embedded sections (5 μm) were cut, dewaxed, and stained with hematoxylin and eosin. All human studies were 
approved by the UCSD Institutional Review Board.

Isolation of murine primary hepatocytes
Primary hepatocytes were obtained by two-step perfusion with liver perfusion medium, SC-1 (137 mM NaCl, 
5.4 mM KCl, 0.56 mM  NaH2PO4⋅H2O, 0.85 mM  Na2HPO4, 10 mM HEPES, 4.2 mM  NaHCO3, 0.5 mM EGTA, 
5 mM Glucose) followed by digestion medium, SC-2 (137 mM NaCl, 5.4 mM KCl, 0.56 mM  NaH2PO4⋅H2O, 
0.85 mM  Na2HPO4, 10 mM HEPES, 4.2 mM  NaHCO3 12 mM  CaCl2⋅H2O) containing 0.5 mg/mL collagenase 
D (Roche, Indianapolis, IN). Liver cells were disaggregated by passing through a 100 μm pore nylon mesh Cell 
Strainer (BD Biosciences, San Jose, CA) and centrifuged at 100 × RCF for 10 min at 4 °C. Cells pellets were 
suspended in 36% percoll and centrifuged at 60 × RCF for 6 min. The subsequent cell pellets were washed with 
SC-2 buffer without collagenase-D, the numbers of total viable cells were determined by Trypan blue staining, 
and cells were plated on collagen-coated plates (Invitrogen, Carlsbad, CA). Primary hepatocyte cells were cul-
tured in William E culture medium supplemented with 10% fetal bovine serum, and 100 U  mL−1 of penicillin 
and 100 μg  mL−1 of streptomycin at 37 °C. All animal studies were approved by the UCSD Institutional Animal 
Care and Use Committee.

RNAseq analysis
RNAseq was performed on RNA from frozen human liver samples and on RNA from primary mouse hepato-
cytes with adenoviral-mediated acute loss of SRSF3 using an Illumina Nextgen short-read sequencer (paired-
end 100). Raw reads were trimmed and QC’d. Sequencing reads from HepG2 cells with shRNA knockdown of 
SRSF3 or control shRNA were downloaded from ENCODE (ENCSR376FGR). Fastq reads were aligned to the 
human (hg38) or mouse (mm10) genomes using the STAR-2pass  method80 then alternative splicing (AS) events 
identified using the percent spliced in (PSI) metric with the Psichomics software in  R34. STAR gene counts were 
normalized using trimmed mean of M-values (TMM), log-transformed, and IDs converted to gene symbols. 
STAR splice-junction counts were converted to the percent-spliced in metric (PSI) and annotated using human 
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hg38. Principal component analysis (PCA) was performed on PSI and gene expression data. Many splicing 
events were either not detected or had fewer than 10 reads, so dimension reduction was performed by filtering 
out events with more than 5 missing values. Non-parametric tests (Wilcoxon or Kruskal–Wallis rank sum) were 
used to assess differential splicing as the percent spliced in (PSI) data are not normally distributed. A p-value of 
0.05 was used to identify potential differential AS events which were further refined using an FDR of 0.05. Data 
were also analyzed by  MAJIQ40 and  Whippet41 using default parameters. Mouse genes showing HFD-induced AS 
events were compared to genes with SRSF3-dependent AS events to identify SRSF3-dependent changes in mouse 
NAFLD, and genes with SRSF3-dependent splicing events were mapped to human homologs to allow comparison 
with the human NAFLD data. Heatmaps were generated using Morpheus (https:// softw are. broad insti tute. org/ 
morph eus). Immune and liver cell composition was analyzed using  CIBERSORTx44 using the Human Liver Cell 
 Atlas45 or the Bader Human Liver  Atlas43. Enrichment analysis and protein-interaction network generation was 
performed using  Metascape36.

SRSF3‑seCLIP analysis
Primary mouse hepatocytes were isolated and subjected to seCLIP following published procedures by Eclipse 
 Biosciences46,81 (La Jolla, CA). SRSF3 was precipitated using mouse monoclonal 7B4 anti-SRSF3 antibody (1:100 
dilution, ATCC CRL-2384, Manassas, VA). CLIP reads were aligned to the mouse mm10 genome then peaks of 
SRSF3 binding were identified using the HOMER  suite82 or using  Pureclip47. Sequences enriched at the crosslink 
sites identified by Pureclip were analyzed using  DREME48 to identify conserved motifs and  FIMO49 to find indi-
vidual occurrences. Alternative splicing events and SRSF3 binding were co-visualized on individual genes using 
 IGV83. Correlation of SRSF3 binding peaks and alternative splicing events was performed using custom scripts in 
R. Splicing events were called as SRSF3-dependent if they were altered in the SRSF3 knockout hepatocytes with 
p < 0.05 and contained a SRSF3 binding peak that mapped to < 1000 nt from the splicing event.

TCGA liver cancer data analysis (LIHC)
HCC gene counts, exon-junction counts, and metadata files were downloaded from the TCGA website. The 
STAR hg38-aligned TCGA gene count, splice junction and clinical data were downloaded and formatted for the 
Psichomics program. Gene counts and splice-junction counts were imported and annotated using human hg38 as 
above. Individual gene expression or alternative splicing events were visualized on violin plots. Survival analysis 
was performed using selected gene expression or PSI cutoffs, generating Kaplan–Meier curves and deriving Cox 
proportional hazard models. Correlation analysis between gene expression and an alternative splicing event was 
performed using Spearman rank correlation.

Immunoblot analysis
Equal amounts of cellular protein (10 μg) were separated by SDS-PAGE using 4–15% or 20% Criterion precast 
polyacrylamide gels (Bio-Rad), transferred to PVDF membranes (MilliporeSigma, Burlington, MA), blocked with 
5% BSA for 1 h at RT and immunoblotted with primary antibodies overnight at 4 °C followed by HRP-conjugated 
secondary antibodies at room temperature for 1 h, washed 3× in TBS-Tween20 then developed using a chemi-
luminescent substrate kit (Pierce, Rockford, IL). Antibodies used for immunoblotting were mouse monoclonal 
7B4 anti-SRSF3 antibody (1:1000 dilution, ATCC CRL-2384, Manassas, VA), HRP labeled anti-mouse (sc516102) 
secondary antibody (1:5000 dilution, Santa Cruz Biotechnology, Santa Cruz, CA). Blots were quantified using 
a Gel-Doc imaging system (Bio-Rad).

Statistical analysis
Data was analyzed by 1-way or 2-way ANOVA followed by Tukey multiple comparison post-test, or Students’ 
t-test as appropriate using Prism (Graph Pad, La Jolla, CA) or in R statistical software (v3.4.4). Normality was 
assessed by D’Agostino-Pearson omnibus normality test. Results were expressed as mean ± standard error and 
considered significant with p < 0.05. Linear regression and Chi-squared contingency table analysis was performed 
using Prism. Venn diagrams were generated using  Venny84 or  nVenn85.

Data availability
Supporting Information is available from the author. All the data supporting the findings of this study are avail-
able within the article and its supplementary information files and from the corresponding author upon reason-
able request. Sequence reads are available from the Sequence Read Archive (SRA BioProject ID PRJNA1040226). 
A reporting summary for this article is available as a Supplementary Information file.
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